Thèse soutenue

Réacteurs gaz-liquide-solides innovants : contribution à la compréhension de l'hydrodynamique et des transferts de masses

FR  |  
EN
Auteur / Autrice : Jean-Noël Tourvieille
Direction : Claude de Bellefon
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 26/02/2014
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale de Chimie (Lyon ; 2004-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Génie des Procédés Catalytiques (CPE) - Department of Computer Science [Lyon]
Jury : Président / Présidente : Pascal Fongarland
Examinateurs / Examinatrices : Régis Philippe, Patrick Maestro, Lioubov Kiwi-Minsker
Rapporteurs / Rapporteuses : Joelle Aubin, Michel Kreutzer

Résumé

FR  |  
EN

Afin de répondre aux nouveaux challenges de l'industrie chimique, le développement de nouveaux réacteurs catalytiques hétérogènes plus efficaces et plus sûrs ainsi que leur compréhension sont nécessaires. Dans cette optique, des réacteurs micro ou milli-structurés ont vu le jour et suscitent un intérêt croissant de par leur capacité à diminuer les phénomènes physiques de limitations aux transferts de mantière et de chaleur. Dans ce travail, deux concepts de réacteurs structurés dédiés au milieu gaz-liquide solide sont étudiés. Le premier est un réacteur à film tombant microstructuré (FFMR) dans lequel des canaux sub-millimétriques, rectilignes et verticaux permettent de stabiliser et d'amincir un film liquide en écoulement, générant des aires d'interfaces très importantes. Disponible commercialement, il présente un très bon potentiel pour la mise en oeuvre de réactions à fortes contraintes mais pour de petites productions. Le second réacteur est quant à lui nouveau. Des mousses à cellules ouvertes métalliques sont utilisées comme support de catalyseur structurant confiné dans un canal de section millimétrique carrée et soumis à un écoulement de Taylor G-L préformé. Pour chaque réacteur, l'hydrodynamique des écoulements est étudiée par le développement de techniques microscopiques et leurs aptitudes aux transferts de masses sont évaluées par la mise en oeuvre de la réaction catalytique d'hydrogénation de l'α-methylstyrène. Il en ressort que les écoulements particuliers rencontrés dans ces deux objets permettent d'atteindre des capacités de transferts de matières supérieurs d'au moins un ordre de grandeur aux technologies usuelles pour un coût énergétique, lié à l'écoulements des fluides, faible. Par ailleurs, des éléments de dimensionnement (hydrodynamique, perte de charge et transferts de matière) ont été construits pour les deux réacteurs