Thèse soutenue

Interaction dynamique entre les voies rétiniennes standard et non-standard dans le système visuel thalamocortical précoce : une étude de modélisation
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Carlos Carvajal
Direction : Frédéric AlexandreThierry Viéville
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 17/12/2014
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Sylvain Contassot-Vivier
Examinateurs / Examinatrices : Benoît Miramond, Adrian Palacios
Rapporteurs / Rapporteuses : Lionel Nowak, Hélène Paugam-Moisy

Résumé

FR  |  
EN

Comprendre le comportement du système visuel rétino-thalamo-cortico-colliculaire (i.e. précoce) dans une situation d'images naturelles est d'une importance capitale pour comprendre ce qui se passe ensuite dans le cerveau. Pour comprendre ces comportements, les neurobiologistes ont étudié les voies standard, Parvocellulaires et Magnocellulaires, depuis des décennies. Cependant, il y a aussi la voie non-standard, ou Koniocellulaire, qui joue un rôle modulateur important dans les traitements local, global, et entremêlé, pour atteindre de tels comportements. Particulièrement, l'analyse standard du mouvement réalisée par la voie Magno est alternée avec des réactions rapides, comme la fuite ou l'approche à des mouvements spécifiques, qui sont pré-câblés dans la voie Konio. De plus, l'étude d'une tâche de fixation dans une situation réelle, par exemple quand un prédateur s'approche lentement de sa proie, implique non seulement un mécanisme de mouvement, mais nécessite également l'utilisation de la voie Parvo, qui analyse, au moins, le contraste de l'image. Ici, nous étudions dans un modèle neuronal de calcul bio-inspiré comment ces voies peuvent être modélisées avec un ensemble minimal de paramètres, afin de fournir des résultats numériques robustes lors d'une tâche réelle. Ce modèle repose sur une étude approfondie pour intégrer des éléments biologiques dans l'architecture des circuits, les constantes de temps et les caractéristiques de fonctionnement des neurones. Nos résultats montrent que notre modèle, bien que fonctionnant via des calculs locaux, montre globalement un bon comportement de réseau en termes d'espace et de temps, et permet d'analyser et de proposer des interprétations de l'interaction entre le thalamus et le cortex. À une échelle plus macroscopique, les comportements du modèle sont reproductibles et peuvent être qualitativement comparés à des mesures de fixation oculaire chez l'homme. Cela est également vrai lorsque l'on utilise des images naturelles, où quelques paramètres sont légèrement modifiés, en gardant des résultats qualitativement humains. Les résultats de robustesse montrent que les valeurs précises des paramètres ne sont pas critiques, mais leur ordre de grandeur l'est. Une instabilité numérique ne se produit qu'après une variation de 100% d'un paramètre. Nous pouvons donc conclure que cette approche systémique est capable de représenter les changements de l'attention en utilisant des images naturelles, tout en étant algorithmiquement robuste. Cette étude nous donne ainsi une interprétation possible sur le rôle de la voie Konio, tandis qu'en même temps elle nous permet de participer au débat sur les low et high-roads des flux attentionnel et émotionnel. Néanmoins, d'autres informations, comme la couleur, sont également présentes dans le système visuel précoce, et pourraient être prises en considération, ainsi que des mécanismes corticaux plus complexes, dans les perspectives de ce travail