Entiers friables et formes binaires
Auteur / Autrice : | Armand Lachand |
Direction : | Cécile Dartyge |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 02/12/2014 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Élie Cartan de Lorraine (1997-.... ; Vandoeuvre-lès-Nancy, Metz) |
Jury : | Président / Présidente : Joël Rivat |
Examinateurs / Examinatrices : Gérald Tenenbaum, Jie Wu | |
Rapporteurs / Rapporteuses : Régis de La Bretèche, François Hennecart |
Résumé
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes