Thèse soutenue

Complexité d'ordre supérieur et analyse récursive

FR  |  
EN
Auteur / Autrice : Hugo Férée
Direction : Jean-Yves MarionMathieu Hoyrup
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/12/2014
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Philippe De Groote
Examinateurs / Examinatrices : Paul-André Melliès
Rapporteur / Rapporteuse : Olivier Bournez, James Royer

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Alors que la complexité des fonctions d'ordre 1 est bien définie et étudiée, il n'existe pas de notion satisfaisante à tout ordre. Une telle théorie existe déjà à l'ordre 2 et permet de définir une classe analogue aux fonctions calculables en temps polynomial usuelles. Cela est tout particulièrement intéressant dans le domaine de l'analyse récursive où l'on peut représenter, entre autres, les nombres et les fonctions réelles par des fonctions d'ordre 1. On peut alors remarquer un lien fort entre calculabilité et continuité, et aussi rapprocher la complexité avec certaines propriétés analytiques, ce que nous illustrons dans le cas des opérateurs réels. Nous prouvons cependant que, du point de vue de la complexité, les fonctions d'ordre 1 ne permettent pas de représenter fidèlement certains espaces mathématiques. Ce résultat appuie tout particulièrement la nécessité d'une théorie de la complexité d'ordre supérieur. Nous développons alors un modèle de calcul basé sur la sémantique des jeux, où l'application de deux fonctions est représentée par la confrontation de deux stratégies dans un jeu. En définissant la taille de telles stratégies, nous pouvons déduire une notion robuste et pertinente de complexité pour ces stratégies et donc pour les fonctions d'ordre supérieur. Nous définissons aussi une classe de fonctions calculables en temps polynomial qui paraît être un bon candidat pour définir une classe de complexité raisonnable à tout ordre