

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

THÈSE

présentée par

NGUYEN Manh Cuong

en vue de l’obtention du grade de

DOCTEUR DE L’UNIVERSITÉ DE LORRAINE

(arrêté ministériel du 7 Août 2006)

Spécialité: INFORMATIQUE

LA PROGRAMMATION DC ET DCA

POUR CERTAINES CLASSES

DE PROBLÈMES EN APPRENTISSAGE

ET FOUILLE DE DONÉES.

Soutenue le 19 mai 2014 devant le jury composé de

Rapporteur BENNANI Younès Professeur, Université Paris 13
Rapporteur RAKOTOMAMONJY Alain Professeur, Université de Rouen
Examinateur GUERMEUR Yann Directeur de recherche, LORIA-Nancy
Examinateur HEIN Matthias Professeur, Université Saarland
Examinateur PHAM DINH Tao Professeur émérite, INSA-Rouen
Directrice de thèse LE THI Hoai An Professeur, Université de Lorraine
Co-encadrant CONAN-GUEZ Brieuc MCF, Université de Lorraine

Thèse préparée à l’Université de Lorraine, Metz, France
au sein de laboratoire LITA

Remerciements

Cette thèse a été préparée au sein du Laboratoire d’Informatique Théorique et Appliquée
(LITA) de l’Université de Lorraine - France, sous la co-direction du Madame le Professeur
LE THI Hoai An, Directrice du laboratoire Laboratoire d’Informatique Théorique et Ap-
pliquée (LITA), Université de Lorraine et Mâıtre de conférence CONAN-GUEZ Brieuc,
Institut Universitaire de Technologie (IUT), Université de Lorraine, Metz.

J’adresse toute ma gratitude à Madame le Professeur LE THI Hoai An et Mâıtre de
conférence CONAN-GUEZ Brieuc qui ont accepté d’être mes directeurs de thèse, pour
leur aide, leur patience, leur soutien permanent, leurs conseils précieux, leurs encourage-
ments et leur disponibilité tout au long de ce travail.

Je tiens à remercier plus particulièrement Monsieur le Professeur Pham Dinh Tao, Pro-
fesseur à L’INSA de Rouen pour ses conseils, son suivi de mes recherches. Je voudrais lui
exprimer toutes mes reconnaissances pour sa sympathie et les discussions très intéressantes
qu’il a menées pour me suggérer les voies de recherche.

Je souhaite exprimer mes vifs remerciements à Monsieur BENNANI Younès, Professeur
à l’Université Paris 13 et à Monsieur RAKOTOMAMONJY Alain, Professeur à l’Université
de Rouen, de m’avoir fait l’honneur d’accepter la charge de rapporteur de ma thèse, ainsi
que d’avoir participé à juger mon travail.

Je tiens à remercier Monsieur GUERMEUR Yann, Directeur de Recherche, LORIA
Nancy et Monsieur HEIN Matthias, Professeur à l’Université Saarland d’avoir participé
à juger mon travail.

Je remercie particulièrement le Docteur LE Hoai Minh pour l’aide inestimable, sa col-
laboration et pour les discussions très intéressantes que nous avons pu avoir.

Je remercie tous mes collègues Français et Vietnamiens rencontrés à Metz ainsi qu’à Rouen
pour les moments agréables lors de mon séjour en France. Je remercie particulièrement
tous mes collègues à LITA, l’Université de Lorraine, pour les partages dans le travail et
dans la vie.

Mes remerciements s’adressent également au Gouvernement Vietnamien qui a financé mes
études pendant la thèse. Je ne devrais pas oublier remercier tout l’équipe du personnel de
l’Université de l’Industrie de Hanoi pour son soutien.

Je devrais témoigner mon affectation, mes reconnaissances à ma famille pour les sacrifices
qu’elle a faites pour me soutenir lors des moments difficiles.

Enfin à tous ceux qui m’ont soutenu de près ou de loin et à tous ceux qui m’ont incité même
involontairement à faire mieux, veuillez trouver ici le témoignage de ma profonde gratitude.

ii

Résumé

La classification (supervisée, non supervisée et semi-supervisée) est une thématique impor-
tante de la fouille de données. Dans cette thèse, nous nous concentrons sur le développe-
ment d’approches d’optimisation pour résoudre certains types des problèmes issus de la
classification de données. Premièrement, nous avons examiné et développé des algorithmes
pour résoudre deux problèmes classiques en apprentissage non supervisée : la maximisation
du critère de modularité pour la détection de communautés dans des réseaux complexes
et les cartes auto-organisatrices. Deuxièmement, pour l’apprentissage semi-supervisée,
nous proposons des algorithmes efficaces pour le problème de sélection de variables en
semi-supervisée Machines à vecteurs de support. Finalement, dans la dernière partie de
la thèse, nous considérons le problème de sélection de variables en Machines à vecteurs de
support multi-classes. Tous ces problèmes d’optimisation sont non convexe de très grande
dimension en pratique.

Les méthodes que nous proposons sont basées sur les programmations DC (Difference
of Convex functions) et DCA (DC Algorithms) étant reconnues comme des outils puis-
sants d’optimisation. Les problèmes évoqués ont été reformulés comme des problèmes
DC, afin de les résoudre par DCA. En outre, compte tenu de la structure des problèmes
considérés, nous proposons différentes décompositions DC ainsi que différentes stratégies
d’initialisation pour résoudre un même problème. Tous les algorithmes proposés ont été
testés sur des jeux de données réelles en biologie, réseaux sociaux et sécurité informatique.

Abstract

Classification (supervised, unsupervised and semi-supervised) is one of important research
topics of data mining which has many applications in various fields. In this thesis, we focus
on developing optimization approaches for solving some classes of optimization problems
in data classification. Firstly, for unsupervised learning, we considered and developed the
algorithms for two well-known problems: the modularity maximization for community
detection in complex networks and the data visualization problem with Self-Organizing
Maps. Secondly, for semi-supervised learning, we investigated the effective algorithms to
solve the feature selection problem in semi-supervised Support Vector Machine. Finally,
for supervised learning, we are interested in the feature selection problem in multi-class
Support Vector Machine. All of these problems are large-scale non-convex optimization
problems.

Our methods are based on DC Programming and DCA which are well-known as power-
ful tools in optimization. The considered problems were reformulated as the DC programs
and then the DCA was used to obtain the solution. Also, taking into account the structure
of considered problems, we can provide appropriate DC decompositions and the relevant
choice strategy of initial points for DCA in order to improve its efficiency. All these pro-
posed algorithms have been tested on the real-world datasets including biology, social
networks and computer security.

iii

Curriculum Vitae

PERSONAL INFORMATIONS

 First name

 Last name

 Date and place of birth

 Gender

 Nationality

 Personal address

 Professional address

 Phone number

 Email

NGUYEN

Manh Cuong

18/3/1978 at Thai Binh, Vietnam

Male

Vietnamese

Résidence Universitaire du Saulcy, 57010 Metz, France

LITA, University of Lorraine, Ile du Saulcy, 57045 Metz, France.

06 73 71 59 89

Cuongnm78@yahoo.com

EDUCATION

University of Lorraine

PhD. Student 2010-2014

Subject of the thesis: La programmation DC et DCA pour certaines classes de problèmes en
Apprentissage et fouille de données.

Hanoi University of Technology

MSc. Student 2001-2003

Subject of the thesis: “Mixed Similarity Measure and Its Applications”

Grade: Good

Hanoi University of Science

BSc. Student 1996-2000

Subject of the thesis: “The Graph Algorithms for the Problems of Traffic in the City”

Grade: Good

TEACHING EXPERIENCE

Hanoi University of Industry, Vietnam

• Lecturer 2003-2010

LANGUAGES

 • French

• English

• Vietnamese

vi Curriculum Vitae

Publications

Refereed international journal papers

[1]. Le Thi, H.A., Nguyen, M.C.: Efficient Algorithms for Feature Selection in Multi-
class Support Vector Machine. Submitted.

[2]. Le Hoai, M., Nguyen, M.C., Le Thi, H.A.: DCA Based algorithm for feature
selection in Semi-Supervised Support Vector Machines. Submitted.

[3]. Le Thi, H.A., Nguyen, M.C., Pham Dinh, T.: A DC programming approach for
finding Communities in networks. Submitted version to the Neural Computation journal
(NECO).

[4]. Le Thi, H.A., Nguyen, M.C.: Self-Organizing Maps by Difference of Convex func-
tions optimization. Revised version to the Data Mining and Knowledge Discovery journal
(DAMI).

[5]. Conan-Guez, B., Nguyen, M.C.: Mod-Müllner: An Efficient Algorithm for Hier-
archical Community Analysis in Large Networks. Submitted version to the International
Journal of Social Network Mining (IJSNM).

Refereed papers in books / Refereed international conference papers

[1]. Phan, D.N., Nguyen, M.C., Le Thi, H.A.: A DC programming approach for sparse
linear discriminant analysis. In Advances in Intelligent Systems and Computing, Volume
282, pp. 65-74, Springer (2014).

[2]. Le Thi, H.A., Nguyen, M.C.: Efficient Algorithms for Feature Selection in Multi-
class Support Vector Machine. In Advanced Computational Methods for Knowledge En-
gineering, Studies in Computational Intelligence, Volume 479, pp. 41-52, Springer (2013).

[3]. Le Hoai, M., Le Thi, H.A., Nguyen, M.C.: DCA Based algorithm for feature
selection in Semi-Supervised Support Vector Machines. In Machine Learning and Data
Mining in Pattern Recognition, Lecture Notes in Computer Science, Volume 7988, pp.
528-542, Springer (2013).

[4]. Le, A.V., Le Thi, H.A., Nguyen, M.C.,Zidna, A.: Network Intrusion Detection
based on Multi-Class Support Vector Machine. In Computational Collective Intelligence.
Technologies and Applications, Lecture Notes in Computer Science Volume 7653, pp. 536-
543, Springer (2012).

[5]. Le Thi, H.A., Nguyen, M.C., Conan-Guez, B., Pham Dinh, T.: A new method for
Batch Learning Self-Organizing Maps based on DC Programming and DCA. Proceedings,
2nd Stochastic Modeling Techniques and Data Analysis International Conference SMTDA,
pp. 473–556, Greece (2012).

[6]. Conan-Guez, B., Le Thi, H.A., Nguyen, M.C., Pham Dinh, T.: Détection de
communautés: une approche par programmation DC. Proceeding of SFC conference, pp.
13–16, Orléans, France (2011).

vii

viii Publications

Communications in national/ international conferences

[1]. Conan-Guez, B., Nguyen, M.C.: Une adaptation de l’algorithme de Müllner pour la
détection de communautés dans des réseaux complexes. Journées Big Data & Visualization,
Fouille et Visualisation de Données Massives, Paris, France (2013).

[2]. Conan-Guez, B., Le Thi, H.A., Nguyen, M.C., Pham Dinh, T.: Finding Commu-
nities in networks: a DC programming approach. The ”Optimization” conference, Lisbon-
Portugal (2011).

Contents

1 DC programming and DCA 9

1.1 Introduction . 11

1.2 DC programming and DCA . 11

1.2.1 Notations and properties . 11

1.2.2 Fundamentals of DC analysis . 13

1.2.3 DC optimization . 16

1.2.4 DCA . 19

1.3 Conclusion . 24

2 Modularity maximization in network and application to community de-
tection 27

2.1 DC programming approach . 29

2.2 Hierarchical Community Analysis approach 47

3 Self-Organizing Maps by Difference of Convex functions optimization 61

4 Sparse S3VM by DC Programming and DCA 89

5 DCA based Algorithms for Feature Selection in MSVM 115

ix

x CONTENTS

Introduction générale

Cadre général et nos motivations.

L’un des défis pour les scientifiques à l’heure actuelle consiste en l’exploitation optimale
des informations stockées/évoluées dans les très nombreuses ressources. Les méthodes de
Machine Learning et Data Mining (MLDM) qui offrent aujourd’hui une technologie mature
pour traiter les problèmes ”classiques”doivent faire face à l’explosion des nouveaux besoins
liée au développement du web, aux masses de données, aux nouveaux types et formats de
données. Un premier enjeu consiste à dépasser le cadre clasique de MLDM pour s’attaquer
à cette nouvelle gamme de problèmes et pour répondre à ces nouveaux besoins. Les
nouveaux modèles et méthodes d’optimisation s’avèrent cruciaux pour cela. L’interaction
entre l’optimisation et MLDM est l’un des plus importants développements dans la science
informatique moderne.

Dans ce contexte nous avons choisi volontairement le développement d’une approche
innovante de l’optimisation déterministe, à savoir la programmation DC (Difference of
Convex functions) et DCA (DC Algorithms), pour la résolution de certaines classes de
problèmes étant des challenges en MLDM.

On peut distinguer deux branches de l’optimisation déterministe: la programmation
convexe et la programmation non convexe. Un programme convexe ou un problème
d’optimisation convexe est celui de la minimisation d’une fonction (objectif) convexe sous
des contraintes convexes. Lorsque la double convexité chez l’objectif et les contraintes
n’est pas vérifiée, on est en face un problème d’optimisation non convexe. La double
convexité d’un programme convexe permet d’établir des caractérisations (sous forme de
conditions nécessaires et suffisantes) de solutions optimales et ainsi de construire des méth-
odes itératives convergeant vers des solutions optimales. Théoriquement on peut résoudre
tout programme convexe, mais encore faut-il bien étudier la structure du programme con-
vexe en question pour proposer des variantes performantes peu coûteuses et donc capables
d’atteindre des dimensions réelles très importantes. L’absence de cette double convexité
rend la résolution d’un programme non convexe difficile voire impossible à l’état actuel des
choses. Contrairement à la programmation convexe, les solutions optimales locales et glob-
ales sont à distinguer dans un programme non convexe. D’autre part si l’on dispose des
caractérisations d’optimalité locale utilisables, au moins pour la classe des programmes
non convexes assez réguliers, qui permettent la construction des méthodes convergeant
vers des solutions locales (algorithmes locaux) il n’y a par contre pas de caractérisations
d’optimalité globale sur lesquelles sont basées les méthodes itératives convergeant vers des
solutions globales (algorithmes globaux). L’analyse et l’optimisation convexes modernes
se voient ainsi contrainte à une extension logique et naturelle à la non convexité et la non
différentiabilité. Les méthodes numériques conventionnelles de l’optimisation convexe ne
fournissent que des minima locaux bien souvent éloignés de l’optimum global.

L’optimisation non convexe connâıt une explosion spectaculaire depuis des années 90
car dans les milieux industriels, on a commencé à remplacer les modèles convexes par des
modèles non convexes plus complexes mais plus fiables qui présentent mieux la nature des
problèmes étudiés. Durant ces dernières années, la recherche en optimisation non convexe
a largement bénéficié des efforts des chercheurs et s’est enrichie de nouvelles approches. Il
existe deux approches différentes mais complémentaires en programmation non convexe:

1

2 Introduction générale

i) Approches globales combinatoires: qui sont basées sur les techniques combinatoires de
la Recherche Opérationnelle. Elles consistent à localiser les solutions optimales à l’aide
des méthodes d’approximation, des techniques de coupe, des méthodes de décomposi-
tion, de séparation et évaluation. Elles ont connu de très nombreux développements
importants au cours de ces dernières années à travers les travaux de H. Tuy (reconnu
comme le pionnier), R. Horst, P. Pardalos et N. V. Thoai, ([7],[8]) ... L’inconvénient
majeur des méthodes globales est leur lourdeur (encombrement en places-mémoires) et
leur coût trop important. Elles ne sont pas applicables aux problèmes d’optimisation
non convexes réels qui sont souvent de très grande dimension.

ii) Approches locales et globales d’analyse convexe qui sont basées sur l’analyse et l’optimi-
sation convexe. Ici la programmation DC et DCA jouent le rôle central car la plupart
des problèmes d’optimisation non convexe sont formulés/reformulés sous la forme DC.
Sur le plan algorithmique, l’essentiel repose sur les algorithmes de l’optimisation DC
(DCA) introduits par Pham Dinh Tao en 1985 à l’état préliminaire et développés in-
tensivement à travers de nombreux travaux communs de Le Thi Hoai An et Pham
Dinh Tao depuis 1993 pour devenir maintenant classiques et de plus en plus utilisés
par des chercheurs et praticiens de par le monde, dans différents domaines des sciences
appliquées ([3]-[5],[12]).

La programmation DC et DCA considèrent le problème DC de la forme

α = inf{f(x) := g(x)− h(x) : x ∈ IRn} (Pdc),

où g et h sont des fonctions convexes, semi-continues inférieurement et propres sur IRn.
La fonction f est appelée fonction DC avec les composantes DC g et h, et g − h est une
décomposition DC de f . DCA est basé sur la dualité DC et des conditions d’optimalité
locale. La construction de DCA implique les composantes DC g et h et non la fonction
DC f elle-même. Or chaque fonction DC admet un nombre infini des décompositions
DC qui influencent considérablement sur la qualité (la rapidité, l’efficacité, la globalité
de la solution obtenue,...) de DCA. Ainsi, au point de vue algorithmique, la recherche
d’une ”bonne” décomposition DC et d’un ”bon” point initial est très importante dans le
développement de DCA pour la résolution d’un programme DC.

Les travaux dans cette thèse sont basés sur la programmation DC et DCA.
Cette démarche est justifiée par multiple arguments ([17, 18]):

• La programmation DC et DCA fournissent un cadre très riche pour MLDM: MLDM
constituent une mine des programmes DC dont la résolution appropriée devrait recourir
à la programmation DC et DCA. En effet la liste indicative (non exhaustive) des
références dans [11] témoigne de la vitalité, la puissance et la percée de cette approche
dans la communauté de MLDM.

• DCA est une philosophie plutôt qu’un algorithme. Pour chaque problème, nous pou-
vons concevoir une famille d’algorithmes basés sur DCA. La flexibilité de DCA sur le
choix des décomposition DC peut offrir des schémas DCA plus performants que des
méthodes standard.

• L’analyse convexe fournit des outils puissants pour prouver la convergence de DCA dans
un cadre général. Ainsi tous les algorithmes basés sur DCA bénéficient (au moins) des
propriétés de convergence générales du schéma DCA générique qui ont été démontrées.

Introduction générale 3

• DCA est une méthode efficace, rapide et scalable pour la programmation non con-
vexe. A notre connaissance, DCA est l’un des rares algorithmes de la programmation
non convexe, non différentiable qui peut résoudre des programmes DC de très grande
dimension. La programmation DC et DCA ont été appliqués avec succès pour la
modélisation DC et la résolution de nombreux et divers problèmes d’optimisation non
convexes dans différents domaines des sciences appliquées, en particulier en MLDM
(voir par exemple la liste des références dans [11]).

Il est intéressant de noter qu’on retrouve une version de DCA dans toutes les méth-
odes standard largement utilisées par la communauté de MLDM dont méthodes EM
(Expectation-Maximisation) [4],[2], SLA (Succesive Linear Approximation) [2] et CCCP
(ConCave-Convex Procedure) [26].

Nos contributions.

Nous nous sommes intéressés aux quatre classes des problèmes de MLDM qui n’ont
pas été traitées par la programmation DC et DCA dans la litérature. Elles se situent
sur tous les trois branches d’apprentissage: non supervisée, supervisée et semi-supervisée.
Nous décrivons brièvement ci-après les grandes lignes de nos contributions. Les détails
et la position de nos travaux par rapport à l’état de l’art de chaque classes de problèmes
seront présentés dans le chapitre concerné.

La première, en apprentissage non supervisée (qui n’utilise que des données non éti-
quettées), est le clustering des sommets d’un graphe par maximisation de la modularité.
Ce travail est motivé par une application intéressante et importante: détection des com-
munautés dans les réseaux complexes. Au cours des dernières années, l’étude des réseaux
complexes a suscité des grands intérêts dans de nombreuses disciplines, notamment la
physique, la biologie et les sciences sociales. Des exemples de ces réseaux incluent des
graphiques Web, les réseaux sociaux, les réseaux biochimiques. Malgré que ces réseaux
appartiennent à des domaines très différents, ils partagent certaines caractéristiques struc-
turelles communes, parmi lesquelles la structure communautaire est très importante. Un
réseau est en fait composé de sous-réseaux de connexions denses, avec les connexions moins
denses entre eux. Ces sous- réseaux sont appelés des communautés ou des modules. La
détection des communautés est une pratique importante car elle permet d’analyser les
réseaux à l’échelle mésoscopique: l’identification des pages Web connexes dans WWW,
la détection des communautés dans les réseaux sociaux, la décomposition des réseaux
métaboliques en modules fonctionnels. Le critère le plus utilisé pour caractériser une
structure des communautés dans un réseau est la modularité, une mesure quantitative
proposé par Newman et Girvan [21, 22] en 2004. La détection des communautés est ainsi
formulée comme le problème de maximisation de la modularité qui consiste à trouver une
partition de des noeuds d’un réseau ayant la modularité maximale. Depuis son introduc-
tion, cette mesure est devenue un outil essentiel pour l’analyse de réseau, et de nombreux
travaux ont été développés. Il a été prouvé que le problème d’optimisation en question est
NP-difficile ([3]). Sa résolution est complexe à cause de la triple difficulté: les variables
sont discrètes (elles représentent l’affectation des noeuds aux clusters), dans la plupart des
applications le nombre de sous-réseaux (le nombre de clusters) n’est pas connu a priori
(donc les algorithmes de type K-means n’y conviennent pas), et, en pratique, la taille
du problème est extrêmement large. C’est pourquoi la plupart des approches classiques
dans la litérature sont de nature heuristique et souvent basées sur les techniques dans
les graphes. Très récemment des grands efforts ont consacrés aux approches exactes de
programmation mathématique via la reformulation du problème sous la forme d’une pro-

4 Introduction générale

grammation linéaire ou quadratique en variables mixtes 0-1 etc. Toutefois, ces approches
sont coûteuses donc ne peuvent pas traiter des problèmes de grande taille.

Nous proposons dans ce travail une approche originale basée sur la programmation DC
et DCA. Nous formulons, dans le premier temps, ce problème dans l’espace des matrices
sous la forme de maximisation d’une fonction quadratique sur un produit des simplexes et
en variables binaires. Ce dernier problème est ensuite reformulé, de manière élégante grâce
aux techniques sophistiquées, comme la minimisation d’une forme quadratique concave sur
ce même ensemble mais en variables continues qui est en fait une programmation DC. En
choisissant une décomposition DC appropriée nous développons un schéma DCA dont
tous les calculs sont explicites. Les avantages de cette approche sont multiples: DCA
est très simple, non coûteux en temps de calcul et jouit des propriétés de convergence
intéressantes - il converge vers un minimum local après un nombre fini d’itérations. Par
ailleurs, bien que le nombre de cluster est un paramèttre entré de DCA, il peut être
modifié par DCA lui même au cours d’algorithme pour trouver un clustering optimal.
Partant d’une estimation grossière du nombre de clusters, DCA peut détecter des clusters
vides, il réduit ainsi le nombre de clusters et enfin fournit un regroupement optimal. En
d’autres termes, le nombre de clusters est automatiquement détecté lors des itérations de
DCA. Cette originalité de DCA constitue un grand intérêt de notre approche: trouver le
nombre de clusters est une question difficile et toujours d’actualité pour des chercheurs en
analyse de clustering depuis plusieurs années. Les expériences numériques sont effectués
sur des données réelles ayant jusqu’à 4.194.304 noeuds et 30, 359, 198 arrêtes. Les résultats
comparatifs avec six algorithmes de référence montrent que DCA surpasse les algorithmes
de référence non seulement sur la qualité et la rapidité mais aussi sur la scalabilité. En
outre, il réalise un très bon compromis entre la qualité des solutions et le temps d’exécution.

En plus de DCA, nous proposons une adaptation d’une méthode existante [19] de
type clustering hierarchique dans le but de réduction du temps de calcul dans les grands
graphes. En exploitant la structure de graphe nous améliorons l’algorithme glouton de
Mod-Mülner et le temps de calcul de cette version est considérablement raccourci.

La deuxième classe, également en apprentissage non supervisée, est la carte auto-
organisatrice (Selft Organizing Map en anglais, et SOM en abréviation). La carte auto-
organisatrice (nous appelons dans toute la suite ”SOM”), introduite par Kohonen en 1982
([9]), et ses variantes sont parmi les plus populaires approches du réseau neuronal artificiel
en apprentissage non supervisée. Le principal objectif d’une SOM est de transformer un
modèle de données entrées de dimension arbitraire en une carte discrète de dimension
plus faible (en général une ou deux dimensions). Cette transformation doit assurer la
préservation de relations topologiques entre les données entrées, ainsi que les similitudes
entre les neurones voisins sur la carte (un réseau ordonné). Grâce à ces propriétés, SOM
est une manière élégante d’interprétation des données complexes et un excellent outil pour
la visualisation de donnéss et l’analyse de cluster. Depuis sa naissance ([9]), SOM est
utilisée comme un outil d’analyse standard dans de nombreux domaines des sciences : la
statistique, le traitement du signal, la théorie de contrôle, l’analyse financière, la physique
expérimentale, la chimie, la médecine , et plus récemment en collections de documents, les
réseaux sociaux, le fonctionnement du cerveau biologique. Le premier algorithme de SOM
a été proposé par Kohonen comme une simple procédure itérative d’apprentissage basée
sur une représentation de réseau neuronal ([9, 10]). Depuis sa naissance, de nombreux
algorithmes de SOM ont été développés. Une des approches principales est basée sur des
techniques d’optimisation. L’idée est de choisir une fonction d’énergie dont le minimum
correspond à la carte topographique désirée puis développer un algorithme d’optimisation
pour trouver ce minimum. Alors que nombreuses méthodes heuristiques ont été proposées,

Introduction générale 5

il existe très peu d’algorithmes déterministes dans la litérature. Nous considérons le critère
de Herkes [6] qui implique un problème d’optimisation non convexe non différentiable, et
développons des algorithmes basés sur DCA pour sa résolution. Il est à noter que nous
sommes les premiers qui proposons une méthode déterministe pour la minimisation du
critère de Herkes sous la forme d’un problème d’optimisation à deux niveaux. En utilisant
une représentation matricielle nous formulons le problème sous la forme DC avec une
bonne décomposition DC qui donne la naissance d’un schéma DCA simple et explicite:
il nécessite seulement le produit matrice-vecteur à chaque itération. Par la suite, comme
tout algorithme de SOM, une méthode d’apprentissage (learning SOM) est proposée: on
itérère la minimisation du critère de Herkes par DCA, à chaque étape t, pour une suite
décroissante de temps t. Grâce à l’efficacité de DCA, notre algorithme d’apprentissage
nécessite un nombre très faible d’étapes (3 seulement dans notre expérimentation), alors
que dans les méthodes classiques ce nombre doit être très grande (5000 au moins) pour
obtenir une bonne solution.

Notre travail en programmation DC et DCA pour la modélisation, la conception et
la réalisation des DCA bien adaptés aux structures spécifiques de ces deux classes de
problèmes en apprentissage non supervisée est ainsi composé de :

1. Etude approfondie des modèles d’optimisation non convexe et la modélisation DC de
ces problèmes. Formulations et reformulations des programmes DC équivalents : choix
des décompositions DC les mieux adaptées.

2. Mise en place des DCA résultants.

3. Etude des techniques de recherche d’un bon poin initial pour DCA.

4. Implémentations et simulations numériques pour leurs validations.

5. Mise en valeur l’algorithme de maximisation de modularité à travers ses applications
dans les réseaux sociaux.

De manière analogue, nous étudions la troisième classe des problèmes qui concerne la
sélection des variables en S3VM (Semi Supervised Support Vector Machine en anglais).
L’apprentissage semi-supervisée se situe entre l’apprentissage supervisée et l’apprentissage
non-supervisée - elle utilise un ensemble de données étiquettées et non étiquettées. Il a été
démontré que l’utilisation de données non étiquettées, en combinaison avec des données
étiquettées, permet d’améliorer significativement la qualité de l’apprentissage. Ceci étant,
au point de vue algorithmique, la sélection des variables en S3VM est plus difficile que la
sélection des variables en SVM. Il y a la double difficulté venant d’une part de la norme
zéro et d’autre part de la non convexité et non différentiabilité de la fonction de perte. Il
existe très peu d’algorithmes pour la sélection des variables en S3VM. La résolution des
problèmes d’optimisation résultants devrait (naturellement) recourir à la programmation
DC et DCA. Nous considérons la régularisation l0 avec cinq approximations de la norme
zéro ainsi que la technique de pénalité exacte, les formulons sous la forme DC puis dévelop-
pons les schémas DCA pour six programmes DC résultants. Avec une décomposition DC
appropriée, tous nos schémas DCA consistent en résolution d’une programmation linéaire
à chaque itération. Ainsi, finalement, nous constatons avec surprise que DCA procède la
sélection des variables en SVM et S3VM de la même ”manière”, et donc la même com-
plexité ! Les expérimentations numériques comparatives avec le modèle de régularisation
l1 (auquel nous appliquons également DCA) ont prouvé la performante et la superiorité
de nos méthodes, aussi bien en classification qu’en sélection de variables.

6 Introduction générale

La quatrième classe, en apprentissage supervisée (qui n’utilise que des données éti-
quettées), concerne la sélection des variables en classification par les machines à vecteurs
de support, cas multi-classe (Multi-class Support Vector Machine en anglais, MSVM en
abréviation). La sélection des variables en MSVM, ou classification supervisée par un
MSVM parcimonieux, est une problématique se situant dans un domaine plus large ap-
pelé l’apprentissage avec la parcimonie. Au cours de cette dernière décenie ce domaine de
recherche a attiré une attention particulière du monde des chercheurs en MLDM de par
ses nombreuses applications importantes. De manière générale, un modèle d’apprentissage
avec la parcimonie implique la minimisation d’une fonction qui est composée de deux par-
tie: la première, la fonction de perte, représente ”l’erreur” d’apprentissage, et la deuxième,
appelée ”la régularisation”, contient la norme zéro du vecteur (définie comme le nombre de
ses composantes non nulles) correspondant aux (ou à une partie des) variables du problème
d’optimisation. La minimisation de la norme zéro (ou, plus généralement, d’une fonction
contenant la norme zéro) est un problème NP-difficile [1] qui reste toujours un défi pour les
chercheurs en optimisation et MLDM. La difficulté vient de la discontinuté de cette norme.
Pour surmonter cet obstacle, trois approches principales ont été développées: la relaxation
convexe, l’approximation non convexe continue, et la pénalité exacte. La méthode la plus
populaire appartenant au groupe ”relaxation convexe” (connue sous le nom LASSO [23])
consiste à remplacer la norme zéro par la norme l1. La méthode la plus récente et efficace
proposée dans [18, 15, 16] calcule la meilleure borne inférieure convexe de la régularisation
l2 − l0 via sa bi-conjugé. Durant la même période, les approches d’approximation non
convexes continues ont été largement développées dans différents contextes de MLDM, en
particulier pour la sélection des variables dans SVM et en regression (voir par exemple
[2, 5, 25, 20, 12, 13, 24]). De nombreuses approximations non convexes ont été proposées
qui sont toutes des fonctions DC et la plupart des algorithmes sont basés sur DCA. La
troisième approche introduite dans [12, 14, 18] est plus original au sens où on résout
un problème DC équivalent (et non ”approximation” comme dans les deux premières ap-
proches) grâce à la reformulation par la technique de pénalité exacte en programmation
DC. Une étude complète de la programmation DC et DCA pour la minimisation de la
norme zéro via les approximations non convexes et la pénalité exacte est donnée dans [14].

Dans ce travail nous adoptons les méthodes développées dans [14] au contexte de sélec-
tion de variables en MSVM qui consiste à déterminer un MSVM le plus parcimonieux
possible pour classifier un ensemble de données étiquettées. En considérant le modèle
MSVM avec les deux régularisations l0 et l2− l0 et utilisant cinq approximations non con-
vexes continues de la norme zéro, nous obtenons 10 programmes DC différents et mettons
en place des DCA correspondants. Tous les schémas DCA pour le modèle de régularisation
l0 (respectivement l2− l0) consistent à la résolution d’une programmation linéaire (respec-
tivement quadratique convexe) à chaque itération. D’autre part, nous proposons deux
schémas DCA pour la résolution de deux problèmes DC reformulés via la pénalité exacte.
Des expérimentations numériques sur nombreux jeux de données sont réalisés. Elles ont
pour but d’identifier le(s) meilleur(s) schémas DCA, c.à..d celui (ceux) qui réalise(nt) le
meilleur compromise entre l’erreur de classification et le nombre de variables sélectionnées
ainsi que celle entre ”la qualité” et ”la rapidité”.

Organisation du manuscrit

La thèse est composée de cinq chapitres. Dans le premier chapitre nous décrivons de
manière succincte la programmation DC et DCA, des outils théoriques et algorithmiques
servant des références aux autres. Chacun de quatre chapitres suivants est consacré à la
présentation d’une de classes de problèmes abordées ci-dessus. Les chapitres 2 et 3 con-
cernent, respectivement, le clustering des sommets d’un graphe par maximisation de la

Introduction générale 7

modularité et la carte auto-organisatrice. Le chapitre 4 est destiné à la sélection des vari-
ables en S3VM et le chapitre 5 - la sélection des variables en MSVM. Enfin, un paragraphe
sur des perspectives de nos travaux clôture le manuscrit.

Tous ces travaux, à l’étape finale suite aux nombreuses améliorations successives, font
l’objet des articles soumis dans des journaux. Par suite, les quatre derniers chapitres
seront présentés sous forme d’articles.

References

[1] Amaldi, E., Kann V.: On the approximability of minimizing non zero variables or
unsatisfied relations in linear systems. Theoretical Computer Science 209, pp. 237–
260, 1998.

[2] Bradley, B.S., Mangasarian, O.L.: Feature selection via concave minimization and
support vector machines. Machine Learning Proceedings of the Fifteenth Interna-
tional Conferences (ICML’98), pp. 82–90, J. Shavlik editor, MorganKaufmann, San
Francisco, California 1998.

[3] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner,
D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineer-
ing 20, pp. 172–188, 2008.

[4] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm, J. Roy. Stat. Soc. B., 1977.

[5] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its Oracle
Properties. Journal of the American Statistical Association 96, pp. 1348–1360, 2001.

[6] Heskes, T.: Energy functions for self organizing maps. Kohonen Maps, pp. 303–315,
1999.

[7] Reiner Horst , Hoang Tuy: Global Optimization: Deterministic Approaches. Springer,
1996.

[8] Reiner Horst, Panos M. Pardalos, Nguyen Van Thoai: Introduction to Global Opti-
mization. Kluwer Academic Publisher, 1995.

[9] Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44, pp. 135–
140, 1982.

[10] Kohonen, T.: Self-Organization Maps. Springer Heidelberg, 1997.

[11] Le Thi, H.A.: DC programming and DCA. http://lita.sciences.univ-metz.fr/
~lethi/DCA.html.

[12] Le Thi, H.A., Le Hoai, M., Nguyen, V.V., Pham Dinh, T.: A DC Programming
approach for Feature Selection in Support Vector Machines learning. Journal of Ad-
vances in Data Analysis and Classification 2(3), pp. 259–278, 2008.

[13] Le Thi, H.A., Nguyen, V.V., Ouchani: Gene selection for cancer classification using
DCA. Journal of Fonctiers of Computer Science and Technology 3(6), 2009.

[14] Le Thi, H.A., Pham Dinh, T.: DC Programming and DCA for solving nonconvex
programs involving `0-norm. National Institute for Applied Sciences, Rouen, forth-
coming, 2011.

http://lita.sciences.univ-metz.fr/~lethi/DCA.html
http://lita.sciences.univ-metz.fr/~lethi/DCA.html

[15] Le Thi, H.A., Pham Dinh, T., Thiao M.: Large scale sparse ridge regression: a new
and efficient convex regularization approach. Submitted.

[16] Le Thi, H.A., Pham Dinh, T., Thiao M.: Learning with sparsity by a new and efficient
convex approach for `2-`0 regularization. Submitted.

[17] Le Thi, H.A.: DC programming and DCA in Machine Learning. Technique report,
University of Lorraine, submitted, 2012.

[18] Pham Dinh, T., Le Thi, H.A.: Recent advances on DC programming and DCA. To
appear in Transactions on Computational Collective Intelligence, Springer, 2013.

[19] Müllner, Daniel: Modern hierarchical, agglomerative clustering algorithms. Lec-
ture Notes in Computer Science, volume 3918(1973), Berlin: Springer-Verlag, 2011,
url=http://arxiv.org/abs/1109.2378.

[20] Neumann, J., Schnorr, C., Steidl, G.: Combined SVM-based feature selection and
classification. Machine Learning 61(1–3), pp. 129–150, 2005.

[21] Newman, M.E.J.: Networks: An Introduction. Oxford University Press, 2010.

[22] Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 2004.

[23] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. 46,
pp. 431–439, 1996.

[24] Wei Luo, Lipo Wang, Jingjing Sun: Feature Selection for Cancer Classification
Based on Support Vector Machine. Intelligent Systems, 2009. GCIS ’09. WRI Global
Congress 4, pp. 422–426, 2009.

[25] Weston, J., Elisseeff, A., Scholkopf, B.: Use of Zero-Norm with Linear Models and
Kernel Methods. Journal of Machine Learning Research 3, pp. 1439–1461, 2003.

[26] Yuille, A.L., Rangarajan, A.: The Convex Concave Procedure. Neural Computation
15(4), pp. 915–936, 2003.

Chapter 1

DC programming and DCA

9

10 DC programming and DCA

DC programming and DCA 11

1.1 Introduction

In this chapter, we report a brief presentation about DC programming and DCA that we
will be most useful in the sequel. These results are extracted from those presented in H.A.
Le Thi 1994 ([3]), H.A. Le Thi 1997 ([4]), H.A. Le Thi and T. Pham Dinh 1997 ([5]), H.A.
Le Thi and T. Pham Dinh 2005 ([7]), T. Pham Dinh and H.A. Le Thi 1998 ([13]). For a
detailed discussion we refer to these references (see also [6], [8]-[12] and [14]).

1.2 DC programming and DCA

In recent years there has been a very active research in nonconvex programming. There are
two different but complementary approaches, we can say two schools, in DC programming:

1. Combinatorial approach to global continuous optimization: this terminology is due
to the fact that new introduced tools were inspired by the concepts of combinatorial
optimization in global continuous optimization.

2. Convex analysis approach to nonconvex programming.

The first approach is older and inspired by tools and methods developed in the combina-
torial optimization, but with the difference that one works in the continuous frame work.
In this approach, optimal solutions are located by using the approximation methods, for
instance, cutting techniques, decomposition methods, branch and bound, etc. The pioneer
of this approach is H. Tuy whose first work was introduced in 1964. His work is abundant,
included books by Horst-Tuy ([15, 17]) which present the theory, algorithms and applica-
tions of global optimization. Among the most important contributions to this approach,
it is worth citing the ones by Hoang Tuy, R. Horst, H. Benson, H. Konno, P. Pardalos, Le
Dung Muu, Le Thi Hoai An, Nguyen Van Thoai, Phan Thien Thach and Pham Dinh Tao.
However, most robust and efficient global algorithms for solving D.C. programs actually
do not meet the expected desire: solving real life d.c. programs in their true dimension.

The second approach relies on the powerful arsenal of analysis and convex optimization.
The first work, due to Pham Dinh Tao (1975), concerning the calculation of matrix norms
(fundamental problem in numerical analysis) that is a problem of maximizing a convex
function over a convex set. The work of Toland (1978) [18] on the duality and optimality
local DC optimization generalizes elegantly the results established by Pham Dinh Tao in
convex maximization. The DC optimization theory is developed by Pham Dinh Tao, J. B.
Hiriart Urruty, Jean - Paul Penot, Phan Thien Thach, Le Thi Hoai An. On the algorithmic
part of the second approach, currently available as DCA (DC Algorithms) introduced by
Pham Dinh Tao (1986), which are based on optimality conditions and duality in DC
optimization. But it took until the joint work of Le Thi Hoai An and Pham Dinh Tao (see
[3]-[6] and [11]-[13]) to show that it definitely needed in nonconvex optimization as one of
the simplest and most performance algorithms, capable of handling large problems.

1.2.1 Notations and properties

This paragraph is devoted to a brief recall of convex analysis for facilitating the reading
of certain passages. For more details, we refer to the work of P.J Laurent [2], of R.T

12 DC programming and DCA

Rockafellar [16] and of A. Auslender [1]. Let X be the Euclidean space IRn, 〈., .〉 be the

scalar product, ‖x‖ = 〈x, x〉
1
2 be the Euclidean norm, and the dual vector space of X is

denoted by Y , which can be identified withX itself. We use an usual tool of convex analysis
where a function can take the infinite value ±∞ [16]. We note IR = IR ∪ {−∞,+∞}. A
function f : S −→ IR is defined on a convex set S in X, the effective domain of f , denoted
by dom(f), is

dom(f) = {x ∈ S : f(x) < +∞} (1.1)

and the epigraph of f , denoted by epi(f), is

epi(f) = {(x, α) ∈ S × IR : f(x) < α}.

If dom(f) 6= ∅ and f(x) > −∞ for all x ∈ S then we say that the function f(x) is proper .

A function f : S −→ IR is called convex if its epigraph is a convex set in X × IR. This is
equivalent to saying that S is a convex set in X and for all λ ∈ [0, 1] we have

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) : ∀x1, x2 ∈ S. (1.2)

Let Co(X) be the set of convex functions on X.

In (1.2), if the strict inequality holds for all λ ∈]0, 1[and for all x1, x2 ∈ S with x1 6= x2

then f is called strictly convex function.

A function f is called strongly convex on a convex set C if there exists a number ρ > 0
such that

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2)− (1− λ)λ
ρ

2
‖x1 − x2‖2, (1.3)

for all x1, x2 ∈ C, and for all λ ∈ [0, 1]. It is amount to saying that f − ρ
2‖.‖

2 is convex
on C. The modulus of strong convexity of f on C, denoted by ρ(f, C) or ρ(f) if C = X,
is given by

ρ(f, C) = Sup{ρ ≥ 0 : f − ρ

2
‖.‖2 is convex on C} > 0. (1.4)

Clearly, f is convex on C if and only if ρ(f, C) ≥ 0. One says that f is strongly convex on
C if ρ(f, C) > 0.

Theorem 1.1 f strongly convex =⇒ f strictly convex =⇒ f convex.

Let f be a proper convex function on X, a vector y0 ∈ Y is called a subgradient of f at a
point x0 ∈ dom(f) if

〈y0, x− x0〉+ f(x0) ≤ f(x) ∀x ∈ X.

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is denoted
by ∂f(x0).
Let ε > 0, a vector y0 is called ε-subgradient of f at point x0 if

〈y0, x− x0〉+ f(x0) ≤ f(x) + ε ∀x ∈ X.

Then the set of all ε− subgradients of f at point x0 is called the the ε-subdifferential of
f at x0 and is denoted by ∂εf(x0).

DC programming and DCA 13

A function f : S −→ IR is called lower semi-continuous (l.s.c) at a point x ∈ S if

lim
y→x

inf f(y) ≥ f(x).

Let Γ0(X) be the set of all l.s.c proper convex functions on X.

Definition 1.1 Let a function f : X −→ IR, the conjugate function f?of f , is a function
belonging to Γ(Y) and defined by

f?(y) = sup{〈x, y〉 − f(x) : x ∈ X}. (1.5)

f? is an upper envelope of continuous affine functions y 7→ 〈x, y〉 − f(x) on Y.

The main properties are summarized in the following proposition that will be needed for
further:

Proposition 1.1 If f ∈ Γ0(X) then:

• f ∈ Γ0(X)⇐⇒ f? ∈ Γ0(Y). In this case, we have f = f??,

• y ∈ ∂f(x)⇐⇒ f(x) + f?(y) = 〈x, y〉 and y ∈ ∂f(x)⇐⇒ x ∈ ∂f?(y),

• ∂f(x) is a closed convex set,

• If ∂f(x) = {y} then f is differentiable at x and ∇f(x) = y,

• f(x0) = min{f(x), x ∈ X} ⇐⇒ 0 ∈ ∂f(x0).

1.2.2 Fundamentals of DC analysis

Polyhedral convex functions

A convex set C is called a polyhedral convex if

C =

m⋂

i=1

{x : 〈ai, x〉 − αi ≤ 0} where ai ∈ Y, αi ∈ IR, ∀i = 1, ...,m.

A function is called a polyhedral convex if

f(x) = sup{〈ai, x〉 − αi : i = 1, ..., k}+ χC(x).

where C is a polyhedral convex set and χC(.) stands for the indicator function of C, i.e.
χC(x) = 0 if x ∈ C and +∞ otherwise.

Proposition 1.2 ([16])

• Let f be a polyhedral convex function. f is everywhere finite if and only if C = X,

• f is polyhedral convex then f? is also polyhedral. Moreover, if f is everywhere finite
then

f(x) = sup{〈ai, x〉 − ai : i = 1, ..., k},
dom(f?) = co{ai : i = 1, ..., k},

f?(y) = min{Σk
i=1λiαi : y = Σk

i=1λiai, λi ≥ 0,Σk
i=1λi = 1},

• If f is polyhedral then ∂f(x) is a nonempty polyhedral convex set at every point x ∈
dom(f).

14 DC programming and DCA

DC functions

A function f : Ω 7→ IR defined on a convex set convex Ω ⊂ IRn is called DC on Ω if it can
be presented in the form of difference of two convex functions on Ω, i.e.

f(x) = g(x)− h(x),

where g and h are convex functions on Ω, g − h is called a DC decomposition of f . Let
DC(Ω) be the set of all DC functions on Ω, and DCf (Ω) in case of g and h are finite
convex on Ω.

DC functions have many important properties that were derived from 1950s by Alexandroff
(1949), Landis (1951) and Hartman (1959); one of the main properties is their stability
with respect to frequently used operations in optimization. Specifically:

Proposition 1.3 (i) A linear combination of DC functions on Ω is DC on Ω,

(ii) The upper envelope of a finite set of finite DC functions on Ω is DC on Ω,
The lower envelope of a finite set of finite DC functions on Ω is DC on Ω,

(iii) Let f ∈ DCf (Ω), then |f(x)|, f+(x) = max{0, f(x)} and f−(x) = min{0, f(x)} are
DC on Ω.

These results generalize to the case of value in IR ∪ {+∞} ([4]). It follows that the set of
DC functions on Ω is a vector space (DC(Ω)): it is the smallest vector space containing
all convex functions on Ω(Co(Ω)).

Theorem 1.2 Given a DC function f and a DC decomposition f = g − h, then for any
finite convex function ϕ, f = (g+ϕ)−(h+ϕ) gives another DC decomposition of f . Thus,
a DC function has an infinite number of DC decompositions.

Denoted by C2(IRn), the class of twice continuously differentiable functions on IRn.

Proposition 1.4 Any function f ∈ C2(IRn) is DC on an arbitrary compact convex set
Ω ⊂ IRn.

Since the subspace of polynomials on Ω is dense in the space C(Ω) of continuous functions
on Ω, we have:

Corollaire 1.1 The space of DC functions on a compact convex set Ω ⊂ IRn is dense in
C(Ω), i.e.

∀e > 0,∃F ∈ C(Ω) : |f(x)− F (x)| ≤ ε ∀x ∈ Ω.

Note that DC functions occur very frequently in practice, both differentiable and non-
differentiable optimization. An important result established by Hartman (1959) permits
identified DC functions in many situations, simply by using a local analysis of the convex-
ity (local convex, local concave and local DC).

DC programming and DCA 15

A function f : D 7→ IR defined on an open convex set D ∈ IRn is called local DC if for all
x ∈ D there is an open convex neighborhood U of x and a pair of convex functions g, h
on U such that f |U = g|U − h|U .

Proposition 1.5 A local DC function on a convex set D is DC on D.

DC optimization problem

Due to the preponderance and wealthy properties of DC functions, the transition of the
subspace Co(Ω) to the vector space DC(Ω) permits to expand significantly convex op-
timization problems in the non-convexity. The field of optimization problems involving
DC functions is relative large and open, covering most of the problems encountered in
applications.

However, we can not immediately deal with any non-convex and non-differentiable opti-
mization problem. The following classification has now become classic:

(1) sup{f(x) : x ∈ C},where f and C are convex

(2) inf{g(x)− h(x) : x ∈ X}, where g and h are convex

(3) inf{g(x)− h(x) : x ∈ C, f1(x)− f2(x) ≤ 0},

where g, h, f1, f2 and C are convex, these seem to be large enough to contain substantially
all nonconvex problems encountered in everyday life. Problem (1) is a special case of
Problem (2) with g = χC , the indicator function of C and h = −f . Problem (2) can be
modified in the form equivalent to (1)

inf{t− h(x) : g(x)− t ≤ 0}.

While Problem (3) can be transformed to the form (2) by using exact penalty related to
the DC constraints f1(x) − f2(x) ≤ 0. Its resolution can also be reduced under certain
technical conditions, that is a series of Problems (1). Problem (2) is called a DC program.
It is a major interest both from practical and theoretical point of view. From the theo-
retical point of view, we can note that, as we noted above, the class of DC functions is
remarkable stable with the operations frequently used in optimization. Moreover, there
is an elegant duality theory ([8, 9, 18, 19, 3, 4, 5]) which, as convex optimization, has
profound practical implications for numerical methods.

DC algorithms (DCA) is introduced by Pham Dinh Tao ([10, 11]) who presented a new
approach based on the DC theory. In fact, these algorithms are a generalization of sub-
gradients algorithms which were studied by the same author on the convex maximization
([8, 10]). However, it was until the joint work of Le Thi et Pham Dinh during the past
decades (see [3]-[6] and [11]-[13])) that DCA has now become classical and popular.

Duality in DC programming

In convex analysis, the concept of duality (conjugate function, dual problem, etc.) is a
very powerful fundamental concept. For convex problems and in particular linear, a du-
ality theory has been developed over several decades [16]. More recently, an important

16 DC programming and DCA

concept of duality in nonconvex analysis has been proposed and developed, first for con-
vex maximization problems, before reaching the DC problems. DC duality introduced by
Toland (1978) can be regarded as a generalization of logic work of Pham Dinh Tao (1975)
on convex maximization. We will present below the main results (in DC optimization) on
optimal conditions (local and global) and the DC duality. For more details, the reader is
referred to the document of Le Thi (1997) (see [5]).

Let space X = IRn, usual inner product 〈., .〉 and the Euclidean norm ‖.‖. Let Y be the
dual space of X which can be identified with X itself and Γ0(X) be the set of all proper
l.s.c convex functions on X.

Given g(x) and h(x) are two proper convex functions on X (g, h ∈ Γ0(X)), considering
the DC problem

inf{g(x)− h(x) : x ∈ X} (P)

and the dual problem
inf{h?(y)− g?(y) : y ∈ Y } (D)

where g?(y) (resp. h?(y)) denotes the conjugate function of g (resp. h).

The results of DC duality defined by using the conjugate functions give an important
relationship in DC optimization [18].

Theorem 1.1 Let g and h ∈ Γ0(X), then

(i)
inf

x∈dom(g)
{g(x)− h(x)} = inf

y∈dom(h?)
{h?(y)− g?(y)} (1.6)

(ii) If y0 is a minimizer of h? − g? on Y then x0 ∈ ∂g?(y0) is a minimizer of g − h on X.

Proof 1.1 (i)

α = inf{g(x)− h(x) : x ∈ X}
= inf{g(x)− sup{〈x, y〉 − h?(y) : y ∈ Y } : x ∈ X}
= inf{g(x) + inf{h?(y)− 〈x, y〉 : y ∈ Y } : x ∈ X}
= infx infy{h?(y)− 〈x, y〉 − g(x)}
= inf{h?(y)− g?(y) : y ∈ Y }.

(ii) cf. Toland ([18]).

The theorem 1.1 shows that solving the primal problem (P) implies resolution of the
dual problem D and vice versa.

1.2.3 DC optimization

Global optimality in DC optimization

In convex optimization, x0 minimizes a function f ∈ Γ0(X) if and only if 0 ∈ ∂f(x0). In
DC optimization, the following global optimality conditions [20] are formulated by using

DC programming and DCA 17

ε-subdifferential of g and h. His demonstration is based on studying the behavior of ε-
subdifferential of a convex function depending on the parameter ε. The demonstration in
[4] is more simple and suitable in case of DC optimization: it simply expresses that global
optimality condition is a geometry translation and optimal values of primal and dual DC
programs are equal.

Theorem 1.2 (Global DC optimization) Let f = g − h where g, h ∈ Γ0(X) then x0

is a global minimizer of g(x)− h(x) on X if and only if,

∂εh(x0) ⊂ ∂εg(x0) ∀ε > 0. (1.7)

Theorem 1.3

(i) If f ∈ Γ0(X), we can write f = g − h with f = g and h = 0. In this case, the global
optimal in (P) - which is the same as the local optimal in (P) (because (P) is a convex
problem) - is characterized by,

0 ∈ ∂f(x0). (1.8)

The fact that ∂εh(x0) = ∂h(x0) = {0}, ∀ε > 0,∀x ∈ X, the relationship (1.8) is
equivalent to (1.7).

(ii) More generally, considering DC decompositions of f ∈ Γ0(X) in the form f = g − h
with g = f +h and h ∈ Γ0(X) finite everywhere on X. The corresponding DC problem
is a ”false” DC problem because it is a convex optimization problem. In this case, the
relationship (1.8) is equivalent to

∂h(x0) ⊂ ∂g(x0).

(iii) We can therefore say that (1.7) clearly marks the transition from convex optimization
to nonconvex optimization. This feature of the global optimality of (P) indicates the
complexity of its practical use because it appeals to all ε-subdifferential at x0.

Local optimality in DC optimization

We have seen that the relationship ∂h(x0) ⊂ ∂g(x0) (using the subdifferential ”exact”) is
necessary and sufficient condition of global optimization for a ”false”DC problem (a convex
optimization problem). In a global optimization problem, the minimization function is
local convex ”around” a local minimum, then it is clear that the relation of subdifferential
inclusion will characterize a local minimum of a DC problem.

Definition 1.2 Let g and h ∈ Γ0(X). A point x• ∈ dom(g)∩dom(h) is a local minimizer
of g(x)− h(x) on X if and only if

g(x)− h(x) ≥ g(x•)− h(x•), ∀x ∈ Vx• , (1.9)

where Vx denotes a neighborhood of x.

18 DC programming and DCA

Proposition 1.6 (Necessary condition of local optimality) If x• is a local minimizer
of g − h then

∂h(x•) ⊂ ∂g(x•). (1.10)

Proof 1.2 If x• is a local minimizer of g − h, then there exists a neighborhood Vx of x
such that

g(x)− g(x•) ≥ h(x)− h(x•), ∀x ∈ Vx• . (1.11)

Therefore if y• ∈ ∂h(x•) then

g(x)− g(x•) ≥ 〈x− x•, y•〉, ∀x ∈ Vx• (1.12)

which is equivalent, under the convexity of g, at y• ∈ ∂g(x•).

Note that for a number of DC problems and in particular for h polyhedral ones, the
necessary condition (1.10) is also sufficient, as we will see a little further. We say that x•

is a critical point of g − h if ∂h(x•) ∩ ∂g(x•) is non empty [18]. It is a weakened form of
subdifferential inclusion. The search for such a critical point is at the DCA (simple form)
which will be studied in the next section. In general, DCA converges to a local solution
of a DC optimization problem. However, in theory, it is important to formulate sufficient
conditions for local optimality.

Theorem 1.3 (Sufficient condition of local optimality ([4, 5])) If x? admits a
neighborhood V such that

∂h(x) ∩ ∂g(x?) 6= ∅, ∀x ∈ V ∩ dom(g), (1.13)

then x? is a local minimizer of g − h.

Corollaire 1.2 If x ∈ int(dom(h)) verifies

∂h(x) ∈ int(∂g(x)),

then x is a local minimizer of g − h.

Corollaire 1.3 If h ∈ Γ0(X) is polyhedral convex then ∂h(x) ⊂ ∂g(x) is a necessary and
sufficient condition for x is a local minimizer of g − h.

Proof 1.3 This result generalizes the first obtained by C. Michelot in this case where
g, h ∈ Γ0(X) are finite everywhere and h polyhedral convex [4, 5].

For solving a DC optimization problem, it is sometimes easier to solve the dual problem
(D) than the primal problem (P). Theorem 1.1 provides transportation by duality of
global minimizers. We establish the same duality transportation of local minimizers.

DC programming and DCA 19

Corollaire 1.4 (DC duality transportation of local minimizers [4, 5]) Supposed
that x• ∈ dom(∂h) is a local minimizer of g − h, let y• ∈ ∂h(x•) and Vx• a neighborhood
of x• such that g(x)− h(x) ≥ g(x•)− h(x•), ∀x ∈ Vx• ∩ dom(g). If

x• ∈ int(dom(g?)) and ∂g?(y•) ⊂ Vx• , (1.14)

then y• is a local minimizer of h? − g?.

Proof 1.4 It is implied immediately from the Proposition 1.1 by restricting f in the in-
terval Vx• ∩ dom(g).

Theorem 1.4 Obviously, by duality, all the results in this section are transposed to the
dual problem D. For example: if y is a local minimizer of h? − g?, then ∂g?(y) ⊂ ∂h?(y).

1.2.4 DCA

This is a new method based on subgradient optimality and duality in DC optimization (non
differential). This approach is completely different from classical subgradient methods in
convex optimization. In DCA, the construction algorithm seeks to exploit the structure
of the DC problem. It requires, first, to have a DC representation of the function to
minimize, i.e. f = g−h (g, h convex), because all transactions work only with the convex
components. The sequence of descent directions is obtained by computing a sequence of
subgradients not directly from the function f , but from convex components of primal and
dual problems.

Principle of DCA

The construction of DCA, discovered by Pham Dinh Tao (1986), is based on characteri-
zation of local solutions in DC optimization of primal (P) and dual (D) problems.

α = inf{g(x)− h(x) : x ∈ X} (P),

α = inf{h?(y)− g?(y) : y ∈ Y } (D).

The DCA consists of constructing two sequences {xk} and {yk}. The first sequence is
a candidate to be a solution of the primal problem and the second of the dual problem.
These two sequences are related by duality and verify the following properties:

• the sequences {g(xk)− h(xk)} and {h?(yk)− g?(yk)} are decreasing,

• and if (g − h)(xk+1) = (g − h)(xk) then the algorithm stops at (k + 1)th iteration and
the point xk (resp. yk) is a critical point of g − h (resp. h? − g?),

• otherwise every limit point x• of {xk} (resp. y• of {yk}) is a critical point of g − h
(resp. h? − g?).

The algorithm ultimately seeks a couple (x•, y•) ∈ X × Y such that x• ∈ ∂g?(y•) and
y• ∈ ∂h(x•).

20 DC programming and DCA

Schema of simplified DCA
The main idea of the implementation of the algorithm (simple form) is to construct a
sequence {xk}, verify at each iteration ∂g(xk) ∩ ∂h(xk−1) 6= ∅, convergence to a critical
point x•(∂h(x•)∩ ∂g(x•) 6= ∅) and symmetrically, similar way by duality, a sequence {yk}
such that ∂g?(yk−1) ∩ ∂h?(yk) 6= ∅ convergence to a critical point.
They are constructed as follows:

Algorithm: DCA generic scheme
Step 0. Choose an initial point x0.
Step 1. For each k, xk is known, computing yk ∈ ∂h(xk).
Step 2. Finding xk+1 ∈ ∂g?(yk).
Step 3. If stopping test is verified STOP; otherwise k ← k + 1, goto Step 1.

This description, with the help of iteration diagrams of fixed points of multi-applications
∂h and ∂g?, thus appears to be very simple.

Existence of generated sequences

The DCA algorithm is well defined if we can actually build the two sequences {xk} and
{yk} as above from an arbitrary initial point x0.

• By construction, if x0 ∈ dom(∂h), then y0 ∈ ∂h(x0) is well defined.

• For k ≥ 1, yk is well defined if and only if xk is defined and contained in dom(∂h);
consequently, xk and yk are well defined if and only if ∂g?(yk+1) ∩ dom(∂h) is non
empty, which implies that yk+1 ∈ dom(∂g?).

Lemme 1.1 [5] The sequences {xk}, {yk} in DCA are well defined if and only if

dom(∂g) ⊂ dom(∂h), and dom(∂h?) ⊂ dom(∂g?).

The convergence of the algorithm is ensured by the following results [5]:

Let ρi and ρ?i , (i = 1, 2) be positive real numbers such that 0 ≤ ρi < ρ(fi) (resp.
0 ≤ ρ?i < ρ?i (f

?
i)) where ρi = 0 (resp. ρ?i = 0) if ρ(fi) = 0 (resp. ρ(f?i) = 0) and ρi (resp.

ρ?i) can take the value ρ(fi) (resp. ρ(f?i)) if this upper bound is reached. We consider
f1 = g, f2 = h.

Theorem 1.4 If the sequences {xk} and {yk} are well defined, then we have:

(i)

(g − h)(xk+1) ≤ (h? − g?)(yk)− ρh
2
‖dxk‖2 ≤ (g − h)(xk)− ρ1 + ρ2

2
‖dxk‖2

(ii)

(h? − g?)(yk+1) ≤ (g − h)(xk+1)− ρ?1
2
‖dyk‖2 ≤ (h? − g?)(yk)− ρ?1 + ρ?2

2
‖dyk‖2

DC programming and DCA 21

where dxk = xk+1 − xk

Corollaire 1.5 ([5])(Convergence)

1.
(g − h)(xk+1) ≤ (h? − g?)(yk)− ρ2

2 ‖dx
k‖2

≤ (g − h)(xk)− [ρ22 ‖dx
k−1‖2 +

ρ?1
2 ‖dy

k‖2]

2.
(g − h)(xk+1) ≤ (h? − g?)(yk)− ρ?2

2 ‖dx
k‖2

≤ (g − h)(xk)− [
ρ?2
2 ‖dx

k−1‖2 +
ρ?1
2 ‖dy

k‖2]

3.
(h? − g?)(yk+1) ≤ (g − h)(xk+1)− ρ?1

2 ‖dy
k‖2

≤ (h? − g?)(yk)− [
ρ?1
2 ‖dy

k‖2 +
ρ?2
2 ‖dx

k‖2]

4.
(h? − g?)(yk+1) ≤ (g − h)(xk+1)− ρ1

2 ‖dy
k+1‖2

≤ (h? − g?)(yk)− [ρ12 ‖dx
k+1‖2 + ρ2

2 ‖dx
k‖2]

Corollaire 1.6 ([5]) If the equalities take place, we have:

1. (g − h)(xk+1) = (h? − g?)(yk)⇐⇒ yk ∈ ∂h(xk+1)

2. (g − h)(xk+1) = (g − h)(xk)⇐⇒ xk ∈ ∂g?(yk), yk ∈ ∂h(xk+1)

3. (h? − g?)(yk) = (g − h)(xk)⇐⇒ xk ∈ ∂g?(yk)

4. (h? − g?)(yk+1) = (h? − g?)(yk)⇐⇒ yk ∈ ∂h(xk+1), xk+1 ∈ ∂g?(yk+1)

In general, the qualities (robustness, stability, convergence rate, good local solutions)
of DCA depend on DC decomposition of the objective function f = g − h. Theorem 1.4
shows that the strong convexity of convex components in primal and dual problems can
affect DCA. To make convex components g and h strongly convex, we can usually apply
the following operation

f = g − h =

(
g +

λ

2
‖.‖2

)
−
(
h+

λ

2
‖.‖2

)
.

In this case, the convex components in the dual problem will be continuously differentiable.

Computation of subgradients

The description of DCA iteration schemes uses fixed points of multi-applications ∂h and
∂g? (∂g and ∂h?), this can be expressed as follows:

xk ← yk ∈ ∂h(xk)
$

xk+1 ∈ ∂g?(yk) ← yk+1 ∈ ∂h(xk+1)
(yk ∈ ∂g(xk+1)) (xk+1 ∈ ∂h?(yk+1))

(1.15)

22 DC programming and DCA

We see a perfect symmetry of the action of two sequences {xk} and {yk} on the dual
DC optimization.

The calculation of the subgradient of the function h at a point xk is usually easy, in
many practical problems we know the explicit expression of ∂h. In contrast, the calculation
of a subgradient in the conjugate of the convex function g at point yk usually requires
solving the convex program,

∂g?(yk) = argmin{g(x)− 〈yk, x〉 : x ∈ X}. (1.16)

Indeed, recall that the explicit expression of the conjugate of a given function, in practice,
is not known. From (1.16), note that the computation of xk+1 is equivalent to minimizing
a convex function derived from DC function f = g − h, by approximating the concave
component −h by its affine minorization at the point xk, i.e.

xk+1 ∈ ∂g?(yk) : xk+1 ∈ argmin{g(x)−
[
〈yk, x− xk〉+ h(xk)

]
: x ∈ X}.

And similarly, by duality:

yk+1 ∈ ∂h(xk+1) : yk+1 ∈ argmin{h?(y)−
[
〈xk+1, y − yk〉+ g?(yk)

]
: y ∈ Y }.

Polyhedral DC optimization

Polyhedral DC optimization occurs when one convex component g or h is polyhedral con-
vex. Like the polyhedral convex optimization problems, this class of problems of DC
optimization is frequently encountered in practice and has interesting properties. We will
see that the description of DCA is particularly simple ([3, 4, 5]).

Consider a DC program

inf{g(x)− h(x) : x ∈ X} (P).

When the convex component h is polyhedral, i.e.

h(x) = max
x∈X
{〈ai, x〉 − bi : i = 1, ...,m},

then the calculation of the subgradients yk = ∂h(xk) is explicit. It is clear that limiting
(naturally) the choice of subgradients or gradients of affine minorization function h, i.e.
{yk} ∈ {ai : i = 1, ...,m}, which is a finite set, following the iteration {yk} is finite
(k ≤ m). Indeed, the sequence {(h?−g?)(yk)} is, by construction of DCA, decreasing and
the choices of iterations yk are finite. Similarly, by duality the sequence {xk} is finite and
{(g − h)(xk)} is decreasing.

Theorem 1.5 (Finite convergence)

• the sequences {g(xk)− h(xk)} and {h?(yk)− g?(yk)} are decreasing,

• when (g− h)(xk+1) = (g− h)(xk) then the algorithm stops at (k+ 1)th iteration and a
point xk (resp. yk) is a critical point of g − h (resp. h? − g?).

Note that if the convex component g is polyhedral, the conjugate function g∗ is polyhedral
too and writing the dual problem, we found the same results as above.

DC programming and DCA 23

DCA interpretations

At each iteration of DCA, we replace the second component h in primal DC program by
its affine minorization hk(x) = h(xk) + 〈x− xk, yk〉 in a neighborhood of xk to obtain the
convex program following

inf{fk = g(x)− hk(x) : x ∈ IRn} (1.17)

whose set of optimal solutions is ∂g?(yk).

Similarly, the second DC component g? in dual DC program (1.6) is replaced by its
affine minorization (g?)k(y) = g?(yk)+ 〈y−yk, xk+1〉 in a neighborhood of yk to give birth
to the convex program

inf{h?(y)− (g?)k(y) : y ∈ IRn} (1.18)

which ∂h(xk+1) is the set of optimal solutions. It should be noted that DCA works with
DC components g and h and not with the function f itself. Each DC decomposition of f
gives rise to a DCA.

Such as fk is a convex function, the minimizer xk+1 is defined by 0 ∈ ∂fk(xk+1) and
the minorization of f by fk ensures the decreasing of the sequence {f(xk)}. Indeed, as hk
is a affine minorization function of h at xk, fk is a minorization convex function of f ,

f(x) ≤ fk(x), ∀x ∈ X,

which coincides at xk with f ,
f(xk) = f(xk).

Therefore determining the iteration xk+1 as the minimum convex program (1.17), the
decreasing of the sequence of iterations is endured,

f(xk+1) ≤ f(xk).

If at the iteration k + 1, f(xk+1) = f(xk) then xk+1 is a critical point of f (0 ∈
∂fk(x

k+1) =⇒ 0 ∈ ∂f(xk+1)).

Theorem 1.5 If fk is strictly convex then there exists a unique minimizer xk+1.

Comment: It is important to note that the function f is replaced by function fk in
overall domain of f ,

fk(x) = g(x)− (〈yk, x− xk〉+ h(xk)) with yk ∈ ∂h(xk),∀x ∈ X

which, considered locally in the neighborhood of xk, is a first order approximation of f and
globally on IRn. It is noteworthy that fk is not defined narrowly from local information
of f at neighborhood of xk (i.e. f(xk), ∂f(xk),...) but incorporates all of the first convex
components of f in its definition, i.e. fk = g − hk = f − (h + hk). In other words, fk
is not simply a local approximation of f in a neighborhood of xk, but should rather be
described as ”convexification majorant” of f globally related to DC function by the first
convex component defined on IRn. Therefore, no displacement of the xk to xk+1 is deter-
mined from f globally defined for all x ∈ IRn. DCA can not be simply regarded as a local
approximation method or a local descent method in classic, the global characteristic is the

24 DC programming and DCA

”convexification majorant”. Thus, unlike conventional local approaches (deterministic or
heuristic), DCA operates simultaneously local and global properties of the function to be
minimized during the iterative process and in practice converges to a good solution local
and sometimes global.

For a comprehensive study of DC programming and DCA, refer to [3]-[6] and [11]-[13]
and the reference therein. The treatment of a nonconvex problem by DC approach and
DCA should have two tasks: looking for an appropriate DC decomposition and looking
for a good starting point.

For a DC program given, the issue of finding a good DC decomposition remains open,
in practice, we look for a DC decomposition to adapt with the structure of the DC program
for which the studied sequences {xk} and {yk} are easy to calculate. If the calculation is
explicit then the corresponding DCA is less expensive time and it is able to support very
large dimensions.

1.3 Conclusion

Section 1.2 introduces all the prerequisite notions and definitions concerning DC pro-
gramming and DCA. The fundamentals of DC analysis, such as Polyhedral functions, DC
functions, DC duality, global and local optimality in DC optimization are presented. After
that, the presentation focuses on DCA is introduced, with the principle, the computation
and the interpretations of DCA.

References

[1] Auslender, A.: Optimisation Méthodes Numériques. Paris: Masson, 1976.

[2] Laurent, P.J.: Approximation et optimisation. Paris: Hermann, 1972.

[3] Le Thi, H.A.: Analyse numérique des algorithmes de l’optimisation DC. Approches
locale et globale. Codes et simulations numériques en grande dimension. Applications.
Thèse de Doctorat, Université de Rouen, 1994.

[4] Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale:
Théorie, Algorithmes et Applications. Habilitation à Diriger des Recherches, Univer-
sité de Rouen, 1997.

[5] Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite
quadratic problems by DC algorithms. Journal of Global Optimization 11, pp. 253–
285, 1997.

[6] Le Thi, H.A., Pham Dinh, T., Nguyen Van, T.: Combination between Local and
Global Methods for Solving an Optimization Problem over the Efficient Set. European
Journal of Operational Research 142, pp. 257–270, 2002.

[7] Le Thi, H.A., Pham Dinh, T.: DC (difference of convex functions) programming and
DCA revisited with DC models of real world nonconvex optimization problems. Ann.
Oper. Res. Springer-Verlag 133, pp. 23–46, 2005.

[8] Pham Dinh, T.: Elements homoduaux relatifs à un couple de normes (ϕ,ψ). Appli-
cations au calcul de Sϕψ(A)”. Technical Report, Grenoble, 1975.

[9] Pham Dinh, T.: Calcul du maximum d’une forme quadratique définie positive sur la
boule unité de la norme du max. Technical Report, Grenoble, 1976.

[10] Pham Dinh, T.: Algorithms for solving a class of non convex optimization problems.
Methods of subgradients. Fermat days 85. Mathematics for Optimization, Elsevier
Science Publishers B.V. North-Holland, 1986.

[11] Pham Dinh, T.: Duality in DC (difference of convex functions) optimization. Subgra-
dient methods. Trends in Mathematical Optimization, International Series of Numer
Math, volume 84, pp. 277–293, 1988.

[12] Pham, D.T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory,
Algorithm and Applications. Acta Mathematica Vietnamica 22, pp. 289–355, 1997.

[13] Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region
sub-problem. SIAM J. Optim. 8, pp. 476–505, 1998.

[14] Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA.
Transactions on Computational Collective Intelligence, Volume 8342, pp. 1–37, 2014.

[15] Reiner Horst , Hoang Tuy: Global Optimization: Deterministic Approaches. Springer,
1996.

[16] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, 1970.

[17] Tuy, H.: DC Optimisation : Theory, Methods and Algorithms, Handbook of Global
Optimisation. Horst and Pardalos eds, Klaver Academic Publishers, pp. 149–216,
1995.

[18] Toland, J.F.: Direct Calculation of the Information Matrix via the EM Algorithm.
Journal of Mathematical Analysis and Applications 66, pp. 399–415, 1978.

[19] Urruty, J.B.H.: Generalized differentiability, duality and optimization for problem
dealing with differences of convex functions. Lecture Notes in Economics and Math-
ematical Systems, volume 256, pp. 260–277, Springer Verlag, 1985.

[20] Urruty, J.B.H.: Conditions nécessaires et suffisantes d’optimalité globale en optimi-
sation de différences de deux fonctions convexes, pp. 459–462. I. CRAS, 1989.

26 DC programming and DCA

Chapter 2

Modularity maximization in
network and application to

community detection

27

28 Modularity maximization in network and application to community detection

Modularity maximization in network and application to community detection 29

2.1 DC programming approach

Noname manuscript No.
(will be inserted by the editor)

A DC programming approach for finding Communities in networks?

Hoai An LE THI · Manh Cuong NGUYEN · Tao

PHAM DINH

Received: date / Accepted: date

Abstract Automatic discovery of community structures in complex networks is a fundamental
task in many disciplines, including physics, biology and social science. The most used criterion
for characterizing the existence of a community structure in a network is modularity, a quanti-
tative measure proposed by Newman and Girvan [Physical Review E 69, 026113 (2004)]. The
discovery community can be formulated as the so called modularity maximization problem that
consists of finding a partition of nodes of a network with the highest modularity. In this article,
we propose a fast and scalable algorithm, called DCAM, based on DC (Difference of Convex
function) programming and DCA (DC Algorithms), an innovative approach in nonconvex pro-
gramming framework for solving the modularity maximization problem. The special structure of
the considered problem has been well exploited to get an inexpensive DCA scheme that requires
only matrix-vector product at each iteration. Starting with a very large number of communities,
DCAM furnishes, as output results, an optimal partition together with the optimal number of
communities c∗, i.e., the number of communities is discovered automatically during DCAM’s
iterations. Numerical experiments are performed on a variety of real-world network datasets
with up to 4, 194, 304 nodes and 30, 359, 198 edges. The comparative results with six reference
algorithms show that the proposed approach outperforms them not only on quality and rapid-
ity but also on scalability. Moreover, it realizes a very good trade-off between the quality of
solutions and the runtime.

Keywords Networks, community, modularity, DC programming, DCA

1 Introduction

In recent years, the study of complex networks has attracted a great deal of interest in many
disciplines, including physics, biology and social science. Examples of such networks include Web
graphs, social networks, citation networks, biochemical networks. Despite the fact that these
networks belong to very distinct fields, they all surprisingly share some common structural
features, such as the power law degree distributions, small-world average shortest paths, high
clustering coefficients.

? This research has been suported by ”Fonds Européens de Développement Régional” (FEDER) Lorraine
via the project “Innovations techniques d’optimisation pour le traitement Massif de Données”(InnoMaD)

Hoai An LE THI · Manh Cuong NGUYEN
Laboratory of Theoretical and Applied Computer Science
University of Lorraine, Ile du Saulcy, 57045 Metz, France.
E-mail: hoai-an.le-thi@univ-lorraine.fr, manh-cuong.nguyen@univ-lorraine.fr

Tao PHAM DINH
Laboratory of Mathematics. National Institute for Applied Sciences - Rouen
76801 Saint-Etienne-du-Rouvray Cedex, France. E-mail: pham@insa-rouen.fr

Submitted version to the Neural Computation journal (NECO).

2 Hoai An LE THI et al.

Community structure is one of the important network features. The whole network is in
fact composed of densely connected sub-networks, with only sparser connections between them.
Such sub-networks are called communities or modules. Detection of communities is of significant
practical importance as it allows to analyze networks at a megascopic scale: identification of
related web pages in the WWW, uncovering of communities in social networks, decomposition
of metabolic networks in functional modules.

If there exists community structure in a network, the intra-community edges should be sig-
nificantly denser than the inter-community edges. Hence, detecting communities amounts to
searching for the structure that maximizes the number of intra-community edges while mini-
mizing the number of inter-community edges. In 2004, Girvan and Newman [46,47] has proposed
a quantitative measure, called the modularity (Q measure), for characterizing the existence of
community structure in a network. The modularity Q of a particular partition is defined as the
number of edges inside clusters, minus the expected number of such edges if the graph were
random conditioned on its degree distribution.

More formally, consider an undirected unweighted network G = (V, E) with n nodes (V =
{1, . . . , n}), and m edges (m = Card(E)). Denote by A the adjacency matrix:

Aij =

{
1, if (i, j) ∈ E
0, otherwise.

The degree of node i is denoted ωi (ωi =
∑n
j=1Aij), and ω stands for the vector whose compo-

nents are ωi.
Let P be a partition of V and let δ(i, j) be a function which takes value 1 if nodes i, j are in

the same community, and 0 otherwise. The modularity measure is defined as follows:

Q(P) =
1

2m

n∑

i,j=1

(
Aij −

ωiωj
2m

)
δ(i, j).

The fist part ofQ(P), say 1
2m

∑n
i,j=1Aijδ(i, j), corresponds to the fraction of intra-community

links, whereas the second part 1
2m

∑n
i,j=1

ωiωj

2m δ(i, j) corresponds to the same fraction in a ran-
dom network. The modularity values range from −0.5 to 1 ([8]), with a higher positive value
indicating a stronger support for community structure in the network. Hence, community dis-
covery can be formulated as the so called modularity maximization problem that consists of
finding a partition of nodes of a network with the highest modularity. Since its introduction,
the modularity measure becomes a central tool for network analysis, many works have studied
its properties (see e.g. [12,19,3,8]), and numerous algorithms have been developed to maximize
modularity. It has been proved in [8] that the modularity maximization is a NP-hard problem.
Hence exact methods are computationally intractable even for very small networks, and most
existing methods are approximate or heuristic.

In terms of clustering, the approaches differ in whether or not a hierarchical partition (re-
cursively subdividing communities into sub-communities) is sought, whether the number of
communities is pre-specified by the user or decided by the algorithm, as well as other param-
eters. In this sense, three classes of algorithms can be distinguished: divisive hierarchical clus-
tering (tackle multiple 2-partition problems repeatedly, [1,16,45]), agglomerative hierarchical
clustering (merge clusters repeatedly, [5,10,43,52,63]) and k-way partitioning ([17,21,37,44]).
On another hand, it has been shown in [64] that modularity-based clustering can be understood
as a special instance of spectral clustering. Methods based on spectral clustering are developed
in [44,64,54,59].

In terms of optimization, one distinguishes three mains approaches for modularity maxi-
mization: heuristics, meta heuristics, and mathematical programming approaches. Numerous
heuristics are developed, among of others [5,10,16,17,43–45,52,9]. For meta heuristics, one can
cite simulated annealing [40,21,41], genetic search [60], greedy algorithms ([63,55]). The math-
ematical programming approaches are more recent. In these approaches the modularity maxi-
mization is formulated as either an integer (or mixed integer) linear programming problem or
an integer / mixed integer quadratic program. Due to the NP-hardness of these problems, most

A DC programming approach for finding Communities in networks 3

of proposed methods are approximate. In [1] the authors consider an integer linear program-
ming formulation and introduced two approximate algorithms, the first is linear programming
followed by randomized rounding, and the second is based on a vector programming relaxation
of a quadratic program which recursively splits one partition into two smaller partitions while a
better modularity can be obtained. In [17], an integer quadratic formulation is considered and
an iterative algorithm is proposed which solves a quadratic program at each iteration. There
are few exact algorithms, the first is introduced in [65] and the most recent is based on col-
umn generation approaches for mixed integer linear / quadratic programming ([2]). The largest
problem solved to date by exact methods has 512 entities ([2]).

Very recently, new modularity measures based on the modularity Q and the modularity-
density D-measure [38], and then new formulations of modularity maximization via mixed
integer nonlinear programming were investigated in [23,27]. These approaches aim to iden-
tify overlapping communities or small communities which can not be revealed by the original
modularity maximization problem.

In this paper, we focus on maximizing the original modularity Q by a mathematical pro-
gramming approach via an integer quadratic programming problem. Our method is based on
DC (Difference of Convex functions) programming and DCA (DC Algorithms), an innovative
continuous approach in nonconvex programming framework. DC programming and DCA were
introduced by Pham Dinh Tao in their preliminary form in 1985 and have been extensively
developed since 1994 by Le Thi Hoai An and Pham Dinh Tao and become now classic and
increasingly popular (see e.g. [11,30–36,48–51,56,58] and the list of references in [28]). They
address the DC programs of the form

α = inf{f(x) := g(x)− h(x) : x ∈ Rp} (Pdc) (1)

where g, h : Rp → R ∪ {+∞} are lower semicontinuous proper convex functions on Rp. Such
a function f is called DC function, and g − h, DC decomposition of f while g and h are DC
components of f. The construction of DCA involves DC components g and h but not the function
f itself. Hence, for a DC program, each DC decomposition corresponds to a different version of
DCA. Since a DC function f has an infinite number of DC decompositions which have crucial
impacts on the qualities (speed of convergence, robustness, efficiency, globality of computed
solutions, ...) of DCA, the search for a ”good” DC decomposition is important from algorithmic
point of views. Moreover, despite its local character, DCA with a good initial point can converge
to global solutions. Finding a ”good” initial point is then also an important stage of DCA. How
to develop an efficient algorithm based on the generic DCA scheme for a practical problem is
thus a judicious question to be studied, and the answer depends on the specific structure of the
problem being considered.

Our work is motivated by the fact that DCA has been successfully applied to many (smooth
or nonsmooth) large-scale nonconvex programs in various domains of applied sciences, in par-
ticular in Machine Learning ([11,30–36,48,49,56–58]) for which they provided quite often a
global solution and proved to be more robust and efficient than standard methods. Working
on the matrix space, we first formulate the modularity maximization problem as maximizing
a quadratic function under the cartesian product of unit simplices with binary variables. This
problem is then equivalently reformulated as maximizing a quadratic function under the same
set but now with continuous variables on which DCA can be applied. We propose an appropriate
DC decomposition that gives rise, after a suitable computational strategy, to a very simple DCA
scheme (called DCAM) in which all computations are explicit. The advantages of our algorithm
are multiple:

– Thanks to DC decomposition technique, the initial combinatorial optimization problem is
transformed equivalently, in an elegant way, to a continuous problem. Surprisingly, due to
this customized choice of DC decomposition, although our algorithm works on a continuous
domain, it constructs a sequence in the discrete feasible set of the initial problem. Such
an original property is important for large scale setting: in ultra large networks, if we stop
the algorithm before its convergence, we get always an integer solution, i.e. the algorithm
furnishes an ”approximate” solution without rounding procedures.

4 Hoai An LE THI et al.

– Again thanks to a good choice of DC decomposition, DCAM enjoys interesting convergence
properties: it converges, after a finitely many iterations, to a local solution in almost cases.
In particular, DCAM is very inexpensive in terms of CPU time since all computations are
explicit. In fact, each iteration requires only one matrix-vector product and maximizes a
linear function on a simplex whose solutions are explicitly computed (no solver is required).

– Although the number of cluster is an input parameter of the algorithm, it can be modified
by DCAM itself during its iterations. Starting with a very large number of clusters (even
with n, the number of nodes of the network), DCAM can detect empty clusters and provide
an optimal partition together with the optimal number of communities. That nice feature
constitutes a great advantage of DCAM: finding the number of clusters is a difficult and still
relevant issue for researchers in clustering analysis.

These benefits are approved through our numerical results on read-world networks: DCA
outperforms standard approaches on both solution quality and computation cost, and also on
scalability.

The rest of the paper is organized as follows. In section 2, we present the integer quadratic
formulation of the modularity maximization problem. Section 3 is devoted to DC programming
and DCA for solving this quadratic program. First, we give a brief presentation of DC pro-
gramming and DCA and then present reformulation techniques as well as a DC formulation
of the considered problem. Afterwards we show how to determine the resulting DCA scheme
and provide some discussions about the algorithm. Computational experiments are reported in
Section 4 and finally Section 5 concludes the paper.

2 An integer quadratic formulation of the modularity maximization problem

Assume that each vertex (entity) belongs to exactly one community, i.e., the case of overlapping
communities is not considered here.

Let P be a partition of V and let c be the number of communities in P. Define the binary
assignment matrix U = (Uik)k=1,...,c

i=1,...,n in P, say Uik = 1 if the vertex i belongs to the community
k and 0 otherwise. Then the modularity can also be expressed according to U as follows:

Q(U) =
1

2m

n∑

i,j=1

Bij

c∑

k=1

UikUjk,

where B := A− 1
2m ωωT is a constant matrix, called the modularity matrix. It depends only on

the network (independent on P). Hence the modularity maximization problem can be written
as

max
U

Q(U) := 1
2m

∑n
i,j=1Bij

∑c
k=1 UikUjk (2)

s.t
∑c
k=1 Uik = 1 ∀i = 1, ..., n (3)

Uik ∈ {0, 1} ∀i = 1, ..., n;∀k = 1, ..., c. (4)

The constraint (3) ensure that each entity belongs to exactly one community. Observe that
maximizing modularity gives an optimal partition together with the optimal number of com-
munities c.

For a matrix U ∈ IRn.c, Ui. and U.j denote the ith row and the jth column of U respectively.
The transpose of U is denoted by UT , and (Ui)

T will be written as UTi for simplicity.

LetMn,c(R) denote the space of real matrices of order n× c. We can identify by rows (resp.
columns) each matrix U ∈ Mn,c(R) with a row-vector (resp. column-vector) in (Rc)n (resp.
(Rn)c) by writing respectively

U ←→ U = (U1., . . . , Un.), U
T
i. ∈ Rc, UT ∈ (Rc)n, (5)

A DC programming approach for finding Communities in networks 5

and

U ←→ U =



U.1
...
U.c


 , U.j ∈ Rn,U ∈ (Rn)c. (6)

The inner product in Mn,c(R) is defined as the inner product in (Rc)n or (Rn)c. That is

〈X,Y 〉Mn,c(R) = 〈XT ,YT 〉(Rc)n = 〈X ,Y〉(Rn)c = Tr(XTY),

where Tr(XTY) denotes the trace of the matrix XTY . Hence the modularity measure can be
computed as

Q(U) =
1

2m
Tr(UTBU) =

1

2m

c∑

j=1

(U.j)
TBU.j =

1

2m

n∑

i=1

Ui.([(BU)]i.)
T . (7)

In the sequel, for simplifying computations, we shall choose either representation (matrix or
vector) of U in a convenient way. For instance, with the column identification of U we can
express the modularity measure via vector representation as

Q(U) =
1

2m
UTBb U ,

where Bb is the diagonal block matrix of order n.c× n.c given by:

Bb :=




B

B

. . .

B


 .

Let ∆c be the (c− 1)−simplex defined as

∆c = {x ∈ [0, 1]c :
c∑

k=1

xk = 1}

and let ∆ ⊂ [0, 1]n∗c be the Cartesian product of n simplices ∆c, say

∆ := ∆c × ...×∆c.

Denote by V (∆c) (resp. V (∆)) the vertex set of ∆c (resp. ∆). It is easy to see that

V (∆) = V (∆c)× ...× V (∆c).

With the matrix representation, the problem (2) is written as:

max

{
1

2m
Tr(UTBU) : Ui. ∈ V (∆c),∀i = 1, . . . , n

}
,

and with the vector column representation it is expressed as:

max

{
Q(U) :=

1

2m
UTBb U : U ∈ V (∆)

}
. (8)

In the next section we will develop DC programming and DCA for solving the modularity
maximization problem of the form (8).

6 Hoai An LE THI et al.

3 Solving the modularity maximization problem by DC programming and DCA

3.1 A brief introduction of DC programming and DCA

As indicated in the introduction, DC programming and DCA address the problem of minimizing
a DC function on the whole space Rp or on a closed convex set C ∈ Rp. Generally speaking, a
DC program takes the form:

α = inf{f(x) := g(x)− h(x) : x ∈ Rp}, (Pdc) (9)

where g, h : Rp → R∪{+∞} are lower semi-continuous proper convex functions on the Euclidean
space X := Rp. When either g or h is a polyhedral convex function (say, a pointwise supremum
of a finite collection of affine functions) (Pdc) is called a polyhedral DC program.

A convex constraint x ∈ C can be incorporated in the objective function f by using the
indicator function on C, denoted χC , which is defined by χC(x) = 0 if x ∈ C, +∞ otherwise.
By the way, any convex constrained DC program can be written in the standard form (Pdc) by
adding the indicator function of the convex constraint set to the first DC component g.

Let y ∈ Y , where Y is the dual space of X = Rp that can be identified with Rp itself. Let
g∗(y) defined by:

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ Rp}
be the conjugate function of g, then, the following program is called the dual program of (Pdc):

αD = inf{h∗(y)− g∗(y) : y ∈ Y }. (Ddc)

One can prove that α = αD (see e.g. [29,50]) and there is a perfect symmetry between primal
and dual DC programs: the dual of (Ddc) is exactly (Pdc).

For a convex function h, the subdifferential of h at x0, denoted by ∂h(x0), is defined by

∂h(x0) ≡ {y ∈ Rp : h(x) ≥ h(x0) + 〈x− x0, y〉, ∀x ∈ Rp}.

The sub-differential ∂h(x0) is a closed convex set which generalizes the derivative in the sense
that h is differentiable at x0 if and only if ∂h(x0) ≡ {∇xh(x0)}.

DCA is based on the local optimality conditions for (Pdc), namely

∂h(x∗) ∩ ∂g(x∗) 6= ∅ (10)

(such a point x∗ is called critical point of g − h or generalized KKT point for (Pdc)), and

∅ 6= ∂h(x∗) ⊂ ∂g(x∗). (11)

The condition (11) is necessary local optimality for (Pdc). It is also sufficient for many classes
of DC programs quite often encountered in practice. In particular it is sufficient for polyhedral
DC programs.

The transportation of global solutions between (Pdc) and (Ddc) is expressed by the following
propositions:

Property 1

[∪y∗∈D ∂g∗(y∗)] ⊂ P, [∪x∗∈P ∂h(x∗)] ⊂ D, (12)

where P and D denote the solution sets of (Pdc) and (Ddc) respectively.

Under technical conditions, this transportation holds also for local solutions of (Pdc) and
(Ddc) (see [29,50] for more details).

Property 2 Let x∗ be a local solution to (Pdc) and let y∗ ∈ ∂h(x∗). If g∗ is differentiable at y∗

then y∗ is a local solution to (Ddc). Similarly, let y∗ be a local solution to (Ddc) and let x∗ ∈ ∂g∗(y∗).

If h is differentiable at x∗ then x∗ is a local solution to (Pdc).

The main idea of DCA is simple: each iteration of DCA approximates the convex function
h by its affine minorant defined by yk ∈ ∂h(xk), and solves the resulting convex program.

DCA - general scheme

initializations: let x0 ∈ IRp be a guess, set k := 0.

A DC programming approach for finding Communities in networks 7

repeat

1. calculate yk ∈ ∂h(xk).
2. calculate xk+1 ∈ arg min{g(x)− 〈x, yk〉 : x ∈ IRp} (Pk).
3. k = k + 1.

until convergence of
{
xk
}
.

Convergence properties of DCA and its theoretical basis can be found in [29,50,51]. For instance,
it is important to mention that (for simplicity, we omit here the dual part of these properties)

– DCA is a descent method without linesearch: the sequence {g(xk) − h(xk) is decreasing. If
g(xk+1)− h(xk+1) = g(xk)− h(xk) then xk is a critical point of g − h.

– If the optimal value α of problem (Pdc) is finite and the infinite sequence {xk} is bounded,
then every limit point x∗ of the sequence {xk} is a critical point of g − h.In such a case,
DCA terminates at k-th iteration.

– DCA has a linear convergence for DC programs. Especially, for polyhedral DC programs the
sequence {xk} contains finitely many elements and the algorithm converges after a finite
number of iterations.

For a complete study of DC programming and DCA the reader is referred to [29,50,51] and
the references therein. The solution of a nonconvex program (Pdc) by DCA must be composed
of two stages: the search of an appropriate DC decomposition of f and that of a good initial
point. In the last years research is very active on the use of DC programming and DCA for
Machine Learning and Data Mining.

It should be noted that
i) the convex concave procedure (CCCP) for constructing discrete time dynamical systems

mentioned in [57] is a special case of DCA applied to smooth optimization;
ii) the SLA (Successive Linear Approximation) algorithm developed in [7] is a version of

DCA for concave minimization;
iii) the EM algorithm [13] applied to the log-linear model is a special case of DCA.
We show below how to use DCA for solving the equivalent modularity maximization problem

(8).

3.2 DC programming and DCA for solving problem (8)

Both column and row identifications displayed in Section 2 will be exploited here in order to
provide an explicit DCA which could handle large-size problems.

3.2.1 A continuous reformulation of problem (8)

Using a DC decomposition technique we first reformulate (8) as a continuous optimization
problem.

For any real number µ, the modularity measure can be rewritten as:

Q(U) =
1

2m
UT (Bb + µIb)U −

1

2m
µUTU ,

where Ib is the identity matrix of order n.c.
Let h be the quadratic function defined by h(U) := 1

2UT (Bb + µIb)U . As U ∈ V (∆), we have

UTU = Tr(UTU) =
n∑

i=1

Ui.(Ui.)
T = n.

Therefore the problem (8) is equivalent to

max

{
h(U) : =

1

2
UT (Bb + µIb)U : U ∈ V (∆)

}
. (13)

8 Hoai An LE THI et al.

Let µ be a scalar such that µ > −λ1(B), where λ1(B) is the smallest eigenvalue of the modularity
matrix B. Hence the quadratic function h is strongly convex and we call µ the regularization
parameter. As h is strongly convex, (13) and the convex maximization problem

max {h(U) : U ∈ ∆} (14)

are equivalent in the sense that they have the same optimal value and the same solution set.

3.2.2 A DC formulation of problem (14)

In the sequel we consider the problem (14) with µ > −λ1(B). This convex maximization problem
(14) can be written as

min {−h(U) : U ∈ ∆}
which is equivalent to

min
{
f(U) := χ∆(U)− h(U) : U ∈ Rn.c

}
, (15)

where χ∆ is the indicator function on ∆. Clearly, the function χ∆ is convex (because that ∆ is
a convex set), and then (15) is a DC program with the following natural DC decomposition

f(U) := g(U)− h(U), g(U) =χ∆(U).

Since χ∆ is a polyhedral function, (15) is a polyhedral DC program. Moreover, h is differentiable
and its gradient is given by ∇h(U) = (Bb + µIb)U .

3.2.3 The DCA scheme corresponding to (15)

According to the generic DCA scheme, applying DCA to the problem (15) consists of computing,
at each iteration k, Yk = ∇h(Uk) = (Bb + µIb)Uk and then solving the next problem to obtain
Uk+1:

min
{
χ∆(U)− 〈U ,Yk〉 : U ∈ Rn.c

}
). (16)

Denote by Y k = (B+µI)Uk (I denotes the identity matrix of order n). Now, taking into account
the useful properties concerning matrix representation of U and Yk, we can compute explicitly
an optimal solution of (16) in the following way:

min
{
χ∆(U)− 〈U ,Yk〉 : U ∈ Rn.c

}
⇐⇒ max

{
〈U ,Yk〉 : U ∈ ∆

}
(17)

= max

{
n∑

i=1

〈Ui., Y ki. 〉 : Ui. ∈ ∆c, ∀i = 1, ...n

}

= max

{
n∑

i=1

〈Ui., Y ki. 〉 : Ui. ∈ V (∆c), ∀i = 1, ...n

}
.

The last problem is separable and solving it amounts to solving n problems of the form

max
{
〈Ui., Y ki. 〉 : Ui. ∈ V (∆c)

}

whose an optimal solution is given by

Uk+1
i. = eargmaxj=1...c Y k

ij
, (18)

where {ej : j = 1, . . . , c} is the canonical basis of Rc.

The sequence
{
Uk
}

computed by DCA has the following interesting property which shows

the efficiency of DCA in the search of the optimal number of clusters.

A DC programming approach for finding Communities in networks 9

Proposition 1 If at the iteration k one has Ukil = 0 ∀i = 1, ...n, then Uk+1
il = 0 ∀i = 1, ...n.

Consequently, if a cluster is empty at an iteration k then it can be deleted definitely in DCA. By

the way, the sequence {ck} (ck stands for the number of nonempty clusters at the iteration k) is

decreasing during DCA’s iterations and reduced to c∗ at an iteration k∗, say c0 ≥ c1 ≥ . . . ≥ ck ≥
ck+1 ≥ . . . ≥ ck∗ = c∗ and ck = c∗ for all k > k∗.

Proof. If there exists l ∈ {1, ...c} such that Ukil = 0 ∀i = 1, ...n, then Y kil = (B + µI)i.U
k
.l = 0

∀i = 1, ...n. Now let j∗ := arg maxj Y
k
ij , we will prove that j∗ 6= l. Indeed, we have (e is the vector

of ones in Rn)

c∑

j=1

Y kij =
c∑

j=1

(B + µI)i.U
k
.j = (B + µI)i.

c∑

j=1

Uk.j = (B + µI)i.e
T =

(
n∑

t=1

Bit

)
+ µ = µ.

Hence Y ki. contains at least one positive element and therefore Y kij∗ := maxj=1...c Y
k
ij > 0. That

means j∗ 6= l. From (18) it follows that Uk+1
il = 0.

The above proposition allows us to update the number of clusters during DCA’s iterations.
Starting with c0, a very large number of clusters (the number of nodes in the network), DCA
detects automatically empty clusters. Then by removing all the columns l such that Uk.l = 0 we
reduce considerably (during some first iterations) the dimension of matrices Y k and Uk.

The proposed DCA including the update of clusters number can be described as follows:

DCAM

initialization: Let U0 be a n×cmatrix with binary values, let c0 be an integer number sufficiently
large.
Let ε and ε be small positive values. Calculate µ = −λmin(B) + ε.
k ← 0. Set c0 ← c

repeat

1. Compute Y k = (B + µI)Uk,
2. Set Uk+1

i. = eargmax
j=1,...,ck

Y k
ij
, ∀i ∈ {1, . . . , n},

3. For l = 1, ...c
if Uk+1

.l = 0 then update c− 1← c, remove the column Uk+1
.l from Uk+1

end for
k ← k + 1,

until
‖Uk+1−Uk‖
‖Uk‖ < ε.

.

Theorem 1 (Convergence properties of DCAM)

(i) DCAM generates the sequence
{
Uk
}

contained in V (∆) such that the sequence
{
−Q(Uk)

}

is decreasing (or, equivalently, the sequence
{
Q(Uk)

}
is increasing)

(ii) The sequence
{
Uk
}

converges to U∗ ∈ V (∆) after a finite number of iterations.

(iii) The point U∗ is a KKT point of the problem (15). Moreover, if

arg max
j

(B + µI)U∗ij is a singleton ∀i ∈ {1, . . . , n}, (19)

then U∗ is a local solution to (15).
Proof. (i) and (ii) are direct consequences of the convergence properties of DCA for a

polyhedral DC program. Moreover, since h is differentiable everywhere, the condition ∂h(U∗)∩
∂g(U∗) 6= ∅ becomes ∂h(U∗) ⊂ ∂g(U∗) which is the KKT condition for the problem (15). Hence
the first part of (iii) is straightforward. Only the second part of (iii) needs a proof.

We first note that g := χ∆ is a polyhedral convex function, so is its conjugate g∗ := χ∗∆.
Hence the dual DC program of (15) is a polyhedral DC program and the relation

∅ 6= ∂g∗(Y∗) ⊂ ∂h∗(Y∗) (20)

10 Hoai An LE THI et al.

is a necessary and sufficient local optimality condition [29,50,51]. Clearly that, the condition
(19) is verified if and only if the problem

min
{
χ∆(U)− 〈U ,Y∗〉 : U ∈ Rn.c

}
(21)

admits an unique optimal solution, i.e. g∗ is differentiable at Y∗ = (Bb+µIb)U∗. In other words,
by returning to matrix representation with Y ∗ = (B+µI)U∗, problem (21) can be expressed in
the form (17) and uniqueness of solutions to (21) is holds iff, for i = 1, ..., n, the row [(B+µI)U∗]i.
has a unique greatest entry. In this case the relation (20) holds, and therefore, Y∗ is a local
solution to the dual DC program of (15). Using the transportation of local minimizers (see the
two properties mentioned in Section 3.1) between primal and dual DC programs, we conclude
that U∗ is a local solution to the problem (15).

3.3 Discussion

The main advantages of our algorithms have been mentioned in the introduction of the paper.
Here we give a more detailed discussion about the complexity of the algorithm and the choice
of c0. DCAM algorithm is simple and easy to implement. One iteration of the algorithm only
relies on very few basic operations, which leads to a very low computation cost. As explained in
Section 3.1, DCA is a descent method without linesearch. Therefore, there is no need to evaluate
the objective function numerous times as in standard gradient descent schemes, for instance.

An important point which contributes to the efficiency of the proposed algorithm comes from
the fact that even if we reformulate the initial combinatorial problem as a continuous problem
(equation 15), DCA works on a finite set which is the vertex set of a polytope. In fact, DCA
consists of computing the gradient matrix Y k and solving one linear program at each iteration.
This linear program can be decomposed onto n linear programs on the (c − 1)−simplex ∆c
whose optimal solutions are explicitly defined among its vertex set (one has to find a vertex l of
∆c such that Y kil =maxj=1...c Y

k
ij). Therefore, contrary to other relaxation approaches, in which

cluster assignments are represented as a full matrix (see for instance the deterministic annealing
method [37]), in the DCAM algorithm the affectation matrix is a binary matrix all along the
iterations. Matrix operations can therefore be performed very efficiently. The total number of
operations to solve this main linear program is nc.

We remark that the key operations in DCAM consist of computing the gradient matrix
Y k, which is the product of the full matrix B and the binary assignment matrix U . A naive
implementation of this product costs O(n2) operations. However, as explained in section 2 (and
in [45]), the modularity matrix is the sum of the sparse matrix A and the matrix ωωT of rank
1. Therefore, the product can be performed as follows:

Y k = (B + µI)Uk = (A+ µI)Uk − 1

2m
ω(ωTUk).

The product (A + µI)Uk requires O(m) operations, where m denotes the number of edges
(we don’t take into account the µI term as it can be pre-calculated once and for all before
iterations). The computation of 1

2mω(ωTUk) requires O(nc) operations. Therefore the total cost

of computing Y k of one iteration is O(m+ nc).
It should be noticed that Y k can be computed incrementally. Indeed, denote by δk+1 =

Uk+1 − Uk, we have Y k+1 = (B + µI)Uk+1 = Y k + (B + µI)δk+1. We observe that each row of
δk+1 which corresponds to a change in the assignment contains only two non null components:
−1 for the previous community and +1 for the new community, and other rows are null. We
denote q the number of changes in the assignments (number of non null rows in δk+1). Then,
the incremental computation Y k+1 = Y k + (A + µI)δk+1 − 1

2mω(ωT δk+1) requires roughly
2 min(m,nq)+2nc sums and products in the worst case. Therefore, thanks to simple calculations,
if q < m

2n , the incremental approach is more efficient than the full calculation. If m takes a high
value, the incremental approach will be used very often, and the running time will be shorter.
In practice, the incremental approach can reduce running time of long experiment by 15%.

A DC programming approach for finding Communities in networks 11

The computation of the smallest eigenvalue λ1(B) of the modularity matrix B can be done
in O((n + m)n) thanks to the shifted power method. We suppose here that the power method
requires n iterations to converge (see [45]). It is worth noticing that DCA doesn’t require an
exact computation of λ1(B), we only need a tight lower bound on this eigenvalue. Therefore, in
practical situations, the number of iterations is much smaller than n.

Finally, it is worth noting once again the great advantage of DCAM in finding automatically
the optimal number of clusters: starting with a very large value c0 (the number of communities),
DCAM furnishes, as output results, an optimal partition together with the optimal number of
communities c∗. As for the input value c0, to avoid a ”underestimation” of c∗ we start with a
very large value c0, for example c0 = n. Obviously, for large size networks, smaller c0 is, shorter
CPU time would be, and the choice of c0 = n in these networks is not reasonable. Hence a
suitable value of c0 should be chosen to avoid too many unnecessary calculations during the
first iterations. It is well known in practice that the number of clusters of a network having n

nodes is around
√

n
2 . Hence we can take c0 ∈ [

√
n
2 , n], for example c0 = n in small and medium

size networks (n ≤ 500 000) and larger n is, c0 should be closer to
√

n
2 .

In our experiments we observe that the sequence {ck} is decreasing (quickly during some first
iterations of DCAM) and reduced to c∗ at the half of DCAM scheme, and during the remaining
iterations DCAM continues to optimize the modularity with this value c∗. So, by removing
empty clusters and updating the value of c during DCAM’s iterations we reduce considerably
the complexity of DCAM.

4 Experimental results

We test DCAM on several real networks and compare it with six existing approaches. All the
experiments have been conducted on a Intel(R) Core(TM) i7-2720QM CPU 2 × 2.20 Ghz with
4 Gb of memory.

4.1 Datasets and reference algorithms

To evaluate the performance of the algorithms, we conduct experiments on 15 well-known
networks, which have been tested in several previous works (see [45] for instance).

The description in details of the datasets is presented in Table 1 (note that the considered
optimization problem have nc variables and nc + n constrains).We get these datasets from
different sources:

– Zachary’s Karate Club, Dolphin Social Network, Les Miserables, Books about US politics,
American College football are obtained from the Mark Newman’s network data repository
at http://www-personal.umich.edu/~mejn/netdata/;

– Jazz musicians network, Email communication network, PF2177, GearBox Tmt/sym, Hook/1498,
Af/shell10, Rgg n 2 21 s0 and Rgg n 2 22 s0 are downloaded from the University of Florida
Sparse Matrix Collection at http://www.cise.ufl.edu/research/sparse/matrices/

– and Email Enron at http://snap.stanford.edu/data/email-Enron.html;

The DCAM is compared to six reference algorithms, the first four are heuristic: CNM -
the fast modularity maximization algorithm developed by Clauset, Newman and Moore (CNM)
[10]; FG - the improvement implementation version of CNM proposed by Wakita and Tsurumi
in [63]; WT - the Walktrap algorithm based on a new distance between nodes using random
walks [52]; SP - the Spectral Bisection algorithm proposed by Newman [45]. The last two
algorithms proposed by Agarwal et al. [1] are based on mathematical programming: LP (linear
programming followed by randomized rounding), and VP (a vector programming relaxation of
a quadratic program which recursively splits one partition into two smaller partitions while a
better modularity can be obtained). The software of these algorithms are obtained from

– http://deim.urv.cat/~sgomez/radatools.php) for the SP algorithm,

12 Hoai An LE THI et al.

Name Note # vertices # edges
Zachary’s Karate Club KAR 34 78
Dolphin Social Network DOL 62 159
Les Miserables MIS 77 254
Books about US politics BOK 105 441
American College football BAL 115 613
Jazz musicians network JAZ 198 2,742
Email communication network EMA 1,133 5,451
Pf2177 PF2 9,728 367,436
Email Enron EER 36,691 183,830
GearBox GEB 153,746 4,617,075
Tmt/sym TMT 726,713 2,903,837
Hook/1498 HOK 1,498,023 31,207,734
Af/shell10 AFS 1,508,065 27,090,195
Rgg n 2 21 s0 RG1 2,097,152 14,487,995
Rgg n 2 22 s0 RG2 4,194,304 30,359,198

Table 1 The description of datasets

– http://cs.unm.edu/~aaron/research/fastmodularity.htm) for CNM,
– http://igraph.sourceforge.net/) for FG and WT (the Igraph library on C++),
– http://www-scf.usc.edu/~gaurava/ for VP and LP (Agarwal’s web page).

4.2 Experiment setting

We consider two versions of DCAM according to the choice of initial points. The first, called
DCAM1, starts with a random initial point with values in {0, 1}. The second, DCAM2, starts
with a particular point computed by the following two-steps procedure. At the first step, each
node in the network is assigned a random numeric label which belongs to {1, 2, ..., c}. In the
second step, the label of every node is updated by the new label corresponding to the most
frequent in its neighborhood. This step is performed iteratively with a small number of iterations
(2 iterations in our experiment). Note that the idea of step 2 is based on the Label Propagation
Algorithm (LPA) proposed by Raghavan et al. [53].

Since the initial point is randomly computed (even if DCAM2 uses a particular procedure
for initial points, in the first step the label of points are randomly chosen), we run each DCAM
5 times and take the best solution (i.e. the one corresponding to the largest modularity value).
CPU time is computed as the total CPU of 5 runs, including the time for finding the initial point.
As for the input value c0, at the first run we take c0 = n except for TMT, HOK, AFS (resp.
RG1, RG2) datasets we set c0 = 5.

√
n
2 (resp. c0 =

√
n
2). Let c∗1 be the number of ”optimal”

clusters given by the first run of DCAM. Since the solution given by DCAM is sub-optimal,
c∗1 is close to the ”real optimal” number of clusters. Hence in the remaining four runs we start
DCAM with a larger value c0, say c0 := 2c∗1.

In the stop condition of DCAM ε = 10−6 for the first ten datasets and ε = 10−9 for the last
five datasets.

In the second experiment we study the influence of the value c0 on the performance of
DCAM. We run DCAM2 5 times for each of three values of c0 that are n, n2 and 5.

√
n
2 .

4.3 Numerical results

The modularity values given by DCAM1, DCAM2 and the references algorithms as well as
the corresponding number of communities are presented in Table 2. Here, c∗ and Q denote,
respectively, the number of communities and the modularity value furnished by the algorithms.
More clearly, the Figure 1 presents the comparative modularity results of the algorithms.

The CPU time in seconds of all algorithms are presented in Table 3.
The results of DCAM when c0 varies are reported in Table 4 where c∗ and Q are the best

value given by 5 runs and CPU time is the total CPU time of 5 runs.
Comments on numerical results.

A DC programming approach for finding Communities in networks 13

Table 2 Comparative results (number of communities and modularity value) of 8 algorithms

Dataset DCAM1 DCAM2 CNM WT SP FG VP LP
c* Q c* Q c* Q c* Q c* Q c* Q c* Q c* Q UB

KAR 4 0.420 4 0.420 3 0.381 3 0.394 4 0.393 3 0.381 3 0.420 4 0.420 0.420
DOL 5 0.529 4 0.528 4 0.495 5 0.501 5 0.491 4 0.496 3 0.526 5 0.529 0.531
MIS 6 0.549 6 0.560 5 0.501 8 0.521 8 0.521 5 0.501 4 0.560 6 0.560 0.561
BOK 5 0.526 5 0.527 4 0.502 4 0.515 4 0.467 4 0.502 3 0.527 5 0.527 0.528
BAL 10 0.605 10 0.605 7 0.577 10 0.603 8 0.477 6 0.550 5 0.605 10 0.605 0.606
JAZ 4 0.445 4 0.445 4 0.439 10 0.433 3 0.394 4 0.439 3 0.445 8 0.445 0.446
EMA 39 0.535 12 0.551 13 0.513 44 0.525 22 0.493 17 0.501 4 0.579 5 0.526 -
PF2 19 0.546 10 0.558 10 0.545 20 0.454 17 0.431 10 0.545 - - - - -
EER 1282 0.521 1072 0.579 1637 0.510 - - 2631 0.409 1605 0.517 - - - - -
GEB 431 0.735 142 0.841 17 0.831 - - - - 19 0.831 - - - - -
TMT 3409 0.618 136 0.829 9 0.797 - - - - 10 0.798 - - - - -
HOK 2433 0.594 16 0.854 - - - - - - - - - - - - -
AFS 1736 0.627 8 0.738 - - - - - - - - - - - - -
RG1 1954 0.758 277 0.839 - - - - - - - - - - - - -
RG2 1448 0.755 350 0.827 - - - - - - - - - - - - -

Fig. 1 Comparative modularity values of 8 algorithms

4.3.1 Comparison between DCAM and the four heuristic algorithms CNM, SP, WT, FG

DCAM2 always gives the largest modularity value while the running time is shortest. The total
CPU time of DCAM2 is much smaller than those of these four reference algorithms. Considering
the four medium size networks FP2, EER, GEB, TMT (9000 < n < 1000000): the gain ratio
varies, respectively, from 27 to 108.5 and from 1.12 to 76 in comparing with CNM and FG
(the fastest heuristic algorithm); WP (resp. SP) can solve only one (resp. two) problem(s) and
the gain ratio is 53 (resp. 11.6 and 576) times. No heuristic algorithm can handle large scale
problems (the networks with more than one million nodes) while DCAM2 is scalable: it works
well on large size networks with upto 4, 194, 304 nodes and 30, 359, 198 edges.

The modularity values given by DCAM1 are quite close to (but slightly smaller than) those
of DCAM2 and they are better than those computed by CNM, SP, WT (resp. FG) on all (resp.
on 9/11) datasets. DCAM1 is faster than CNM, WT and SP on all datasets, the gain ratio is up
to 38, 21, and 225 times w.r.t CNM, WT and SP respectively. DCAM1 is faster (resp. slower)
than FG on the first eight (resp. EER, GEB, TMT) datasets.

14 Hoai An LE THI et al.

Table 3 CPU time (in second) of each algorithm

Data DCAM1 DCAM2 CNM WT SP FG VP LP
KAR 0.000 0.000 0.116 0.000 0.015 0.000 18.51 0.69
DOL 0.000 0.000 0.223 0.000 0.028 0.000 19.29 4.53
MIS 0.000 0.000 0.551 0.015 0.038 0.000 26.13 3.98
BOK 0.000 0.000 0.367 0.048 0.066 0.015 21.14 18.45
BAL 0.000 0.000 0.394 0.000 0.096 0.000 34.95 12.79
JAZ 0.000 0.000 0.747 0.031 0.228 0.016 27.14 2.52
EMA 0.172 0.000 4.371 0.280 3.148 0.078 386.82 37.82
PF2 2.352 0.782 76.349 42.619 451.11 59.748 - -
EER 194.05 36.720 231.355 - 2686.1 50.779 - -
GEB 215.37 80.110 2372.0 - - 179.93 - -
TMT 705.43 167.15 4560.37 - - 188.57 - -
HOK 5597.21 102.43 - - - - - -
AFS 3765.23 81.97 - - - - - -
RG1 4895.21 880.96 - - - - - -
RG2 5800.30 1966.2 - - - - - -

Table 4 Results of DCAM2 with different values of c0

c0 = n c0 = n
2

c0 = 5
√

n
2

Dataset c∗ Q CPU c∗ Q CPU c∗ Q CPU
KAR 4 0.420 0.000 4 0.420 0.000 4 0.419 0.000
DOL 4 0.528 0.000 5 0.529 0.000 4 0.527 0.000
MIS 6 0.560 0.000 6 0.555 0.000 6 0.555 0.000
BOK 5 0.527 0.000 5 0.527 0.000 5 0.527 0.000
BAL 10 0.605 0.000 10 0.605 0.000 9 0.598 0.000
JAZ 4 0.445 0.000 4 0.445 0.000 4 0.445 0.000
EMA 12 0.551 0.062 12 0.551 0.061 10 0.538 0.020
PF2 10 0.558 1.981 10 0.558 1.342 10 0.558 0.650
EER 1072 0.579 62.356 1072 0.567 53.725 421 0.561 47.800
GEB 133 0.849 356.506 131 0.839 185.562 104 0.842 107.120

4.3.2 Comparison between DCAM and the two mathematical programming based algorithms VP and

LP

VP and LP work only on 7 small size networks (no more than 1133 nodes). In terms of modu-
larity, the results of DCAM2, VP and LP are comparable: they are equal on 5/7 datasets and
everyone wins on one dataset. DCAM1 gives the same result as VP (resp. LP) on 3/7 (resp.
4/7) datasets, better on one dataset, and smaller on 3 (resp. 2) datasets. Note that VP and
LP algorithms include a refinement procedure and they perform well only on the seven small
datasets. Note also that, for these small datasets, the modularity values provided by DCAM
are very close to the upper bounds given in [1] (the gap is zero on one dataset, 0.001 on 5/7
datasets and 0.002 on one dataset).

As for running time, on the 7 datasets which can be handled by VP and LP, the CPU times
of VP and LP varies from 0.69 to 386.82 seconds while those of DCAM2 (resp. DCAM1) are
always smaller than 0.001 (resp. 0.6) second.

4.3.3 Comparison between the two versions of DCAM

Thanks to the initial procedure, DCAM2 is better than DCAM1 (with random initial points)
on both quality and rapidity, in particular for large size networks. The gain ratio on running
time is up to 55 times (HOK data). Meanwhile, even with a random starting point, DCAM1 is
an efficient algorithm: it can handle large scale problems in a reasonable time.

A DC programming approach for finding Communities in networks 15

4.3.4 The influence of c0 on DCAM

DCAM is robust: c∗ is quite stable when c0 varies (except for EER data), and the difference
of modularity values varies from 0.0 to 0.024. As for CPU time, not surprisingly, smaller c0 is,
shorter running time is.

5 Conclusion

We have studied the problem of detecting community structure in networks via the maxi-
mization of the modularity. By exploiting the special structure of the considered problem we
have developed a fast and scalable DCA scheme (DCAM) that requires only matrix-vector
product at each iteration. The implementation is performed by an incremental approach tak-
ing into account the sparsity of the modularity matrix. Our algorithm is neither a hierarchical
partition, nor a k− partition approach, and do not require any refinement: starting with a very
large number of communities, DCAM furnishes, as output results, an optimal partition together
with the optimal number of communities c∗, i.e., the number of communities is discovered au-
tomatically during DCA’s iterations. The number of clusters is updated at each iteration when
empty clusters are found, by the way computational efforts are considerably reduced. Thanks
to the above elements, our algorithm can handle large size networks having up to 4, 194, 304
nodes and 30, 359, 198 edges, say the initial optimization problem has 6, 073, 352, 192 variables
and 6, 077, 546, 496 constraints (as we start with c0 = 1448 and the number of variables and of
constraints are, respectively, nc and nc+ n).

The DCAM has been compared to six reference algorithms on a variety of real-world network
datasets. Experimental results show that it outperforms reference algorithms not only on quality
and rapidity but also on scalability, and it realizes a very good trade-off between the quality of
solutions and the running time.

In a future work we plan to investigate DCA for optimizing new modularity measures to
identify overlapping communities or small communities which can not be revealed by the original
modularity maximization problem.

References

1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming.
The European Physical Journal B 66(3), 409 418 (2008). DOI 10.1140 epjb/e2008-00425-1.

2. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S. and Liberti, L. (2010) Column generation
algorithms for exact modularity maximisation in networks. Phys. Rev. E 82, 046112.

3. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex networks at different resolution
levels. NEW J.PHYS. 10, 053,039 (2008). URL doi:10.1088/ 1367-2630/10/5/053039

4. Barber, M.J., Clark, J. W., Detecting network communities by propagating labels under constraints, Phys.
Rev. E 80 (2009) 026129.

5. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks.
J. Stat. Mech. (2008). DOI 10.1088/1742-5468/2008/10/P10008.

6. Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A. and Rapisarda, A.: “Detecting complex network
modularity by dynamical clustering,” Physical Review E, vol. 75, no. 045102(R), 2007.

7. Bradley, B.S. & Mangasarian, O.L. (1998). Feature selection via concave minimization and support vector
machines. In J.Shavlik, editor, Machine Learning Proceedings of the Fifteenth International Conferences
(ICML’98), 82–90, San Francisco, California, MorganKaufmann.

8. Brandes, U., Delling, D., Gaertler, M., Grke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: “On modularity
clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 2, pp. 172–188, 2008.

9. Cafieri, S., Hansen, P., Liberti, L., A Locally Optimal Heuristic for Modularity Maximization of Networks,
Phys. Rev. E 83, 056105 (2011)

10. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys.
Rev. E 70(6), 066,111 (2004). DOI 10.1103/PhysRevE.70.066111.

11. Collobert, R., Sinz, F., Weston, J. & Bottou, L. (2006). Trading Convexity for Scalability. ICML06, 23rd
International Conference on Machine Learning.

12. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification (2005).
URL doi:10.1088/1742-5468/2005/09/P09008.

16 Hoai An LE THI et al.

13. Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, Serie B, 39(1), 1–38.

14. Dinh, T.N.; Thai, M.T., Community Detection in Scale-Free Networks: Approximation Algorithms for
Maximizing Modularity, Selected Areas in Communications, IEEE Journal on , vol.31, no.6, pp.997,1006,
June 2013.

15. Djidjev, H.: “A scalable multilevel algorithm for graph clustering and community structure detection,”
Lecture Notes in Computer Science, vol. 4936, 2008.

16. Duch, J., Arenas, A.: Community detection in complex networks using extremal opti- mization. Phys.
Rev. E 72(2), 027,104 (2005). DOI 10.1103/PhysRevE.72.027104

17. Emprise, Y.K.C., Dit-Yan, Y.: A Convex Formulation of Modularity Maximization for Community De-
tection, proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Cat-
alonia, Spain, pp. 2218–2225, IJCAI/AAAI (2011).

18. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E
80(1), 016,105 (2009). DOI 10.1103/PhysRevE.80.016105

19. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. in proc. Natl.Acad.Sci.USA 104,
36 (2007). URL doi:10.1073/pnas.0605965104.

20. Fortunato, S. (2010) Community detection in graphs. Physics Reports 486, 75-174.
21. Guimera, R., Amaral, L.: Functional cartography of complex metabolic networks. Na- ture 433, 895 (2005).

URL http://www.citebase.org/abstract?id=oai:arXiv.org: q-bio/0502035
22. Harel, D., Koren, Y.: On clustering using random walks. In: in proc. 21st conf. on Foundations of Software

Technology and Theoretical Computer Science, vol. 2245, pp. 18–41. Springer-Verlag (2001)
23. Jonathan, Q.J., Lisa, J.M.:, Modularity functions maximization with nonnegative relaxation facilitates

community detection in networks, Physica A: Statistical Mechanics and its Applications, Volume 391,
Issue 3, ISSN 0378-4371, pp. 854-865 (2012).

24. Juyong, L., Steven ,P.G., Jooyoung, L., Mod-CSA: Modularity optimization by conformational space
annealing, eprint arXiv:1202.5398 (2012)

25. Lai, D., Lu, H., Nardini, C.: Enhanced modularity-based community detection by random walk network
preprocessing. Phys. Rev. E 81(6), 066,118 (2010). DOI 10.1103/PhysRevE.81.066118

26. Lambiotte, R., Delvenne, J., Barahona, M.: Laplacian dynamics and multiscale mod- ular structure in
networks (2008). URL http://www.citebase.org/abstract?id=oai: arXiv.org:0812.1770

27. Laura, B., Songsong, L., Lazaros, G.P., Sophia, T., A Mathematical Programming Approach to Com-
munity Structure Detection in Complex Networks, Proceedings of the 22nd European Symposium on
Computer Aided Process Engineering, pp. 1387–1391, (2012)

28. Le Thi, H.A. DC Programming and DCA. http://lita.sciences.univ-metz.fr/~lethi/index.php/en/
dca.html.

29. Le Thi, H. A, Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited
with DC models of real world nonconvex optimization problems. Annals of Operations Research pp. 23–46
(2005).

30. Le Thi, H.A., Belghiti, T. & Pham Dinh, T. (2006). A new efficient algorithm based on DC programming
and DCA for Clustering. Journal of Global Optimization, 37, 593–608.

31. Le Thi, H.A., Le, H.M & Pham Dinh, T. (2006). Optimization based DC programming and DCA for
Hierarchical Clustering. European Journal of Operational Research, 183, 1067–1085.

32. Le Thi, H.A., Le, H.M. & Pham Dinh, T. (2007). Fuzzy clustering based on nonconvex optimisation
approaches using difference of convex (DC) functions algorithms. Journal of Advances in Data Analysis
and Classification, 2, 1–20.

33. Le Thi, H.A., Le, H.M., Nguyen, V.V & Pham Dinh, T. (2008). A DC programming approach for Feature
Selection in Support Vector Machines learning. Journal of Advances in Data Analysis and Classification,
2(3), 259–278.

34. Le Thi, H.A., Nguyen, V.V. & Ouchani (2008). Gene selection for cancer classification using DCA, Adv.
Dat. Min. Appl. LNCS, 5139, 62–72.

35. Liu, Y., Shen, X. & Doss, H. (2005). Multicategory ψ-Learning and Support Vector Ma-
chine:Computational Tools. Journal of Computational and Graphical Statistics, 14, 219–236.

36. Liu, Y. & Shen, X. (2006). Multicategory ψ-Learning. Journal of the American Statistical Association,
101, 500–509.

37. Lehmann, S., Hansen, L.: Deterministic modularity optimization. Eur. Phys. J. B 60(1), pp. 83–88 (2007).
DOI 10.1140/epjb/e2007-00313-2.

38. Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., Chen, L.: Quantitative function for community detection,
Phys. Rev. E, 77 (2008) 036109.

39. Mariá C.V.N., Leonidas, S.P.: Community detection by modularity maximization using GRASP with path
relinking, Computers & Operations Research, Available online 19 March 2013, ISSN 0305-0548 (2013).

40. Massen, C., Doye, J.: “Identifying communities within energy landscapes,” Physical Review E, vol. 71,
no. 046101, 2005.

41. Medus, A., Acuna, G. and Dorso, C.: “Detection of community structures in networks via global opti-
mization,” Physica A, vol. 358, pp. 593–604, 2005.

42. Nadakuditi, R.R., Newman, M.E.J.: Graph Spectra and the Detectability of Community Structure in
Networks, Phys. Rev. Lett. 108, 188701 (2012).

43. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6),
066,133 (2004). DOI 10.1103/PhysRevE.69.066133

A DC programming approach for finding Communities in networks 17

44. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev.
E 74(3), 036,104 (2006). DOI 10.1103/PhysRevE.74.036104

45. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23),
85778582 (2006)

46. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)
47. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E

69(2), 026,113 (2004). DOI 10.1103/PhysRevE.69.026113
48. Neumann, J., Schnrr, C. & Steidl, G.: SVM-based Feature Selection by Direct Objective Minimisation.

Pattern Recognition, Proc. of 26th DAGM Symposium, 212–219 (2004)
49. Ong, C.S. & Le Thi, H.A. (2011). Learning with sparsity by Difference of Convex functions Algorithm.

J. Optimization Methods and Software, in Press 27 February 2012, DOI:10.1080/10556788.2011.652630,
14 pages

50. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c programming: Theory, algorithms and
applications. In: Acta Mathematica Vietnamica, pp. 289–355 (1997)

51. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM
J. Optimization pp. 476–505 (1998)

52. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. of Graph Alg.
and App. 10, pp. 284–293 (2004)

53. Raghavan, U. N., Albert, R., Kumara, S., Near linear time algorithm to detect community structures in
large-scale networks, Phys. Rev. E 76 (2007) 036106.

54. Richardson, T., Mucha, P. and Porter, M.: “Spectral tripartitioning of networks,” Physical Review E, vol.
80, p. 036111, Sep 2009.

55. Schuetz, P. and A. Caflisch, A. “Efficient modularity optimization by multistep greedy algorithm and
vertex mover refinement,” Physical Review E, vol. 77, no. 046112, 2008.

56. Shen, X., Tseng, G.C., Zhang, X. & Wong, W.H. (2003). ψ-Learning. Journal of American Statistical
Association, 98, 724–734.

57. Yuille, A.L. & Rangarajan, A. (2002). The Convex Concave Procedure (CCCP). Advances in Neural
Information Processing System, 14, Cambrige MA, MIT Press.

58. Weber, S., Schle, T. & Schnrr, C. (2005). Prior Learning and Convex-Concave Regularization of Binary
Tomography. Electr. Notes in Discr. Math., 20, 313–327.

59. Sun, Y., Danila, B., Josic, K., Bassler, K.E.: “Improved community structure detection using a modified
fine-tuning strategy,” Europhysics Letters, vol. 86, no. 28004, 2009.

60. Tasgin, M., Herdagdelen, A. and Bingol, H.:“Community detection in complex networks using genetic
algorithms,” arXiv:0711.0491, 2007.

61. Twan, V.L, Elena, M.: Graph clustering with local search optimization: The resolution bias of the objective
function matters most, Phys. Rev. E 87, 012812 (2013).

62. Van Dongen, S.: Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000)
63. Wakita, K., Tsurumi, T.: Finding Community Structure in Mega-scale Social Networks, arXiv e-print

cs/0702048 (2007)
64. White, S., Smyth, P.: A spectral clustering approach to finding communities in graph, in: H. Kargupta,

J. Srivastava, C. Kamath, A. Goodman (Eds.), Proceedings of the 5th SIAM International Conference on
Data Mining, Society forIndustrial and Applied Mathematics, Philadelphia, 2005, pp. 274–285.

65. Xu, G., Tsoka, S. and Papageorgiou, L.: “Finding community structures in complex networks using mixed
integer optimization,” Eur. Physical Journal B 60, 231-239 (2007).

46 Modularity maximization in network and application to community detection

Modularity maximization in network and application to community detection 47

2.2 Hierarchical Community Analysis approach

Noname manuscript No.
(will be inserted by the editor)

Mod-Müllner: An Efficient Algorithm for Hierarchical Community
Analysis in Large Networks

Brieuc CONAN-GUEZ · Manh Cuong NGUYEN

Received: date / Accepted: date

Abstract In this work, we propose a new efficient algorithm for hierarchical clustering analysis
(HCA) of large networks. This algorithm, called Mod-Müllner, is an adaptation of an existing
algorithm proposed by Müllner in 2011 and initially dedicated to HCA of pairwise dissimilarities.
Mod-Müllner performs a greedy optimization of the modularity, a widely used measure for
network partitioning. We show that thanks to adapted data structures, Mod-Müllner achieves
lower running times than state of the art algorithms, while producing the same solutions.

Keywords graph, network partitioning, community detection, modularity, hierarchical
clustering analysis.

1 Introduction

In recent years, the study of complex systems has attracted a great deal of interest in many
disciplines, including physics, computer science, biology or social science. As explained in [1],
networks are natural and powerful models to analyze such systems. We can cite as represen-
tative examples acquaintance networks, collaboration networks, citation networks, biochemical
networks, the Internet...

One network property that has received a considerable amount of attention is the so-called
community structure [2]: the whole network can be divided into separate meaningful communi-
ties/modules. A community is a densely connected sub-network with only sparser connections to
other communities. Detection of communities is of significant practical importance as it allows
the analysis of large networks at a mesoscopic scale: the identification of related web pages in
the World Wide Web, the uncovering of communities in social networks, the decomposition of
metabolic networks into functional modules.

There exists various definitions of a network community [3], but one in particular is widely
used: it is the one based on the modularity measure Q proposed by Girvan and Newman in
2004 [4]. Such measure is used to quantify the quality of a given partition P of a network in
separate communities. Thanks to this quantitative measure, the problem of community detection
can be recast as a combinatorial optimization problem: by maximizing Q(P), one can discover
meaningful communities. Since its introduction, this measure has become a central tool for
network analysis, and many works have studied its properties [5].

Since global maximization of the modularity measure Q is computationally intractable even
for very small networks (this problem is NP-hard [6]), several heuristic algorithms have been
developed to address the problem of large network partitioning [7, 8, 9, 10, 11, 12]. One method

Brieuc CONAN-GUEZ · Manh Cuong NGUYEN
Laboratory of Theoretical and Applied Computer Science - LITA EA 3097,
University of Lorraine, Ile du Saulcy, 57045 Metz, France.
brieuc.conan-guez@univ-lorraine.fr
manh-cuong.nguyen@univ-lorraine.fr

Submitted version to the International Journal of Social Network Mining (IJSNM).

2 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

which is widely accepted by network scientists is the classical hierarchical clustering analysis
(HCA) [13], which is based on a greedy optimization of Q. In the case of sparse hierarchical
networks, a näıve implementation of HCA has a worst-case run-time complexity of O(n2) [14],
where n denotes the number of vertices. Different works have focused on reducing the run-
time complexity and the effective running time of the HCA thanks to adapted data structures
and careful implementations. For instance, we can cite the proposal of [15] with a worst-case
complexity of O(n ln2(n)).

In this paper, we propose a new efficient algorithm, called Mod-Müllner, for HCA of sparse
networks. This algorithm is an adaptation of an existing algorithm proposed by Müllner in 2011
[16]. Müllner’s algorithm allows fast HCA of plain dissimilarity matrices thanks to classical
linkage criteria (Ward’s criterion for instance). Our adaptation to sparse networks uses the
significance as linkage criterion, a slightly modified version of the modularity linkage criterion.
Moreover, in order to speed up the algorithm, an efficient data structure is used to represent the
sparse linkage matrix. We show on simulated and real world data sets that our proposal achieves
lower running times than state of the art algorithms on very large networks while producing
the same solutions.

2 Greedy modularity optimization

2.1 Modularity

As explained in the introduction, the modularity measure Q is a quantitative measure, which
evaluates the quality of a particular vertex clustering in a network. For non valued network,
this measure is defined as the fraction of intra-community edges minus its expected value from
the null model, a randomly rewired network with the same degree assignments [4].

Let’s define the modularity measure in the more general framework of valued networks [17].
We consider an undirected valued network G = (V, E , ω), where V = {1, . . . , n} is the vertex
set, E ⊂ V × V, is the edge set. We denote m the number of edges. Finally, we consider the
weight function ω : V × V → R+, which is non negative. The degree of vertex u is defined as
d(u) =

∑
v∈V ω(u, v). In order to keep concise notations all along this paper, we generalize the

weight function and degrees to subsets of vertices. For all community pairs (Ci, Cj), we have
ω(Ci, Cj) =

∑
u∈Ci,v∈Cj

ω(u, v). Moreover, d(C) = ω(C,V).

The modularity of community partition P = {C1, . . . , Ck} is given by:

Q(P) =
∑

C∈P

(
ω(C, C)
ω(V,V)

− d(C)2
ω(V,V)2

)

The first fraction is the actual community weight ratio, whereas the second one is the
expected value of that ratio for a network with the same vertex set and in which edge weights
have been distributed randomly independently of partition P while preserving vertex degrees.

The modularity measure Q takes values in the interval [−1, 1], values approaching Q = 1
indicate networks with a strong community structure. One important property of this measure
is that Q can be used to select the optimal number of communities k, by finding the value k for
which Q is maximized.

2.2 Significance: a linkage criterion

It is straightforward to compute the modularity increase which results from the merge of two
disjoint communities [17]:

∆Q(Ci, Cj) = 2
ω(Ci, Cj)
ω(V,V)

− 2
d(Ci)d(Cj)
ω(V,V)2

Mod-Müllner: An Efficient Algorithm for HCA in Large Networks 3

A major property of this linkage criterion is that merge of a pair of unconnected communities
can’t lead to a modularity increase. As we will see, this fact greatly speeds-up community
detection algorithms.

∆Q is usually used as linkage criterion during HCA to select the next pair of communities to
merge. However, several works report [18, 17] that this natural criterion suffers from a significant
drawback. Indeed, it tends to favor the growth of a small number of communities, the ”super
communities” as called by Aaron Clauset. As a consequence, the community size distribution
is highly right-skewed. This distribution is not representative of the graph structure, but is an
artefact produced by the algorithm and the modularity linkage criterion.

This phenomenon affects the results in two ways. First this leads to sub-optimal partitions:
the modularity value is not as high as it could be. Secondly, the dendrogram, the tree which
represents the order of the merges, is heavily unbalanced. In this case, if we denote d the
dendrogram height, the usual approximation d ∼ ln(n) doesn’t hold, and is replaced by d ∼ n.
As a direct consequence, the run-time complexity of the HCA is increased: the almost linear
run-time complexity of state of the art algorithms is replaced by a super quadratic complexity,
and computation times are dramatically impacted.

To speed up HCA and to improve partition quality, some authors have proposed to use
modified versions of ∆Q as linkage criterion, which are called merge prioritizes. We can cite
[19, 18]. In this work, we will focus on one of them: the significance S proposed in [17].

S(Ci, Cj) =
∆Q(Ci, Cj)√
d(Ci)d(Cj)

The significance is a normalized version of ∆Q. This normalization cures the two flaws
exposed above (partition quality and running time) by favoring merges of communities of similar
sizes. In a general study [17], authors compare different merge prioritizes, and finally recommend
to use systematically the significance as a replacement of the modularity increase ∆Q for HCA.

2.3 Agglomerative hierarchical clustering of networks

HCA [13] are usually applied to individuals described thanks to plain dissimilarity matrices. At
the beginning, HCA considers the partition of singletons. At each iteration of the algorithm,
the pair of clusters that are the most similar, in the sense of a given linkage criterion, are
merged. Successive merges produce a sequence of nested partitions. After the final merge, the
last partition is only composed of a single set: the set of all the individuals. The whole process
produces a data structure: the dendrogram. A näıve implementation of this algorithm leads to
a run-time complexity of O(n3) for plain dissimilarity matrices.

In the context of network analysis, some specific points have to be outlined:

– as the modularity increases only for pairs of connected communities, search of the best
pair has a complexity of O(m) for a näıve implementation. And for sparse networks, that
is networks in which the number of edges m scales with the number of vertices n, this
complexity is reduced to O(n);

– at the beginning of the HCA, whatever the linkage criterion used is, ∆Q or S, each merge
leads to a modularity increase. However, at a certain stage of the dendrogram building,
modularity increase is not possible anymore(∆Q are all negatives). At this point, the merging
process is ended (dendrogram is not complete), and the best partition is obtained. In this
sense, the modularity measure provides the number of communities in a network.

To obtain a fast implementation of HCA algorithms, a data structure is used during the
course of the algorithm to store the values of the linkage criterion S. This data structure repre-
sents the sparse linkage matrix. This approach saves numerous computations during the search
of the best pair to merge. If we merge communities Ci, Cj , the linkage matrix update can be
done efficiently thanks to the following equations (see [15] for the case of ∆Q):

4 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

– if Ck is connected to both Ci and Cj :

S(Ci ∪ Cj , Ck) =

√
d(Ci)

d(Ci) + d(Cj)
S(Ci, Ck) +

√
d(Cj)

d(Ci) + d(Cj)
S(Cj , Ck) (1)

– if Ck is connected to Ci, but not to Cj :

S(Ci ∪ Cj , Ck) =

√
d(Ci)

d(Ci) + d(Cj)
S(Ci, Ck)− 2

√
d(Ck)

d(Ci) + d(Cj)
d(Cj)

ω(V,V)2

– if Ck is connected to Cj , but not to Ci:

S(Ci ∪ Cj , Ck) =

√
d(Cj)

d(Ci) + d(Cj)
S(Cj , Ck)− 2

√
d(Ck)

d(Ci) + d(Cj)
d(Ci)

ω(V,V)2

Thanks to pre-computations of the different coefficients, these update formulae can be cal-
culated very efficiently.

2.4 A brief overview of existing algorithms

Several works have been devoted to speeding up the agglomerative hierarchical clustering of
networks:

The seminal work was published by Newman in 2004 [14]. The author describes the classical
HCA adapted to greedy modularity optimization. The only optimization proposed in this work
consists in searching the best pair to merge amongst connected communities. The complexity
of this näıve algorithm is O((m+ n)n), or O(n2) for sparse networks.

In the same year, Clauset, Newman and Moore [15] proposed a new algorithm for HCA,
denoted CNM. The CNM principle is a major sophistication of the proposal of Day and Edels-
brunner [20] for the pairwise dissimilarity case. CNM has a complexity of O(md ln(n)), where d
is the height of the dendrogram. For sparse networks with a hierarchical structure (d ∼ ln(n)),
the complexity can be expressed as O(n ln2(n)). This improvement over the näıve algorithm is
obtained thanks to adapted data structures: each row of the linkage matrix is represented at
the same time by a binary heap and by a balanced binary tree. The balanced binary tree allows
for fast merge of two rows, while the max heap is used to quickly obtain the nearest neighbor
of each community. Finally, a global max heap, which contains all the communities and their
nearest neighbors, is used to select the best pair to merge.

In 2007, Wakita and Tsurumi [18] proposed a new efficient algorithm for HCA, denoted
WT. Each community stores its neighboring communities in a linked list, which is ordered on
the community ID. Moreover, each community maintains a reference to its nearest community.
Finally, as in CNM, a global max heap is used to order pairs consisting of one community and
its nearest neighbor. The complexity, as computed in [17], is O(mdn), or O(n2 ln(n)) for sparse
hierarchical networks.

Finally, in 2011, Francisco and Oliveira [21] proposed an algorithm, denoted FO, which is
presented as the fastest algorithm so far. For instance, authors report that FO is at least two
times faster than CNM. The linkage matrix is represented thanks to a cross-linked adjacency list
data structure (see Mod-Müllner data structure in figure 1). Unlike WT, lists are not ordered.
In order to keep merge operations as fast as possible, each merge begins by the indexing of
one of both rows. This indexing allows to merge rows in linear time. It is worth noticing that
this algorithm takes advantage of the symmetry of the linkage matrix. It only stores the upper
triangular part of the matrix, which saves numerous updates of the data structure. Another
peculiarity of the algorithm is that it uses only one binary heap, which orders all the community
pairs (the structure size is m). Finally, the complexity of FO is O(md ln(m)) and for sparse
hierarchical networks O(n ln2(n)).

Mod-Müllner: An Efficient Algorithm for HCA in Large Networks 5

3 Mod-Müllner: an algorithm for HCA of large networks

3.1 Müllner’s algorithm for HCA of dissimilarity data

In 2011 Müllner proposed a new algorithm for HCA of plain dissimilarity matrices [16]. This
algorithm is a sophistication of a former algorithm proposed by Anderberg [13]. This new
proposal has a worst case complexity of O(n3) for a general linkage criterion, where n denotes
the number of individuals. Although there exists other algorithms that exhibit lower worst case
complexities [20], Müllner’s algorithm is faster in practice, as shown by Müllner on various
benchmarks [16].

Unlike the modularity optimization problem, we consider in this part a linkage criterion,
denoted L, which has to be minimized. For instance, we can consider the Ward linkage criterion,
or the single linkage criterion. Müllner’s algorithm can be described succinctly as follows:

Clusters are represented by unique IDs: a list of consecutive integers {1, . . . , n}. Since the
linkage matrix is symmetric, the nearest cluster searches are done in the upper triangular par
of this matrix. For instance, let us consider cluster i, the search for its nearest cluster, cluster
j, is performed amongst clusters k such that i > k. Obviously, the best pair to merge, that is
the one which has the lowest linkage criterion value, is part of these set of pairs cluster/nearest
cluster.

At all time, Müllner’s algorithm maintains two arrays: the first one is an array of nearest

cluster candidates, denoted ncc[.]. The term ”candidate” means that for a given cluster i, the
true nearest cluster of i can be different from the candidate ncc[i]. This array of integers stores
cluster IDs. The second array, denoted lb[.], contains lower bounds on the linkage criterion values
between each cluster i and all cluster k, such that i < k. More precisely, for all cluster i, the
algorithm ensures that lb[i] ≤ L(Ci, Ck) for all k > i.

The efficiency of Müllner’s algorithm relies on the following remark: thanks to these two
arrays, nearest neighbor searches can often be avoided or are postponed to a later stage. As
the data size is decreasing during the course of the algorithm (successive merges decrease the
number of rows and columns of the linkage matrix), delayed searches can be done more quickly.

Here is what Müllner’s algorithm does: first it initializes the two arrays ncc[.] and lb[.]
thanks to a complete computation of nearest clusters. Then, at each of the n − 1 iterations of
the hierarchy construction, the cluster with the lowest lower bound is searched. Let us denote
i this cluster with the lowest lower bound lb[i]. Two cases have to be considered at this point:

– in the first case, lb[i] is strictly lower than the linkage criterion between i and ncc[i], its nearest
cluster candidate. We have lb[i] < L(Ci, Cncc[i]). This implies that we have no guarantee that
the nearest cluster candidate ncc[i] is actually the true nearest cluster. In such case, the
algorithm is forced to recompute the true nearest cluster of i thanks to a complete linear
search. ncc[i] and lb[i] are updated with the values of the true minimum. As the new value
of lb[i] may now be greater than the lowest lower bound, the pair (i, ncc[i]) may not be the
best pair to merge. So the whole process has to be restarted: the cluster with the lowest
lower bound is searched once again.

– in the alternative case, lb[i] is equal to the linkage criterion between i and ncc[i]. We have
lb[i] = L(Ci, Cncc[i]). As we have a realization of the lower bound, this means that the nearest
cluster candidate ncc[i] is the true nearest cluster. At this point, the two clusters i and ncc[i]
are merged as a new cluster j = ncc[i] (cluster i is removed). And the data structures are
updated: the linkage matrix, and the two arrays ncc[.] and lb[.].

During this linkage matrix update, the column/row of the deleted cluster i is removed and
the column/row of the newly created cluster j = ncc[i] is updated. Let us consider updates
associated to some cluster k. If the nearest cluster candidate ncc[k] was cluster i, it is replaced
by another cluster (as k < j, the new cluster j seems a very sensible choice). Thereafter, if the
new value L(Ck, Cj) is lower than lb[k], ncc[k] is updated by j, and lb[k] is updated by L(Ck, Cj).
Finally, for the new cluster j, ncc[j] and lb[j] are updated thanks to a complete linear search.

In order to further speed up the algorithm, Müllner cached lower bounds lb[.] in a priority
queue, implemented thanks to a binary min heap. Thanks to this priority queue, lowest bound

6 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

extractions are done in O(ln(n)). However, care must be taken now to update this additional
data structure during the linkage matrix update.

3.2 Mod-Müllner: an adaptation of Müllner’s algorithm for greedy modularity optimization

3.2.1 Adaptation principles

In this section, our adaptation of Müllner’s algorithm to modularity optimization is described1.
We call this adaptation Mod-Müllner. Figure 1 describes states of Mod-Müllner algorithm before
and after the merge of two communities.

This adaptation can be summarized in four points:

– the linkage criterion S (or ∆Q) has now to be maximized. So the lower bound array is
replaced by an upper bound array ub[.], and the binary min heap is replaced by a binary
max heap which orders the upper bounds. Updates are done accordingly.

– as usual for modularity optimization of sparse networks, only pairs of connected communities
have to be considered. Therefore, iterations over data structures have to be adapted. Espe-
cially, upper bound computations have to be slightly modified to ensure that these bounds
are greater than all linkage criterion values, even those of non neighboring communities.
This can be obtained simply by forcing upper bounds to be greater or equal to 0.

– as the nearest community is sought amongst communities with greater ID (upper triangular
par of the linkage matrix), it may happen that a community i has no such neighbors. In
such case, the upper bound is once again fixed to 0 and the nearest community candidate
ncc[i] is fixed to a special value (denoted NA in figure 1). This has no consequences for the
success of the algorithm, as it stops as soon as the linkage criterion is null (if the linkage
criterion S is null, this implies that the modularity can’t be increased any more).

– finally the major adaptation doesn’t apply to Müllner’s algorithm itself, but focuses on the
data structure which represents the linkage matrix. As explained below, we propose to use
a slightly modified implementation of FO data structure [21]: the sparse linkage matrix is
represented thanks to a cross-linked adjacency list data structure (see figure 1). Each node
of this structure represents a weighted edge of the coarsened graph of communities. Each
value of the linkage matrix, the significance, is stored in a node. This data structure implies
a modification on the nature of the nearest community candidate array ncc[.]. In the original
Müllner’s algorithm, this array contains cluster IDs, whereas in the Mod-Müllner adaptation
this array contains references to nodes of the linkage matrix. This gives direct access to the
node which contains the two communities to merge.

3.2.2 Representing the sparse linkage matrix thanks to an efficient data structure

Our adaptation only needs the upper triangular part of the linkage matrix. As explained in the
previous section, we use the same cross-linked adjacency list data structure as the FO algorithm.
Each node contains seven pieces of information: two integers for the IDs of the two communities,
one real number for the linkage criterion, and four references to neighboring nodes.

When a nearest community candidate ncc[i] has to be recomputed, the search has to be
performed only amongst nodes (i, k) for which community IDs k are greater than i. If nodes are
inserted in the data structure carelessly, as in the FO algorithm, iterations have to be done over
all neighboring communities k, and therefore those such that k < i have to be skipped. This is
inefficient. To avoid this problem, we propose to insert nodes such that k > i at the front of
the doubly linked list, and those such that k < i at the back of the list. This allows to iterate
efficiently on nodes such that k > i.

Finally, we recall that during the merge of two communities, the algorithm must find neigh-
bors which are shared by both communities (see formula 1). As lists are not ordered on commu-
nity IDs (unlike the WT algorithm), a näıve implementation leads to a quadratic complexity:

1 Available implementation: https://www.dropbox.com/s/vvrpaehknp0og3o/networkPartitioning.zip

Mod-Müllner: An Efficient Algorithm for HCA in Large Networks 7

Fig. 1 States of Mod-Müllner algorithm before and after a merge (for the sake of clarity, lists appear ordered
by community IDs. It is not required by the algorithm).

C4

C9C8C7C5C3C1

C1

C1

C2

C3

C4

C5

C6

C7

C8

S1,8

S3,6 S3,8

S4,5 S4,9

S5,7

S6,7 S6,9

S8,9

C2

S4,8

S1,4

S3,4

C6

C4

C6 C9

NA

ub1

ub3

ub4

ub5

ub6

ub8

nearest
community
candidat

0

max heap
of upper
bounds

(C4,C6,S4,6)

C9C8C7C5C3C1C1

S1,8

S3,8

S5,7

S8,9

C2

S'6,8

S'1,6

C4

NA

ub1

ub3

ub5

ub6

ub8

nearest
community
candidat

0

max heap
of upper
bounds

NA

S'6,7

Before the merge of communities C4 and C6

After the merge of communities C4 and C6

S4,6

C6

S'3,6

S'6,9 C6

S'5,6

C9

C1

C2

C3

C5

C7

C8

C9

two nested loops are needed. To avoid this bottleneck, FO uses a simple indexing strategy: at
the beginning of each merge, neighbors of the first community are indexed thanks to an array.
Then a second loop processes each neighbor of the second community. Thanks to the indexing,
the question of whether one neighbor of the second community is also a neighbor of the first
community is resolved in constant time. A third and final loop is used to process residual neigh-
bors of the first community: the ones which haven’t been treated by the second loop. Thanks to
these three successive loops, the merge operation has linear complexity (updates of additional
data structures, for instance the binary max heap, are not taken into account in this complexity
analysis). We use the same indexing strategy as FO in Mod-Müllner.

8 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

3.2.3 Formal description of Mod-Müllner algorithm

In this section, we present a formal description of Mod-Müllner algorithm. To keep algorithm 1
as concise as possible, some notations have been used:

– function Mod-Müllner accepts as entries n, the number of vertices, and weightedPair[.],
which is an array of triplets (communityID1, communityID2, edgeWeight) describing the
network. Self-loops and multi-edges are not allowed. The return value is a list of merges;

– a node structure represents an edge. It contains: node.r, the community ID of the row, node.c,
the community ID of the column, node.S, the significance, and four references to neighboring
nodes of the doubly linked lists. This structure requires that node.r < node.c;

– when node is inserted into the data structure, it is part of two doubly linked lists. As
explained in the previous section, node is inserted at the front of list edgeList[node.r], and
at the back of edgeList[node.c]. We denote row(edgeList[i]) the subset of list edgeList[i] such
that node.r = i. It represents the first nodes of the list;

– refTo(node) indicates that some kind of pointer on the structure node is stored;
– neighborID(nodeU, u) returns the community which forms with community u the edge rep-

resented by the nodeU structure. This is the other stub of the edge;
– index is an array of node references. Thanks to this array, merges of two communities can

be done in linear time. This array should be allocated only once at the beginning of the
algorithm (its length is n). Before and after each merge, this array references no nodes (It
contains values NA).

Algorithm 1

1: function Mod-Müllner(n, weightedPair[.])
2: ub[i]← 0, ∀ i = 1, . . . , n− 1 . an upper bound is never lower than 0

3: ncc[i]← NA, ∀ i = 1, . . . , n− 1
4: edgeList[.]← CreateLinkageMatrix(n,weightedPair[.], ub[.], ncc[.])
5: mergeList← {} . this list will contain merges: (ID1, ID2)
6: PQ← createPriorityQueue(ub[.]) . community IDs are ordered by ub[.]
7: while PQ not empty do

8: repeat

9: u← PQ.pop() . extract the community ID with the greatest upper bound

10: if ub[u] ≤ 0 then . the modularity can’t be increased anymore

11: return mergeList

12: end if

13: isPairFound← ub[u] = ncc[u].S . a boolean

14: if not(isPairFound) then

15: ncc[u]← refTo(arg maxnode∈row(edgeList[u]) node.S) . linear search

16: ub[u]← ncc[u].S
17: PQ.push((u, ub[u]))
18: end if

19: until isPairFound

20: v ← ncc[u].c . pair (u, v)
21: mergeList.pushBack((u, v))
22: UpdateLinkageMatrix(u, v, edgeList[.], ub[.], ncc[.])
23: end while

24: return mergeList

25: end function

26: function CreateLinkageMatrix(n,weightedPair[.], byRef ub[.], byRef ncc[.])
27: edgeList[i]← {}, ∀ i = 1, . . . , n
28: for all pair ∈ weightedPair do

29: node← createNode(pair) . node.r < node.c and node.S ← Significance

30: edgeList[node.r].pushFront(node)
31: edgeList[node.c].pushBack(node)

Mod-Müllner: An Efficient Algorithm for HCA in Large Networks 9

32: if node.S > ub[node.r] then . significance comparison

33: ub[node.r]← node.S

34: ncc[node.r]← refTo(node)
35: end if

36: end for

37: return edgeList

38: end function

39: procedure UpdateLinkageMatrix(u, v, byRef edgeList[.], byRef ub[.], byRef ncc[.])
Require: index[i] = NA, ∀ i = 1, . . . , n
40: edgeList.removeNode(ncc[u]) . from edgeList[u] and from edgeList[v]
41: index[neighborID(nodeU, u)]← refTo(nodeU), ∀nodeU ∈ edgeList[u]
42: ncc[u]← NA . ub[u] and ncc[u] won’t be used any more

43: ub[v]← 0
44: ncc[v]← NA

45: for all nodeV ∈ edgeList[v] do . second loop of the merge operation

46: nodeU ← index[neighborID(nodeV, v)]
47: if nodeU = NA then . neighbor of v is not connected to u

48: nodeV.updateSignificance()
49: else . neighbor of v is also connected to u

50: nodeV.updateSignificance(nodeU)
51: if ncc[nodeU.r] = nodeU then . ncc[nodeU.r] = NA for nodeU.r = u

52: ncc[nodeU.r]← refTo(nodeV)
53: end if

54: index[neighborID(nodeV, v)]← NA

55: edgeList.removeNode(nodeU)
56: end if

57: if nodeV.S > ub[nodeV.r] then
58: ub[nodeV.r]← nodeV.S

59: ncc[nodeV.r]← refTo(nodeV)
60: if nodeV.r 6= v then . PQ update is done at the end for nodeV.r = v

61: PQ.update((nodeV.r, ub[nodeV.r]))
62: end if

63: end if

64: end for

65: for all nodeU ∈ edgeList[u] do . third loop of the merge operation

66: nodeV ← createNode(v, neighborID(nodeU, u), nodeU.S)
67: nodeV.updateSignificance()
68: if ncc[nodeU.r] = nodeU then . ncc[nodeU.r] = NA for nodeU.r = u

69: ncc[nodeU.r]← refTo(nodeV)
70: end if

71: index[neighborID(nodeU, u)]← NA

72: edgeList.removeNode(nodeU) . loop iterations have to be done carefully

73: edgeList[nodeV.r].pushFront(nodeV)
74: edgeList[nodeV.c].pushBack(nodeV)
75: if nodeV.S > ub[nodeV.r] then
76: ub[nodeV.r]← nodeV.S

77: ncc[nodeV.r]← refTo(nodeV)
78: if nodeV.r 6= v then . PQ update is done at the end for nodeV.r = v

79: PQ.update((nodeV.r, ub[nodeV.r]))
80: end if

81: end if

82: end for

83: PQ.update((v, ub[v])) . update is done if v 6= n

84: end procedure

10 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

3.2.4 Run-time complexity analysis of Mod-Müllner

The analysis of the worst case complexity of the different steps of the algorithm can be sum-
marized as follows:

– initialization: filling the linkage matrix is in O(m), and the priority queue initialization is in
O(n);

– the inner loop (lines 8 to 19): in the worst case, the maximum number of iterations is n.
If n iterations are performed, linear searches (arg max) in the worst case globally imply m

computations, and managing the priority queue requires n updates (O(ln(n)) for each).
– the merge operation: in the worst case, n nodes have to be considered, and each time, the

priority queue may have to be updated.

The global worst case complexity is therefore O(m + n(m + n ln(n))) = O(nm + n2 ln(n)). In
the case of a sparse hierarchical network, we obtain O(n2 ln(n)). Mod-Müllner has therefore
the same worst case complexity as WT, but exhibits a greater complexity than CNM or FO.
However, in the next section, we show on simulated and real world networks, that Mod-Müllner
achieves lower running times than FO, even for very large networks (experiments have been
conducted on networks with more than 50 millions of edges).

4 Experiments

4.1 Experimental protocol

In this section, our goal is to show that Mod-Müllner is an efficient algorithm, which achieves
lower running times than concurrent algorithms on very large networks. As Francisco and
Oliveira claim that their algorithm, FO, is the best performer [21], all of our experiments have
been conducted against this unique contender.

Moreover, in order to obtain a fair comparison between both algorithms, we have re-
implemented the FO algorithm. We call this new implementation MyFO. MyFO uses the same
code as the Mod-Müllner implementation for the linkage matrix. This allows us to greatly re-
duce implementation bias. In all of the conducted experiments, MyFO turns out to be faster
than FO. This acceleration is due to the removal of several branch conditions which appear in
the merge loop of the original implementation of FO.

Both algorithms use the significance S as linkage criterion. Indeed, as explained in section 2.2,
significance outperforms ∆Q both in running time and in the quality of the obtained solutions.
Therefore there is no practical interest to use ∆Q as linkage criterion.

All algorithms are implemented in C++/STL and compiled with GCC in 64 bit mode. For
the sake of memory space, references (pointer of 64 bit size) have been replaced by simple
integers (int of 32 bit size). This replacement is made possible because nodes are not allocated
individually in the main memory. Instead, a large array which contains all the nodes is allocated
only once at the beginning of the algorithm. This favors memory locality. Using integers (array
indices) instead of pointers allows to process very large networks nevertheless. Finally, the cpu
is an Intel Core i5 760 at 2.8 GHz with 8Go of main memory.

All running times were recorded once all the data were loaded into a temporary data struc-
ture in the main memory . Therefore, reported running times take into account the construction
of cross-linked adjacency list data structures.

Finally, it is worth noticing that even if both algorithms apply the same principle: the
community pair with the greatest significance is merged, and the solutions obtained by both
methods may differ slightly in practice. This can be explained by the way ties are resolved. If
two pairs exhibit the same linkage criterion value, both algorithms won’t necessarily pick the
same pair, which leads to different final solutions. In practice, the differences are not significant,
and modularity values are very close.

Mod-Müllner: An Efficient Algorithm for HCA in Large Networks 11

4.2 Test set of simulated networks

To perform numerical experiments on simulated data, we use the same generative network model
as in [22]. We consider networks with C = 100 distinct communities. The number of intra (resp.
inter) edges depends on a given probability p (resp. q) of edge occurrence. We have of course
p > q. The ratio f = q/p and vertex degrees are kept fixed: f = 0.003 and d = 15. Under these
assumptions, the theoretical modularity can be computed: Q(C, f) = 1/(1 + (C − 1)f)− 1/C =
0.76. All these settings correspond to observed values in real world networks.

To avoid tie-breakings, networks are valued: edge weights are randomly chosen in the interval
[0.9, 1.1]. This ensures that both algorithms find exactly the same solution (same modularity),
which allows to compare running times fairly.

Finally, the number of vertices ranges from 100.000 to 1.500.000 (step=5000), and therefore
the larger network has more than 11 million of edges. 280 networks were generated according
to these settings.

We can note on figure 2, that Mod-Müllner is always faster than both FO and MyFO.
Moreover our implementation MyFO always outperforms FO. In the case of the largest network,
the one with 1.5 million of vertices, FO takes 3 minutes to reach the end, whereas MyFO
takes only 1 minute and 45 seconds. Finally, Mod-Müllner takes 1 minute and 10 seconds. The
acceleration factor of Mod-Müllner over MyFo is 1.5, whereas the one of MyFO over FO is 1.6.

Fig. 2 Running times of Mod-Müllner, FO and MyFO on simulated networks

100000 300000 500000 700000 900000 1100000 1300000 1500000

0
50

10
0

15
0

Number of vertices

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

FO
MyFO
Mod−Müllner

4.3 Test set of real-world networks

In this section, we conduct experiments on 15 real world networks. The vertex number ranges
from 0.5 million to 23 million, and the edge number ranges from 2.5 million to 50 million. For each
implementation, Mod-Müllner, FO and MyFO, running times are expressed in seconds. Next

12 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

N
etw

o
rk

M
o
d

-M
ü

lln
er

M
y
F

O
F

O

N
a
m

e
V

ertex
E

d
g
e

D
eg

S
ec

Q
#

C
H

S
ec

Q
#

C
H

M
y
F
O

M
M

S
ec

Q
F
O

M
M

A
M

A
4
1
0

2
3
6

2
4
3
9

4
3
7

1
1
.9

1
.8

0
.8

5
4

2
3
1

2
5
7

3
.2

0
.8

5
4

2
2
8

2
6
1

1
.7

6
.0

0
.8

5
5

3
.2

D
E

L
1

0
4
8

5
7
6

3
1
4
5

6
8
6

6
.0

2
.5

0
.9

7
7

1
4
7

2
5

4
.0

0
.9

7
7

1
4
3

2
4

1
.6

5
.5

0
.9

7
7

2
.2

W
B

S
6
8
5

2
3
0

6
6
4
9

4
7
0

1
9
.4

1
1
.1

0
.9

3
2

1
3
3
3

1
0

6
1
6

1
0
.2

0
.9

3
2

1
3
4
1

1
0

5
8
4

0
.9

1
9
.6

0
.9

3
3

1
.7

H
U

G
4

5
8
8

4
8
4

6
8
7
9

1
3
3

3
.0

7
.7

0
.9

8
9

2
9
1

2
5

1
0
.0

0
.9

8
9

2
9
0

2
6

1
.3

1
4
.3

0
.9

8
8

1
.8

M
6

3
5
0
1

7
7
6

1
0

5
0
1

9
3
6

6
.0

1
3
.3

0
.9

8
2

1
9
1

2
6

1
9
.0

0
.9
8
3

2
0
0

2
6

1
.4

2
7
.0

0
.9

8
3

2
.0

3
S

P
3

7
1
2

8
1
5

1
1

1
0
8

6
3
3

6
.0

1
2
.4

0
.9
8
7

2
2
0

2
6

1
8
.6

0
.9

8
6

2
1
4

2
6

1
.5

2
5
.1

0
.9

8
7

2
.0

A
D

A
6

8
1
5

7
4
4

1
3

6
2
4

3
2
0

4
.0

1
1
.1

0
.9

8
7

2
5
8

2
5

1
6
.9

0
.9

8
7

2
5
3

2
6

1
.5

2
4
.5

0
.9

8
7

2
.2

K
R

O
7
3
1

7
0
6

1
5

8
8
8

0
0
7

4
3
.4

9
9
7
.0

0
.0

5
1

1
2
1

7
6

4
4
9

4
0
5
.3

0
.0

5
1

1
2
1

7
6

4
4
8

0
.4

8
6
5
.8

0
.0

5
1

0
.9

R
C

E
1
4

0
8
1

8
1
6

1
6

9
3
3

4
1
3

2
.4

4
2
.3

0
.9

9
7

1
1
8
8

3
9

4
6
.6

0
.9

9
7

1
1
9
3

4
3

1
.1

5
4
.4

0
.9

9
7

1
.3

S
P

R
1

6
3
2

8
0
3

2
2

3
0
1

9
6
4

2
7
.3

1
1
3
.8

0
.6

0
3

2
2

2
6
8
1

1
3
9
.6

0
.6

0
3

2
5

2
6
9
5

1
.2

2
5
4
.2

0
.6

0
2

2
.2

A
F

S
1

5
0
8

0
6
5

2
5

5
8
2

1
3
0

3
3
.9

4
.6

0
.9

6
5

9
2

2
0
2

1
0
.1

0
.9
6
6

9
5

2
0
4

2
.2

1
0
.0

0
.9

6
5

2
.2

R
U

S
2
3

9
4
7

3
4
7

2
8

8
5
4

3
1
2

2
.4

6
5
.8

0
.9

9
8

1
5
6
2

4
6

7
3
.1

0
.9

9
8

1
5
7
4

4
7

1
.1

8
5
.4

0
.9

9
8

1
.3

H
O

K
1

4
9
8

0
2
3

2
9

7
0
9

7
1
1

3
9
.6

8
.6

0
.9

1
9

3
9

2
6
5

2
1
.5

0
.9
2
0

4
2

2
6
2

2
.5

4
5
.6

0
.9

2
0

5
.3

W
IK

3
5
1
5

0
6
7

4
2

3
7
5

9
1
2

2
4
.1

1
7
2
.6

0
.4
8
9

1
1
7
9

4
9
7
3

2
2
7
.1

0
.4

8
8

1
1
8
7

5
5
5
9

1
.3

4
5
9
.1

0
.4

9
1

2
.7

D
2
4

1
6

7
7
7

2
1
6

5
0

3
3
1

6
0
1

5
.9

5
6
.5

0
.9

9
0

3
4
7

3
0

9
9
.3

0
.9

9
0

3
4
6

3
0

1
.8

1
3
5
.1

0
.9

9
0

2
.4

T
a
b
le

1
C

o
m

p
a
riso

n
s

o
f

M
o
d

-M
ü

lln
er,

M
y
F

O
a
n

d
F

O
o
n

sev
era

l
rea

l
w

o
rld

n
etw

o
rk

s
(D

eg
:

m
ea

n
d

eg
ree,

S
ec:

ru
n

n
in

g
tim

e
in

seco
n

d
s,

Q
:

m
o
d

u
la

rity
v
a
lu

e,
#

C
:

n
u

m
b

er

o
f

co
m

m
u

n
ities,

H
:

d
en

d
ro

g
ra

m
h

eig
h
t,

M
y
F
O

M
M

:
a
ccelera

tio
n

fa
cto

r
o
f

M
o
d

-M
ü

lln
er

o
v
er

M
y
F

O
).

Mod-Müllner: An Efficient Algorithm for HCA in Large Networks 13

to this information, in parentheses, the obtained modularity is reported. Finally, accelerating
factors are given for Mod-Müllner compared to both MyFO and FO.

In table 1, we can note that the three implementations, Mod-Müllner, MyFO and FO reach
very close modularity values. The third decimal differs only of one point in five experiments,
three times in favor of MyFO. Similarly, the numbers of communities and the dendrogram
heights are quite similar between Mod-Müllner and MyFO. We can conclude that even if the
solutions obtained by the three implementations are not exactly the same, they are quite close
to one another. A fair comparison of running times can therefore be conducted on these results.

We can note that MyFO is much faster than FO: the mean acceleration factor is 1.5. This
fact corroborates results obtained on simulated networks. In the remainder of this analysis, we
will focus exclusively on MyFO results.

We can note that Mod-Müllner is always faster than FO and MyFO except for two networks:
WBS and KRO. For WBS, running times are quite similar, 11 seconds for Mod-Müllner and
10 seconds for MyFO. The case of the second network, KRO, is much more interesting. First,
we can note that this network has the greatest mean degree d = 43. It is therefore legitimate
to wonder whether this large number of neighbors has an impact on the relative performance
of Mod-Müllner over MyFO. In studying other network results, such link between mean degree
and relative performance is invalidated. For instance, networks AFS and HOK have high mean
degrees too: 33.9 for AFS and 39.6 for HOK, and yet acceleration factors are quite important:
2.2 for AFS and 2.5 for HOK. Network KRO has two other peculiarities: first, we can note that
HCA is unable to uncover a community structure for this network. The three implementations
obtain the same modularity value of 0.051 which is very low. Indeed, in [14], Newman indicates
that significant community structures lead to modularity values greater than 0.3. Secondly,
the running times (and dendrogram heights) of the three implementations are very high, much
higher than those obtained on much bigger networks. We can assume that KRO, and more
generally networks which exhibit no community structure, badly impact optimizations and
data structures used in the three implementations.

Finally, Mod-Müllner behaved very well on average: the mean acceleration factor is near
1.5, which corresponds to the value observed on the largest simulated network of the previous
section. For the two largest networks, WIK (wikipedia) and D24 (delaunay), Mod-Müllner saves
almost one minute for WIK and 45 seconds for D24. These are significant gains.

5 Conclusion

In this paper, we propose a new efficient algorithm, Mod-Müllner, for the hierarchical clustering
analysis of large networks. We show on simulated and real world networks that Mod-Müllner
achieves a 1.5 acceleration factor on average over the fastest algorithm known to date: FO. For
instance, Mod-Müllner is able to uncover the community structure of a 50 million edge network
in less than one minute, whereas the optimized implementation of FO takes 30 seconds more.
With respect to clustering quality, Mod-Müllner produces the same solutions as FO, if we except
the fine variations induced by tie-breakings. Finally, as for all hierarchical analysis algorithms,
solutions could be further improved by the well known multi-level refinement schema [17]. We
believe that the association of Mod-Müllner with the multi-level refinement allows to obtain
very quickly quality solutions.

References

1. M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.
2. M. Girvan and M. E. J. Newman. Community structure in social and biological networks.

Proceedings of the National Academy of Science, 99:7821–7826, June 2002.
3. L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Comparing community structure

identification. Journal of Statistical Mechanics: Theory and Experiment, 9:8, sep 2005.
4. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, Feb 2004.

14 Brieuc CONAN-GUEZ and Manh Cuong NGUYEN

5. S. Fortunato and M. Barthelemy. Resolution limit in community detection. in proc.

Natl.Acad.Sci.USA, 104:36, 2007.
6. U. Brandes, D. Delling, M. Gaertler, R. Grke, M. Hoefer, Z. Nikoloski, and D. Wagner.

On finding graph clusterings with maximum modularity. In proc 33rd intl workshop graph-

theoretic concepts in computer science (WG07), 2007.
7. V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities

in large networks. J. Stat. Mech., 2008.
8. P. Pons and M. Latapy. Computing communities in large networks using random walks. J.

of Graph Alg. and App. bf, 10:284–293, 2004.
9. M. E. J. Newman. Modularity and community structure in networks. Proc. Natl. Acad. Sci.

USA, 103(23):85778582, 2006.
10. Jordi Duch and Alex Arenas. Community detection in complex networks using extremal

optimization. Phys. Rev. E, 72(2):027104, Aug 2005.
11. M. E. J. Newman. Finding community structure in networks using the eigenvectors of

matrices. Phys. Rev. E, 74(3):036104, Sep 2006.
12. P. Schuetz and A. Caflisch. Efficient modularity optimization by multistep greedy algo-

rithm and vertex mover refinement. Physical Review E (Statistical, Nonlinear, and Soft Matter

Physics), 77(4):046112, 2008.
13. Michael R. Anderberg. Cluster analysis for applications. Academic Press, New York, 1973.
14. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys.

Rev. E, 69(6):066133, Jun 2004.
15. Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure in

very large networks. Phys. Rev. E, 70(6):066111, Dec 2004.
16. Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. Lecture Notes in

Computer Science, 3918(1973):29, 2011.
17. Andreas Noack and Randolf Rotta. Multi-level algorithms for modularity clustering. In

Proceedings of the 8th International Symposium on Experimental Algorithms, SEA ’09, pages
257–268, Berlin, Heidelberg, 2009. Springer-Verlag.

18. K. Wakita and T. Tsurumi. Finding community structure in mega-scale social networks.
eprint arXiv:cs/0702048, February 2007.

19. L. Danon, A. Dı́az-Guilera, and A. Arenas. The effect of size heterogeneity on community
identification in complex networks. Journal of Statistical Mechanics: Theory and Experiment,
11:10, November 2006.

20. W.H.E. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clus-
tering methods. Journal of Classification, 1(1):7–24, 1984.

21. Alexandre P. Francisco and Arlindo L. Oliveira. On community detection in very large net-
works. In Luciano F. Costa, Alexandre Evsukoff, Giuseppe Mangioni, and Ronaldo Menezes,
editors, Complex Networks, volume 116 of Communications in Computer and Information Sci-

ence, pages 208–216. Springer Berlin Heidelberg, 2011.
22. S. Lehmann and L.K. Hansen. Deterministic modularity optimization. Eur. Phys. J. B,

60(1):83–88, 2007.

Chapter 3

Self-Organizing Maps by
Difference of Convex functions

optimization

61

62 Self-Organizing Maps by Difference of Convex functions optimization

Noname manuscript No.

(will be inserted by the editor)

Self-Organizing Maps

by Difference of Convex functions optimization

Hoai An LE THI · Manh Cuong NGUYEN

Received: date / Accepted: date

Abstract We offer an efficient approach based on Difference of Convex functions (DC)

optimization for Self-Organizing Maps (SOM). We consider SOM as an optimization prob-

lem with a nonsmooth, nonconvex energy function and investigated DC Programming and

DC Algorithm (DCA), an innovative approach in nonconvex optimization framework to ef-

fectively solve this problem. Furthermore an appropriate training version of this algorithm

is proposed. The numerical results on many real-world datasets show the efficiency of the

proposed DCA based algorithms on both quality of solutions and topographic maps.

Keywords Self-Organizing Maps, DC Programming, DCA.

1 Introduction

The Self-Organizing Map (SOM), introduced by Kohonen in 1982 [33], and its variants are

a popular artificial neural network approaches in unsupervised learning. The principal goal

of an SOM is to transform an incoming signal pattern of arbitrary dimension into a low (usu-

ally one or two)-dimensional discrete map, and to perform this transformation adaptively in

a topologically ordered fashion. Through their intrinsic properties, such as preserving topo-

logical relationships between input data, and sharing similarities between nearby neurons in

an ordered network, the SOM is an elegant way to interpret complex data and an excellent

tool for data visualization and exploratory cluster analysis. SOM is primarily a data-driven

dimensionality reduction and data compression method. In data mining and machine learn-

ing, SOM is a widely used tool in the exploratory phase for various technique such as data

clustering ([2], [52], [55], [66], [68], [72]), data classification ([62], [7], [65]) and graph

mining ([51], [14], [71], [21], [23]).

Since its invention ([33]), the SOM is used as a standard analytical tool in many fields

of sciences: statistics, data mining, signal processing, control theory, financial analyses,

Hoai An LE THI ·Manh Cuong NGUYEN

Laboratory of Theoretical and Applied Computer Science - LITA EA 3097,

University of Lorraine, Ile du Saulcy, 57045 Metz, France.

hoai-an.le-thi@univ-lorraine.fr

manh-cuong.nguyen@univ-lorraine.fr

Revised version to the Data Mining and Knowledge Discovery journal (DAMI).

2 Hoai An LE THI and Manh Cuong NGUYEN

experimental physics, chemistry and medicine, and recently in organization of very large

document collections, social network, biological brain function. A variety of applications

and real-work problems use the SOM technique, among them image segmentation, vector

quantization and image compression, density modeling, gene expression analysis, text min-

ing and information management, data visualization (see [78] and references therein), ob-

ject classification, skin detection, learning robot behaviors, learning the motion map, object

recognition, map building and coordination of movements (see e.g. [1,46,4,8,56,75,77]),

recommender systems (see [19,45,63,73,13]), web-based social network ([13,75,73]), etc.

The SOM algorithm was originally proposed by Kohonen on the grounds of biolog-

ical plausibility and was formulated as a simple iterative learning procedure based on a

neural network representation ([33,34]). Using a set of m neurons, often arranged in a 2-

dimensional rectangular or hexagonal grid, each of them is associated with a position (node)

and a weight vector in the same space as input data, the SOM algorithm aims to form a

discrete topological mapping of an input data. A topology is defined on this neurons set,

through a m×m neighborhood matrix and via a decreasing function φ t of the distance be-

tween positions computed in terms of a temperature parameter σ at the learning step t , e.g.

φ t
l,k = exp

(

−

∥

∥xt
l− xt

k

∥

∥

2

2σ2

)

. (1)

Starting by attributing small random numbers for the weight vectors xl associated to

neuron l, the SOM algorithm iteratively modifies the weight vectors until the map conver-

gence. The original SOM algorithm [33] is given by (xt
l stands for the weight vector xl at the

step t)

xt+1
l

= xt
l +αtφ

t
l,k∗ (at − xt

l), k∗ = arg min
l=1...m

{

‖at − xl‖
2
}

(2)

where t is a learning step, at is a data point, the neighborhood term φ t
l,k∗ and the learning

rate αt decrease during the learning procedure; k∗ denotes the winning node, i.e. at nearest

neuron in terms of weight.

Since its introduction, various SOM algorithms have been developed. Two main ap-

proaches are often used - sequential and batch, in SOM algorithms. In the traditional se-

quential training, samples are presented to the map one at a time, and the algorithm gradu-

ally moves the weight vectors towards them. In the batch training, the data set is presented

to the SOM as a whole, and the new weight vectors are weighted averages of the data vec-

tors. The sequential approach can provides a good topographic maps. However, it strongly

depends on input order of the data and is expensive from a computational point of view.

Most of recent works are Batch SOM algorithms and based on Simulated Annealing. For

example, Hiroshi Dozono et al. [15] presented a Batch SOM algorithm using Simulated

Annealing in the batch update phase and applied in sequence analysis to extract features

of DNA sequences. Fiannaca et al. [16] proposed a fast learning method for Batch SOM

based on Simulate Annealing to adapt the learning parameters in order to avoid local min-

ima. This training technique is believed to be faster than the standard batch training. Haruna

Matsushita and Yoshifumi Nishio [53] proposed a version of Batch-Learning SOM with

weighted connections to avoid false-neighbor effects.

An alternative way to learning SOM is based on optimization techniques. The idea is

to choose an energy function of which the minimizer yields the optimal set of parameters

corresponding to the desired topographic mapping.

SOM by Difference of Convex functions optimization 3

Graepel et al. [6] proposed an efficient deterministic annealing scheme called Soft Topo-

graphic Vector Quantization (STVQ) to minimize this energy function. Later, in [20] these

authors considered an alternative mathematical formulation that is

min
uik∈{0,1}
i=1,...,n,
k=1,...,m

{

n

∑
i=1

m

∑
k=1

uik

m

∑
l=1

φ t
l,k‖xk−ai‖

2 :
m

∑
k=1

uik = 1, i = 1...,n

}

, (3)

where uik are binary assignment variables which take the value uik = 1 if the data vector ai is

assigned to node k and uik = 0 otherwise, and the neighborhood function obeys ∑m
l=1 φ t

l,k = 1

∀k. They proposed a STVQ algorithm and a generalization of STVQ using kernel functions

for solving(3).

Heskes [26] showed that the learning rule (2) cannot be derived from an energy function

when the data follow a continuous distribution, and proposed an energy function that leads

to a slightly different map, which still fulfills the topographic clustering aims. Later, in [27]

Heskes explored the links between SOM, vector quantization, and mixture modeling and

derived an EM based algorithm for the mixture model of Batch SOM.

Let A ∈ IRn×d be a matrix whose ith row is the vector ai ∈ IRd , for i = 1, ...,n and let

X := {x1, ...,xm} be the set of m weight vectors in IRd . A is the dataset of SOM and xi

(i ∈ [1..m]) are the weight vectors associated with map nodes. Let φ t be a neighborhood

function that specifies the influence of nodes at a learning step t . A measure of compatibility

between the observation ai and the weight vector xl is defined as follows:

δ t
ai,l

=
m

∑
k=1

φ t
l,k‖xk−ai‖

2, (4)

and the distances di from observation ai to the best matching neuron is given by

di = min
l=1...m

δ t
ai,l

.

Here the winning node is not only nearest neighbor as in the original SOM, but it reflects

the resemblance to neighbor nodes.

The standard approaches of Batch SOM proposed to train network by minimizing, at

each step t, the energy function which is the sum of all the distances di from observation ai

to the best matching neuron:

(BSOM) min
X∈IRm×d

{

Et(X) :=
1

m

n

∑
i=1

min
l=1...m

m

∑
k=1

φ t
l,k‖xk−ai‖

2

}

. (5)

Actually, the SOM is trained iteratively with a monotonous decrease of σ . A cooling

schedule is used to indicate how σ decreases in time. This approach is included in the

family of Batch SOM algorithms and the model (5) is named Batch SOM model or BSOM

in short.

Since its introduction, several optimization methods have been investigated for solving

BSOM. The objective function of BSOM is nonsmooth and nonconvex, hence it is very diffi-

cult to handle BSOM, in particular in large-scale setting. Due to the nonconvexity of BSOM,

the algorithms often fall into local minima and sometimes provide the inferior topology.

As mentioned in [17], comparing with the original SOM, the BSOM has several ad-

vantages: it is simple in computation, fast, and gives a better final distortion. Moreover,

there is no adaptation parameter to tune, and the results are ”deterministic reproducible”.

4 Hoai An LE THI and Manh Cuong NGUYEN

Meanwhile, the BSOM has some drawbacks : the results are quite sensitive to the initial-

ization map, as a consequence, the algorithm can conduct to a bad organization map, and

too unbalanced classes. On the contrary, the original SOM is more or less insensitive to the

initialization, at least in terms of organization and neighborhood relations.

While several heuristic methods have been investigated, there is a few deterministic ap-

proaches for solving BSOM. In this paper, we tackle BSOM by an innovative optimization

approach in nonconvex programming framework, namely Difference of Convex functions

(DC) Programming and DC Algorithm (DCA). Our work is motivated by the fact that DCA

has been successfully applied to many (smooth or nonsmooth) large-scale nonconvex pro-

grams in various domains of applied sciences, in particular in Machine Learning for which

they provide quite often a global solution and proved to be more robust and efficient than

the standard methods (see, e.g. [37] - [47], [9], [67], [76] and the list of references in [36]).

Capitalizing on DCA, we aim to design a fast and scalable DCA based algorithm for

solving the BSOM problem so that the algorithm gives not only a good classification but

also a well organized map. In other words, it should overcome the drawbacks of both original

SOM et BSOM algorithms and realizes a good trade-off between the rapidity and scalability

on one hand and the quality of map as well as of the classification on another hand.

Our contributions are two-fold. Firstly, using elegant matrix representations we refor-

mulate the BSOM problem as a DC program and develop a simple DCA scheme, named

DCASOM, which is very computationally inexpensive: DCASOM requires only sums and

scalar multiplications of vectors. Secondly, we propose a training procedure for the DCA-

SOM with an appropriate cooling schedule. According to the efficiency of DCASOM, our

training DCASOM needs only a few iterations to get the map convergence, hence we adapt

a suitable cooling schedule to reduce rapidly the temperature.

The rest of the paper is organized as follows. Section 2 is devoted to the DC program-

ming and DCA for solving BSOM while Section 3 presents a training version of DCASOM.

Numerical experiments are reported in Section 4 and Section 5 concludes the paper.

2 Solving the BSOM model by DC Programming and DCA

2.1 Outline of DC Programming and DCA

DC programming and DCA which have been introduced by Pham Dinh Tao in 1985 and ex-

tensively developed by Le Thi Hoai An and Pham Dinh Tao since 1994 (see e.g. [38],[60])

constitute the backbone of smooth/nonsmooth nonconvex programming and global opti-

mization. They address the problem of minimizing a function f which is the difference of

two convex functions on the whole space IRd or on a convex set C ⊂ IRd .

A function f : R
n −→ R∪{+∞} is lower semicontinuous (lsc) at x0 if ∀ε > 0 ∃η > 0

such that ‖x− x0‖ ≤ η =⇒ f (x) > f (x0)− ε. f is lsc on R
n if f is lsc at every point of R

n .
Denote by Γ0(IR

d) the ”convex cone” of all proper lower semicontinuous convex functions

on IRd . Generally speaking, a DC program is an optimization problem of the form :

α = inf{ f (x) := g(x)−h(x) : x ∈ IRd} (Pdc)

with g,h ∈ Γ0(IR
d). Such a function f is called a DC function, and g− h a DC decomposi-

tion of f while g and h are the DC components of f . The convex constraint x ∈C can be

incorporated in the objective function of (Pdc) by using the indicator function on C denoted

by χC which is defined by χC(x) = 0 if x ∈C, and +∞ otherwise:

inf{ f (x) := g(x)−h(x) : x ∈C}

SOM by Difference of Convex functions optimization 5

= inf{χC(x)+g(x)−h(x) : x ∈ IRd}.

The vector space of DC functions on IRd , denoted by DC (IRd) := Γ0(IR
d)−Γ0(IR

d),is quite

large to contain almost real life objective functions and is closed under all the operations

usually considered in optimization.

Let us denote 〈x,y〉 the Euclidean inner product of vectors x and y. Let

g∗(y) := sup{〈x,y〉−g(x) : x ∈ IRd}

be the conjugate function of a convex function g. Then, the following program is called the

dual program of (Pdc):

αD = inf{h∗(y)−g∗(y) : y ∈ IRd}. (Ddc)

One can prove that α = αD, and there is the perfect symmetry between primal and dual

DC programs: the dual to (Ddc) is exactly (Pdc) ([59]).

For a convex function θ , the subdifferential of θ at x0 ∈ dom θ := {x ∈ IRd : θ (x0) <
+∞}, denoted by ∂θ (x0), is defined by

∂θ (x0) := {y ∈ IRd : θ (x)≥ θ (x0)+ 〈x− x0,y〉,∀x ∈ IRd}. (6)

The subdifferential ∂θ (x0) generalizes the derivative in the sense that θ is differentiable at

x0 if and only if ∂θ (x0) ≡ {5xθ (x0)}. Recall the well-known property related to subdiffer-

ential calculus of a convex function θ :

y0 ∈ ∂θ (x0)⇐⇒ x0 ∈ ∂θ ∗(y0)⇐⇒ 〈x0,y0〉= θ (x0)+θ ∗(y0). (7)

The complexity of DC programs resides, of course, in the lack of practical global opti-

mality conditions. Local optimality conditions are then useful in DC programming.

A point x∗ is said to be a local minimizer of g− h if g(x∗)− h(x∗) is finite and there

exists a neighbourhood U of x∗ such that

g(x∗)−h(x∗)≤ g(x)−h(x), ∀x ∈U . (8)

The necessary local optimality condition for (primal) DC program (Pdc) is given by

/0 6= ∂h(x∗)⊂ ∂g(x∗). (9)

The condition (9) is also sufficient (for local optimality) in many important classes of DC

programs (see [38]).

A point x∗ is said to be a critical point of g−h if

∂h(x∗)∩∂g(x∗) 6= /0. (10)

The relation (10) is in fact the generalized KKT condition for (Pdc) and x∗ is also called a

generalized KKT point.

6 Hoai An LE THI and Manh Cuong NGUYEN

2.1.1 Philosophy of DCA

Based on local optimality conditions and duality in DC programming, the DCA consists

in constructing of two sequences {xk} and {yk} of trial solutions of the primal and dual

programs respectively, such that the sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are

decreasing, and {xk} (resp. {yk}) converges to a primal feasible solution x∗ (resp. a dual

feasible solution y∗) satisfying local optimality conditions and

x∗ ∈ ∂g∗(y∗), y∗ ∈ ∂h(x∗). (11)

It implies, according to (7) that x∗and y∗ are critical points of g−h and h∗−g∗ respectively.

The main idea behind DCA is to replace in the primal DC program (Pdc), at the current

point xk of iteration k, the second component h with its affine minorization defined by

hk(x) := h(xk)+ 〈x− xk,yk〉, yk ∈ ∂h(xk)

to give birth to the primal convex program of the form

(Pk) inf{g(x)−hk(x) : x ∈ IRn} ⇔ inf{g(x)−〈x,yk〉 : x ∈ IRd}

the optimal solution of which determines xk+1.
Dually, a solution xk+1 of (Pk) is then used to define the dual convex program (Dk+1)

obtained from (Ddc) by replacing g∗ with its affine minorization defined by

(g∗)k(y) := g∗(yk)+ 〈y− yk,xk+1〉, xk+1 ∈ ∂g∗(yk)

to obtain the convex program

(Dk+1) inf{h∗(y)− [g∗(yk)+ 〈y− yk ,xk+1〉] : y ∈ IRd}

the optimal solution of which determines yk+1. The process is repeated until convergence.

DCA performs so a double linearization with the help of the subgradients of h and g∗.
According to relation (7) it is easy to see that the optimal solution set of (Pk) (resp. (Dk+1))
is nothing but ∂g∗(yk) (resp. ∂h(xk)). Hence, we can say that DCA is an iterative primal-dual

subgradient method that yields the next scheme: (starting from given x0 ∈ dom ∂h)

yk ∈ ∂h(xk); xk ∈ ∂g∗(yk), ∀k ≥ 0. (12)

A deeper insight into DCA has been described in [38]. The generic DCA scheme is shown

below.

DCA scheme

Initialization: Let x0 ∈ IRd be a guess, k← 0.
Repeat

– Calculate yk ∈ ∂h(xk)
– Calculate xk+1 ∈ ∂g∗(yk), which is equivalent to

xk+1 ∈ argmin{g(x)−h(xk)−〈x− xk,yk〉 : x ∈ IRd} (Pk)

– k← k +1

Until convergence of
{

xk
}

.

SOM by Difference of Convex functions optimization 7

2.1.2 DCA’s convergence properties

Convergence properties of DCA and its theoretical basis can be found in ([37,38,60]). For

instance it is important to mention that

– DCA is a descent method, without linesearch but with global convergence.

– If the optimal value α of problem (Pdc) is finite and the infinite sequences{xk} and {yk}
are bounded, then every limit point x∗ (resp. y∗) of the sequence {xk} (resp. {yk}) is a

critical point of g−h (resp. h∗−g∗), i.e. ∂h(x∗)∩∂g(x∗) 6= /0 (resp. ∂h∗(y∗)∩∂g∗(y∗) 6=
/0).

– DCA has a linear convergence for general DC programs.

The construction of DCA involves DC components g and h but not the function f itself.

Hence, for a DC program, each DC decomposition corresponds to a different version of

DCA. Since a DC function f has an infinitely many DC decompositions which have crucial

impacts on the qualities (speed of convergence, robustness, efficiency, globality of computed

solutions,. . .) of DCA, the search of a ”good” DC decomposition is important from an

algorithmic point of views. How to develop an efficient algorithm based on the generic

DCA scheme for a practical problem is thus a judicious question to be studied, the answer

depends on the specific structure of the problem being considered.

The search of a good DC decomposition should be based on the structure of the DC

function f and the closed convex constraint set C, there is no common formula of DC de-

composition for general DC programs. In this regard, let us point out below two examples

of interesting DC decompositions.

2.1.3 Examples of DC decompositions

Consider the constrained DC program of the form

inf{ f (x) : x ∈ C} (P)

where C ⊂ IRd is a nonempty closed convex set and f is a real-valued twice continuously

differentiable function on IRd . This formulation covers many problems in Machine Learn-

ing.

Let λ1(x) (resp. λn(x)) the smallest (resp. largest) eigenvalue of ∇2 f (x). It is easy to

verify that

a) For all η ≥max{0,max{−λ1(x), x ∈C}} the functions 1
2

η‖x‖2 and 1
2
η‖x‖2 + f (x) are

convex on C.
b) For all ρ ≥ max0,max{λn(x), x ∈ C}} the functions 1

2 ρ‖x‖2 and 1
2 ρ‖x‖2− f (x) are

convex on C.

It is clear that such η and ρ exist if C is bounded. More generally, if f is differentiable

with Lipschitz derivative on C, then there are also η and ρ satisfying a) and b) respectively.

Hence we have the following two DC decompositions of f :

g(x) := χC(x)+
1

2
η‖x‖2 + f (x); h(x) :=

1

2
η‖x‖2 (13)

and

g(x) := χC(x)+
1

2
ρ‖x‖2; h(x) :=

1

2
ρ‖x‖2− f (x). (14)

8 Hoai An LE THI and Manh Cuong NGUYEN

The DCA applied to (P) with decomposition (13) and/or (14) can be described as fol-

lows:

Algorithm DCAP1: Let x0 be given in IRd . Set k← 0.
Repeat

– Calculate xk+1 by solving the convex program

min

{

f (x)+
1

2
η‖x− xk‖2 : x ∈C

}

, (15)

– k← k +1

Until convergence of
{

xk
}

.
One recognizes in (15) the extension of the proximal point algorithm to nonconvex pro-

gramming.

Algorithm DCAP2: Let x0 be given in IRd . Set k← 0.
Repeat

– Calculate yk = ∇
(

1
2
ρ‖.‖2− f (.))(xk

)

= ρxk−∇ f (xk)

– Calculate xk+1 by solving the convex program

min

{

1

2
ρ‖x‖2−〈x,ρxk−∇ f (xk)〉 : x ∈C

}

, (16)

i.e. xk+1 = Pro jC(xk− 1
ρ ∇ f (xk)).

– k← k +1

Until convergence of
{

xk
}

.
Here, Pro jC stands for the orthogonal projection on C. Note that the resulting convex

program (Pk) is actualy given by

(Pk) min{〈x,∇ f (xk)〉+
1

2
ρ‖x‖2 +

1

2
ρ‖xk‖2−ρ〈x,xk〉+ f (xk)−〈xk,∇ f (xk)〉 : x ∈C}.

That can be reformulated in the following two forms

min{〈x,∇ f (xk)〉+
1

2
ρ‖x− xk‖2 + f (xk)−〈xk ,∇ f (xk)〉 : x ∈C}, (17)

that is equivalent to (15) and

min{
1

2
ρ‖x− (xk−

1

ρ
∇ f (xk))‖2 + f (xk)−

1

2ρ
‖∇ f (xk)‖2 : x ∈C}, (18)

which is equivalent to (16).

Hence DCAP2 is exactly the proximal regularized subgradient algorithm (via (17)) or

the subgradient projection algorithm (via (18)) for nonconvex programming.

As indicated above, we are greatly interested in the choice of DC decompositions: what

is “the best” among (13) and (14) ? The answer depends on both specific structures of C

and f . In fact, the performance of the DCA depends upon that of the algorithm for solv-

ing convex programs (15) and (16). For certain problems, for example, box constrained

quadratic programming and ball constrained quadratic programming, Algorithm DCAP2 is

greatly less expensive than Algorithm DCAP1, because the orthogonal projection onto C in

SOM by Difference of Convex functions optimization 9

these cases is given in explicit form (see [60]). In practice, when f is differentiable and the

projection on C can be inexpensively determined, the use of DCAP2 is very recommended.

For a complete study of DC programming and DCA the reader is referred to [37,38,59,

60], and the references therein. The solution of a nonconvex program (Pdc) by DCA must

be composed of two stages: the search of an appropriate DC decomposition of f and that of

a good initial point.

It is worth pointing out that, with suitable DC decompositions, DCA generates most of

standard methods in convex and nonconvex programming. Again, one recovers a version

of DCA in standard methods widely used by the research community in machine learn-

ing. As mentioned in [44], the three well-known methods EM (Expectation-Maximization)

([12]), SLA (Succesive Linear Approximation) ([5]) and CCCP (Convex-Concave Proce-

dure) ([79]) are particular cases of DCA. In addition, these three methods, without proof of

convergence, relate only differentiable functions.

In the last years DCA has been successfully applied in several studies in Machine Learn-

ing e.g., for SVM-based Feature Selection [40], for improving boosting algorithms [35], for

implementing-learning [47,67,48], for Transductive SVMs [9], for unsupervised clustering

[39,41,42,44], and for diversity data mining [43], etc (see [36] for a more complete list of

references).

In this paper, the objective function Et of (BSOM) is not differentiable and the above

DC decompositions can not be used. Despite the non-differentiability of Et , exploiting its

special structure we can achieve a suitable and natural DC decomposition that results in a

simple and elegant DCA scheme as shown below.

2.2 A DC formulation of (BSOM)

In what follows we will use the matrix presentation to simplify related computations in our

algorithms.

The variables are then X ∈ IRm×d whose ith row Xi is equal to the vector xi ∈ IRd , for i =
1,2, ...,m. Let β be a vector in IRm and denote by D(β) the corresponding diagonal matrix,

say the ith diagonal term of this matrix is ith component of β . The Euclidean structure of

the matrix vector space IRm×d is defined with the help of the Frobenius product:

〈X ,Y 〉= Tr(XTY) =
m

∑
i=1

〈Xi,Yi〉, (19)

and its Euclidean norm ‖X‖2 = ∑m
i=1〈Xi,Xi〉= ∑m

i=1 ‖Xi‖
2. Hence,

m

∑
i=1

βi〈Xi,Yi〉=
m

∑
i=1

〈Xi,βiYi〉= 〈X ,D(β)Y 〉,

and
m

∑
i=1

βi〈Xi,Xi〉= 〈X ,D(β)X〉.

Let us consider now the BSOM model, for a given learning step t , in an equivalent formula-

tion where 1
m

is replaced by 1
2

for simply the computations in DCA:

(BSOM) min
X∈IRm∗d

{

Ft (X) :=
1

2

n

∑
i=1

min
l=1...m

m

∑
k=1

φ t
l,k‖xk−ai‖

2

}

. (20)

10 Hoai An LE THI and Manh Cuong NGUYEN

In (BSOM) the neighborhood function φ t is computed in term of t according to the initial

map (at the beginning of each learning step t), say the term φ t
l,k is given in each energy

function F t(X) to be minimized by DCA.

We first find a DC decomposition of Ft (X). For simple presentation we write the func-

tion F t(X) in the form

F t(X) :=
1

2

n

∑
i=1

min
l=1...m

δ t
ai,l

(X)

where

δ t
ai,l

(X) :=
m

∑
k=1

φ t
l,k‖xk−ai‖

2.

Since

min
l=1...m

δ t
ai,l

(X) =
m

∑
r=1

δ t
ai,r

(X)− max
l=1...m

∑
r 6=l

δ t
ai,r

(X),

we have

Ft (X) : =
1

2

n

∑
i=1

min
l=1...m

δ t
ai,l

(X) (21)

=
1

2

n

∑
i=1

m

∑
r=1

δ t
ai,r

(X)−
1

2

n

∑
i=1

max
l=1...m

∑
r 6=l

δ t
ai,r

(X). (22)

From the definition, the function δ t
ai,r(X) is convex. Consequently the functions

Gt (X) :=
1

2

n

∑
i=1

m

∑
r=1

δ t
ai,r

(X) (23)

and

Ht (X) :=
1

2

n

∑
i=1

max
l=1...m

∑
r 6=l

δ t
ai,r(X) (24)

are convex. Hence the following DC decomposition of F t(X) seems to be natural:

Ft(X) = Gt (X)−Ht (X). (25)

Let φ t
+ be a vector in IRm such that

(

φ t
+

)

k
= ∑m

r=1 φ t
r,k . We have, after simple calculations:

Gt (X) =
n

2
〈X ,D(φ t

+)X〉−n〈X ,D(φ t
+)A〉+

1

2

(

m

∑
k=1

φ t
+k

)

‖A‖2, (26)

where A ∈ IRm×d is given by Ai := 1
n ∑n

j=1 a j. Hence Gt (X) is a strongly convex quadratic

function. This structure allows us to design a very simple DCA scheme.

Determining the DCA scheme applied to (25) amounts to computing the two sequences

{X s} and {Y s} in IRm×d such that Y s ∈ ∂Ht (X s),X s+1 ∈ ∂(Gt)∗(Y s). We shall present below

the computation of ∂Ht (X) and ∂(Gt)∗(Y).

• Calculation of ∂Ht

SOM by Difference of Convex functions optimization 11

For i = 1, ...,n and l = 1, ...,m let Ht
i,l and Ht

i be the functions defined by

Ht
i,l(X) := ∑

r 6=l

δ t
ai,r

(X), Ht
i (X) = max

l=1...m
Ht

i,l(X). (27)

Hence

Ht (X) =
1

2

n

∑
i=1

Ht
i (X) (28)

and then

Y ∈ ∂Ht (X)⇔Y =
1

2

n

∑
i=1

Y [i] with Y [i] ∈ ∂Ht
i (X) for i = 1, ...,n.

Let Ki(X) = {li ∈ {1, ...,m} : |Ht
i,li

(X) = Ht
i (X) := max

l=1...m
Ht

i,l (X)}. Then the subdifferential

of Ht
i is computed as ([28]):

∂Ht
i (X) = co{∪li∈Ki (X)∂Ht

i,li
(X)}, (29)

where co stands for the convex envelope.

For computing ∂Ht
i,l we express the convex function Ht

i,l (X) as

Ht
i,l(X) :=

m

∑
k=1

(

∑
r 6=l

φ t
r,k

)

‖xk−ai‖
2 =

m

∑
k=1

φ t
l
‖xk−ai‖

2, (30)

where φ t
l
∈ IRm is given by

(

φ t
l

)

k
:= ∑

r 6=l

φ t
r,k = φ t

+k−φ t
l,k. (31)

Hence, Ht
i,l is differentiable and

∇Ht
i,l(X) = 2D(φ t

l
)(X −A[i]), (32)

where A[i] ∈ IRm×d is the matrix whose rows are all equal to ai. According to (29) Y [i] ∈
∂Ht

i (X) is computed by

Y [i] = ∑
li∈Ki (X)

λ i
l ∇Ht

i,l(X) (33)

with λli ≥ 0 and ∑li∈Ki (X) λli = 1. In particular we can chose, for a l∗i ∈ Ki(X), λl∗
i

= 1 and

λli = 0 ∀λli ∈ Ki(X) : li 6= l∗i , and then

Y [i] = ∇Ht
i,l(X) = 2D(φ t

l∗i
)(X −A[i]).

Finally, at each iteration s, Y s ∈ ∂H(X s) is computed as

Y s =
n

∑
i=1

D(φ t
l∗i
)(X s−A[i]). (34)

• Calculation of ∂G∗

12 Hoai An LE THI and Manh Cuong NGUYEN

Since Gt is a strongly convex quadratic function and its conjugate (Gt)∗ is differentiable,

we deduce from (7) that

X s+1 = ∇(Gt)∗(Y s)⇔Y s = ∇Gt (X s+1)

⇔ Y s = nD(φ t
+)X s+1−nD(φ t

+)A). (35)

Therefore

= D

(

(φ t
+)−1

n

)

Y s +A. (36)

More precisely, the k− th row of X s+1 is determined as

X s+1
k

=
1

n
(φ t

+)kY
s
k +Ak.

According to (34) and (31) we have

X s+1
k

=
1

n(φ t
+)k

[

n

∑
i=1

(

φ t
+)k− (φ t

l∗i ,k) j

)

(X s
k −ai)

]

+
1

n

n

∑
i=1

ai

or again

X s+1
k

= X s
k +

∑n
i=1 (φ t

l∗i ,k)(ai−X s
k)

n(φ t
+)k

. (37)

Thus DCA for solving the BSOM problem consists in determining, at each iteration s,

l∗i = arg max
l=1,...,m

Ht
i,l (X

s) = arg min
l=1,...,m

m

∑
k=1

φ t
l,k‖x

s
k−ai‖

2, for each i = 1, . . . ,m,

and then computing X s+1 following (37). The algorithm can be described as follows

• DCA for BSOM model (t fixed)

DCASOM

initializations: Let ε > 0 be given, X0 be an initial point in IRm×d and set s := 0.

Compute the neighborhood terms φ t
l,k for l,k = 1, . . . ,m.

repeat

1. Determine

l∗i = arg min
l=1,...,m

m

∑
k=1

φ t
l,k‖X

s
k −ai‖

2, for each i = 1, . . . ,m,

2. Calculate X s+1
k

, for k = 1, . . . ,m, as

X s+1
k = X s

k +
∑n

i=1 (φ t
l∗i ,k)(ai−X s

k)

n(φ t
+)k

.

3. s = s+1.
until‖ X s+1−X s ‖≤ ε ‖ X s ‖.

Discussion: the choice of the DC decomposition G−H in (25) allows us to interpret the

DCASOM in an interesting point of view. First, we observe that the first step of DCASOM

SOM by Difference of Convex functions optimization 13

algorithm is nothing else searching the winning nodes of each ai, while the computation of

X s+1 can be regarded as

X s+1
k

=

(

1−
∑n

i=1 φ t
l∗i ,k

n(φ t
+)k

)

X s
k +

∑n
i=1 φ t

l∗i ,kai

n(φ t
+)k

=

(

1−
∑n

i=1 φ t
l∗i ,k

n(φ t
+)k

)

X s
k +

∑n
i=1 φ t

l∗i ,k

n(φ t
+)k

·
∑n

i=1 φ t
l∗i ,kai

∑n
i=1 φ t

l∗i ,k

= (1−α)X s
k +αXnew

centre−k, (38)

where α :=
∑n

i=1 φt
l∗
i
,k

n(φt
+)k

< 1 and Xnew
centre−k

stands for the gravity centre of the new cluster k

after the step 1 (it is exactly the solution given by the step 2 of the basic Bat SOM al-

gorithm, i.e. a K-means like algorithm for BSOM model). Thus, from (38) we see that

X s+1
k

is in fact a convex combination of X s
k and Xnew

centre−k. On another hand, by expressing

X s+1
k

= X s
k
+ α(Xnew

centre−k
−X s

k
) we see that the sequence X s

k
constructed by DCASOM fol-

lows the displacement direction (Xnew
centre−k

−X s
k). This difference between DCASOM and a

K-means like algorithm comes from the fact that, at the step of updating the new centres,

instead of minimizing the objective Ft (X) as K-mean, DCASOM minimizes the convex

majorant function Gt (X)−〈Y k,X〉 of Ft (X). This procedure prevents DCASOM converg-

ing prematurely to a bad solution while starting from a bad initial map.

DCASOM is very simple and inexpensive, it requires only elementary operations on

vectors. The complexity of one iteration of DCASOM is determined as follows.

The computation of the neighborhood matrix φ t need O(m2) operations. For the step 1,

the computations of X s −A[i] and ‖X s
k
− ai‖

2 for k = 1, . . . ,m, i = 1, . . . ,n need O(nmd)
operations and the determination l∗i = argminl=1,...,m ∑m

k=1 φ t
l,k‖X

s
k −ai‖

2, i = 1, . . . ,n (with

‖X s
k − ai‖

2 being given) requires O(nm2) operations. The calculation of X s+1 in the step 2

needs O(nmd) operations. Thus, the complexity of DCASOM is O(m2)+ iterDCA
t ·(O(nmd)+

O(nm2)), where iterDCA
t denotes the number of iterations of DCASOM (for a given t).

3 A training version for DCASOM: DCASOM-t

The SOM is usually trained iteratively with a monotonous decrease of σ . A cooling schedule

is used to indicate how σ decreases in time. At the tth learning step, a new temperature value

of σ is often computed according to the cooling schedule

σ = σmax

(

σmin

σmax

) t−1
Niter−1

. (39)

Here, Niter is the number of learning steps and [σmin,σmax] is the temperature variation

interval. In existing SOM algorithms Niter should be a very large number (Niter ≥ 5000),i.e.

σ is decreasing slowly to avoid local minima and get a good map.

In this section, we propose a training version for DCASOM based on an efficient cooling

schedule of σ . More precisely, DCASOM is applied NDCA
iter times with σ being computed by

σ =











σmax if t = 1,
σmin if t = NDCA

iter ,

σmax

(

σmin
σmax

)
t−1

NDCA
iter

−1 −ξ otherwise

, (40)

14 Hoai An LE THI and Manh Cuong NGUYEN

where ξ > 0 is a sufficiently small number. The algorithm, called DCASOM-t, can be de-

scribed as follows:

DCASOM-t

Let X0 be an initial point in IRm×d . Set t = 1. Choose a positive value for σmax,σmin, ξ ,

NDCA
iter , and εt .

repeat: (learning step t)

a. calculate σ via (40) and set s = 0. Compute the neighborhood matrix φ t via (1).

b. repeat:

1. Determine

l∗i = arg min
l=1,...,m

m

∑
k=1

φ t
l,k‖X

s
k −ai‖

2, for each i = 1, . . . ,m,

2. Calculate X s+1
k

, for k = 1, . . . ,m, as

X s+1
k = X s

k −
∑n

i=1 (φ t
l∗i ,k)(X

s
k −ai)

n(φ t
+)k

.

3. s = s+1.
until‖ X s+1−X s ‖≤ εt ‖ X s ‖.

c. t = t +1.

until T > NDCA
iter .

On contrary to several learning SOM algorithms, in DCASOM-t we set a very small

value to NDCA
iter (NDCA

iter = 3 in our experiments). The STOP condition at each iteration t (say,

the value of εt) may be different. The complexity of DCASOM-t is

NDCA
iter · (O(m2)+ iterDCA

t · (O(nmd)+O(nm2)).

4 Numerical Experiments

We compare our algorithm with BSOM-t, a standard Batch SOM algorithm. BSOM-t per-

forms, at each learning step, one iteration of a K-means like algorithm for the BSOM prob-

lem (5). The algorithm is described as follows.

BSOM-t

Initialization: Let X0 be an initial point in IRm×d . Set t = 0 and choose a positive values for

σmax,σmin, and Niter .

repeat: (learning step t)

a. Calculate σ via (40) in which NDCA
iter is replaced by Niter , and calculate the neighbor-

hood matrix φ t via (1).

b. Determine

l∗i = arg min
l=1...m

m

∑
k=1

φ t
l,k‖X

t
k−ai‖

2, ∀i = 1, . . . ,n.

c. Recalculate the weight vectors X t+1
k

, for k = 1, ...,m as

X t+1
k ∈ arg min

X∈IRm×d

1

m

n

∑
i=1

m

∑
k=1

φ t
l∗i ,k‖Xk−ai‖

2, i.e. X t+1
k =

∑n
i=1 φ t

l∗i ,kai

∑n
i=1 φ t

l∗i ,k

.

SOM by Difference of Convex functions optimization 15

d. t=t+1.

until t > Niter .

Similar to DCASOM, in BSOM-t the computation of the neighborhood terms needs

O(m2) operations, the assignment step runs in time O(nmd) + O(nm2) and the recalculation

of the weight vectors runs in time O(nd) + O(m2d). Therefore, the complexity of BSOM is

O(m2) + O(nmd) + O(nm2) + O(m2d), and that of BSOM-t is

Niter · (O(m2)+O(nmd)+O(nm2)+O(m2 d).

Since Niter should be much larger than iterDCA
t NDCA

iter , BSOM-t is much more expensive than

DCASOM-t, especially when m (the map size) is large.

All the experiments have been conducted on a Intel(R) Core(TM) i7 CPU 2 × 2.20 Ghz

with 4 Gb of memory.

4.1 The datasets

Numerical experiments were performed on several real world datasets. The small datasets

named Spaeth Cluster Analysis (Spaeth in short) can be found at the address http://people.sc.fsu.edu/∼jburkar

dt/datasets/spaeth. The datasets A1 Set, A2 Set and A3 Set can be found at http://cs.joensuu.fi/sipu/datasets

while Glass, Inosphere, Letter Recognition (Letter) and Color Moments of Corel Image

Features (ColorM) are taken from UCI Machine Learning Repository. Sensor dataset is ex-

tracted from the Sensor Stream Data Mining Repository in [64]. The description in details

of the datasets is presented in Table 1.

Table 1 The description of datasets

dataset note # element # dimension

Spaeth05 S05 55 2

Spaeth06 S06 50 2

Spaeth07 S07 52 2

Spaeth08 S08 80 2

Spaeth10 S10 49 56

Spaeth13 S13 96 5

Spaeth09 S09 112 18

Glass GLA 214 10

Inosphere INO 351 34

A1 Set A1S 3,000 2

A2 Set A2S 5,250 2

A3 Set A3S 7,500 2

Letter LET 20,000 16

ColorM COL 68,040 9

Sensor SEN 1,169,260 5

4.2 Experiment setting

We are interested in the quality of optimal solutions (to the clustering task), the quality

of maps (to the visualization task) as well as the rapidity of algorithms (CPU time). For

this purpose we evaluate BSOM-t and DCASOM-t via four criteria: the objective value that

16 Hoai An LE THI and Manh Cuong NGUYEN

reflects the quality of clustering (this is the SOM Distortion Measure), the Topographic Error

[32], the Kaski-Lagus measure [30], and the CPU times (in seconds).

The Topographic Error is usually used to measure the topology preservation. For each

data sample, we determine the best and second-best matching neurons. An error occurs if

these neurons are not adjacent on the map lattice. The total error on all data samples is then

normalized to a range form 0 to 1, where 0 corresponds to a perfect topology preservation.

The Kaski-Lagus measure combines quantization and topographic errors to evaluate the

goodness of a SOM and to compare different SOMs. This measure can be used to choose

maps that do not fold unnecessarily in the input space while representing the input data

distribution [30]. For each data item ai, let xbi be the best matching reference vector and xsi

be the second nearest reference vector of ai. We compute the distance from ai to xsi passing

first from ai to xbi, and thereafter along the shortest path to xsi through a series of reference

vectors. Each reference vector in the series must belong to a neuron that is an immediate

neighbor of the previous neuron. Hence, it measures both the accuracy in representing the

data and the continuity of the data-to-grid mapping.

The temperature parameterσ decreases from σmax = 10 to σmin = 0.2 for both DCASOM-

t and BSOM-t. As indicate above, we set NDCA
iter := 3 (i.e. DCASOM is performed 3 times).

Whereas, BSOM-t is performed 5000 learning steps to get a good result (the map is very

bad when Niter < 5000).

In DCASOM-t we set εt = 10−2, 10−6 and 10−8 for t = 1,2,3 respectively, and ξ = 0.2.

We test the algorithms on different map dimensions.

Our experiment is composed of three parts. In the first part we compare the two algo-

rithms on all datasets in case of small map dimensions. In the second experiment we show

how these algorithms scale with the map dimensions, and in the last experiment we study

the sensitivity of DCASOM to the initial map X0.

In the two first experiments the initial map X0 is chosen as follows. Let a =(1/n)∑n
i=1 ai

be the gravity center of {a1, . . . ,an}. Then we set (e stands for the vector of one and [m]
denotes the integer part of m))

X0
i = ā−

(

[m]

2
− i

)

·
1

2
e, for 1≤ i≤

[m]

2
, X0

i = ā +

(

i−
[m]

2

)

·
1

2
e, for

[m]

2
< i≤m,

(41)

i.e., the neighborhood distances between the map nodes are equal to 0.5.

4.3 Experiment 1: comparison between DCASOM-t and BSOM-t

First, as an example to show the quality of the map, on the Figure 1 we present the maps

provided by DCASOM-t and BSOM-t on the dataset Spaeth 05 with map’s size (5×7). We

observe that, with only 3 iterations, DCASOM-t gives better results than BSOM-t on both

objective value and topographic map.

In Table 2, we present the comparative results of DCASOM-t and BSOM-t in terms of

objective values, Kaski Measure and Topographic Error with the map dimension (3× 5)
and (5× 5). The CPU times of the methods are reported in the Table 4. In the tables, bold

symbols correspond to the best results.

Some of these datasets present clusters where real clusters are known. Hence we can

compute the Percentage of the Well Placed Objects, denoted PWPO, to evaluate the per-

formance of the algorithms in terms of clustering task. After applying the SOM training

algorithm, each output unit of SOM training is associated with a group of data samples.

SOM by Difference of Convex functions optimization 17

Fig. 1 Topographic map (5 x 7) of Spaeth 05; σmax = 10; σmin = 0.2; a) DCASOM-t: Niter = 3, Obj. =

135.454, Kaski = 7.672; b) BSOM-t: Niter = 1000, Obj. = 310.829, Kaski = 10.763.

These m output units are then grouped onto K clusters (K is equal to the real number of

clusters in the dataset) via a K-ways clustering algorithm (here we use GKMSSC ([44])),

and finally data samples are partitioned accordingly.

In Table 3 we report PWPO given by each algorithm for three cluster datasets.

For a more visible comparative results, we use the curves in Figures 2 - 5 to describe the

results given in Tables 2.

Table 2 Objective value, Kaski Measure and Topographic Error of DCASOM-t (1) and BSOM-t (2) on each

dataset.

Data Map size (3 x 5) Map size (5 x 5)

Obj. value Kaski Topo. Err.(%) Obj. value Kaski Topo. Err.(%)

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

S05 598.34 655.77 20.48 20.58 14.55 5.45 218.65 226.13 10.52 10.70 16.36 14.55

S06 375.54 422.53 16.60 19.12 6.00 18.00 156.79 195.31 10.23 13.02 22.00 26.00

S07 606.87 633.73 22.84 24.23 25.00 38.46 278.00 287.44 13.95 17.55 30.77 38.46

S08 930.16 1,085.91 24.78 28.96 23.75 36.25 592.21 581.77 15.95 16.05 17.50 26.25

S10 134.63 158.77 4.86 6.18 30.61 63.27 94.50 129.49 4.47 5.09 10.82 57.14

S13 1,573.59 1,578.95 29.86 31.31 40.63 44.79 285.19 288.81 12.28 21.44 36.46 51.04

S09 1,025.15 1,073.89 12.60 14.01 24.59 28.69 786.81 977.95 11.76 14.05 36.07 45.08

GLA 197.49 217.52 2.56 3.36 25.70 29.91 128.63 153.50 2.35 2.79 37.85 44.39

INO 1,445.02 1,452.40 6.34 6.41 21.65 19.37 1,240.07 1,351.42 6.51 6.32 33.90 35.33

A1S 287.39 353.27 1.38 1.36 24.93 29.93 135.80 135.91 1.03 1.24 23.63 29.17

A2S 1,092.17 1,089.11 1.47 1.52 0.65 3.39 537.11 514.55 1.05 1.40 11.16 28.88

A3S 2,544.79 2,592.01 1.80 2.38 6.16 25.36 1,331.41 1303.49 1.42 1.52 8.93 16.89

LET 748,054.0 768,276.0 49.37 56.57 46.12 70.35 635,048.0 627,985.0 45.74 48.67 55.63 61.45

COL 255,782.0 254,559.0 8.07 7.90 51.28 41.21 212,702.0 212,402.0 7.62 8.03 56.41 58.96

SEN 1,2066.9 12,353.2 0.37 0.34 13.74 14.1 8,793.0 8,946.83 0.33 0.33 39.18 41.48

18 Hoai An LE THI and Manh Cuong NGUYEN

Table 3 PWPO of DCASOM-t (1) and BSOM-t (2).

Data Map size (3 x 5) Map size (5 x 5)

(1) (2) (1) (2)

GLA 86.32 85.76 88.89 84.62

INO 86.92 85.98 89.25 88.79

SEN 85.95 87.28 85.32 83.56

Fig. 2 Topographic Error of DCASOM-t and BSOM-t on all datasets, map size (3× 5)

Fig. 3 Kaski Measure of DCASOM-t and BSOM-t on all datasets, map size (3× 5)

SOM by Difference of Convex functions optimization 19

Fig. 4 Topographic Error of DCASOM-t and BSOM-t on all datasets, map size (5× 5)

Fig. 5 Kaski Measure of DCASOM-t and BSOM-t on all datasets, map size (5× 5)

20 Hoai An LE THI and Manh Cuong NGUYEN

Table 4 The CPU times (s) of DCASOM-t and BSOM-t on all datasets

Data Map size (3× 5) Map size (5× 5)
name DCASOM-t BSOM-t DCASOM-t BSOM-t

S05 0.06 0.42 0.09 0.91

S06 0.03 0.39 0.11 0.85

S07 0.06 0.40 0.08 0.87

S08 0.11 0.59 0.16 1.36

S10 0.25 1.56 0.42 3.00

S13 0.08 0.81 0.11 1.71

S09 0.23 1.69 0.45 3.24

GLA 0.28 2.06 0.55 4.43

INO 1.12 6.67 4.21 13.31

A1S 1.93 21.09 3.03 43.05

A2S 3.43 35.62 2.71 80.68

A3S 5.49 51.16 12.46 114.98

LET 35.37 243.85 68.43 497.28

COL 81.81 646.40 168.95 1,359.20

SEN 1,108.05 6,650.70 1,527.27 12,308.50

We observe from the computational results that

- In terms of Objective value and Kaski measure: DCASOM-t gives better results

on both objective value and Kaski Measure than BSOM-t in almost datasets. The objective

values (resp. Kaski Measure) given by DCASOM-t are better than that of BSOM-t in 13/15

datasets with map size 3× 5 and 10/15 datasets with map size 5× 5 (resp. 12/15 datasets

with map size 3×5 and 13/15 datasets with map size 5×5).

- In terms of Topographic map: the maps given by DCASOM-t have a hight topo-

graphic quality. The Topographic Errors of DCASOM-t are smaller than that of BSOM-t in

almost cases: 12/15 cases with map size 3× 5 and 14/15 cases with map size 5× 5). Note

that the topographic map is very important for the data visualization.

- In terms of CPU times: DCASOM-t is faster than BSOM-t (the ratio varies from 6

to 29.8 times). In addition, DCASOM-t is less sensitive to the cooling schedule of σ . With

only 3 iterations, DCASOM-t ensures a high quality in terms of both objective value and

topographic map.

- About Clustering task: the PWPO values of DCASOM-t are quite good (more than

85%). DCASOM-t is slightly better than BSOM-t on 5/6 test cases (except the SEN dataset

on the map 3×5).

4.4 Experiment 2: behaviors of algorithms when the map dimension varies

To study how the algorithms scale with the map dimensions we test DCASOM-t and BSOM-

t on the same dataset when map dimensions increase. The medium dataset A3S is chosen

for this purpose (BSOM-t does not work on the datasets with larger size). To see where are

the limits of map dimensions in each algorithm we set the limit CPU time equal to 15000

seconds for each run.

The Figure 6, 7 and 8 show, respectively, the CPU time, the Kaski measure and the

Topographic Error of the comparative algorithms when the map dimension varies. from

(5×5) to (45×45).

SOM by Difference of Convex functions optimization 21

Fig. 6 The CPU time (in seconds) of two algorithms when map size increases (A3S dataset).

Fig. 7 The Kaski measure of two algorithms when map size increases (A3S dataset).

Fig. 8 The Topographic Error of two algorithms when map size increases (A3S dataset).

The numerical results show that, for the dataset A3S, the maximal map dimension on

which BSOM-t (resp. DCASOM-t) works (say, CPU time until the convergence is less than

15000 seconds) is 17× 17 (resp. 45× 45). Moreover, we observe that the CPU time of

BSOM-t increases dramatically when the map dimension increases from 5× 5 to 17× 17,

22 Hoai An LE THI and Manh Cuong NGUYEN

whereas the CPU time of DCASOM-t slightly increases. The ratio of gain of DCASOM-

t versus BSOM-t varies from 6.22 to 43.20 (comparing among the cases both algorithms

work). As for the Kaski measure and the Topographic Error, DCASOM-t gives always better

results than BSOM-t, and DCASOM-t is more or less insensitive to the map dimension in

the interval 13×13 and 45×45.

4.5 Experiment 3: the sensitivity DCASOM-t to initial points

To evaluate the sensitivity DCASOM-t to the initial map, we test the algorithm on 10 ran-

dom initial solutions and on the particular solution used in the two first experiments. For

randomly generating the map X0 we first randomly choose a center ac in the set {a1, . . . ,an}
and then use a similar procedure to (41) in which ā is replaced by ac (the neighborhood

distances between the map nodes are equal to 0.5). The numerical results are reported in the

Table 5. For the random initial points, we present the mean and standard deviations of each

criterion on 10 runs (objective values, Kaski measure, Topographic Error and CPU time.

The map size is set to 7×7.

Table 5 DCASOM-t with different starting points: the center initial points (1) and the random initial points

(2)

Objective Value Kaski Measure Topo. Error(%) CPU (seconds)

(1) (2) (1) (2) (1) (2) (1) (2)

S05 218.67 249.72±60.26 10.38 13.58±2.28 16.36 29.64±4.38 0.31 0.31±0.02

S06 181.38 155.49±28.41 10.53 10.31±0.56 24.00 28.20±5.40 0.43 0.39±0.03

S07 231.12 278.83±38.88 12.17 12.73±0.84 28.85 25.77±5.38 0.30 0.31±0.01

S08 427.98 370.14±20.12 12.56 13.30±1.05 26.25 39.63±4.78 0.46 0.55±0.02

S10 186.61 197.20±7.06 6.48 6.83±0.39 2.04 12.65±15.78 0.84 0.63±0.16

S13 285.15 286.65±2.07 10.64 12.85±1.94 33.12 34.09±3.46 0.30 0.31±0.01

S09 779.28 860.59±43.20 12.14 13.08±0.57 38.53 44.26±3.46 1.33 1.30±0.04

GLA 238.21 251.22±35.76 3.03 3.14±0.23 34.58 43.22±9.92 1.01 0.79±0.21

INO 1,586.88 1,718.37±83.02 11.09 12.33±0.99 39.60 48.06±7.68 2.88 2.80±0.15

A1S 93.83 95.95±9.15 0.73 0.75±0.02 25.53 26.90±1.15 19.52 21.29±2.06

A2S 328.54 359.85±55.57 1.09 1.18±0.18 34.97 39.47±5.33 38.77 41.99±5.80

A3S 313.78 740.04±30.39 1.04 1.16±0.02 17.13 25.68±0.57 30.67 53.12±7.33

LET 630,351.0 635,966.4±2,2193.3 45.02 45.03±0.64 73.68 74.48±2.91 144.49 162.9±28.7

COL 180,905.0 190,606.4±5,523.3 9.03 10.22±0.54 71.11 73.07±2.68 680.14 554.9±54.9

SEN 8,808.6 8,779.12±24.09 0.31 0.35±0.04 42.17 47.21±4.14 3550.88 3582.1±33.6

We observe from this result that the performance of DCASOM-t with the particular

procedure (1) for generating initial map is slightly better than that of the random initial

maps. The objective value (resp. Kaski measure and Topographic Error) is better in 12/15

(resp. 14/15 and 14/15) datasets. The gain ratio varies from 1.01 to 2.36 (resp. from 1.02 to

1.31 and from 1.01 to 6.20) times. Within the results given by 10 random initial maps, the

Kaski measure and Topographic Error are relatively stable. The standard deviation values of

Kaski measure (resp. Topographic Error) are less than 16.79% (resp. 23%, except on S10

dataset) of the mean results. This shows that DCASOM-t is not very sensitive to initial maps.

SOM by Difference of Convex functions optimization 23

5 Conclusion

We have proposed a DCA based approach for the Batch Learning Self-Organizing Maps

model. The nonsmooth, nonconvex optimization formulation of BSOM is reformulated as a

DC program for which an efficient DCA scheme is developed. By using an elegant matrix

formulation and a natural choice of DC decomposition, we get a DC program that consists

in minimizing the difference of a strong convex quadratic function and a nonsmooth convex

term. This nice feature is very relevant for applying DCA, it makes simpler and so much less

expensive the computations in the resulting DCA. The DCASOM requires only sums and

scalar multiplications of vectors. Further, it uses a simple but effective strategy to create a

starting point. A training version for DCASOM with an efficient cooling schedule is inves-

tigated that consists in applying only a very few (3 in our experiments) times of DCASOM.

DCASOM is a simple and elegant scheme, and as the standard BSOM algorithm, it

can be implemented on any platform. In addition, DCASOM has several advantages: it is

more or less insensitive to initial solutions, the quality of solutions is good in terms of

both classification and visualisation (topographic map), it requires a very few training steps

and then can handle problems with large dimensions. The numerical results show that the

proposed approach gives better results than the standard Batch SOM method. DCASOM-t is

fast and scalable and is promising for large scale setting. In particular, thank to its efficiency

and its scalability, DCASOM could be an effective approach for clustering massive dataset.

On another hand, the efficiency of DCASOM suggests us to develop in future works DCA

for kernel versions of BSOM and for minimizing the energy function Et (X) in which the

neighborhood function φ t
l,k are modified within the step t .

Acknowledgements. We are very grateful to the anonymous referees and the associate edi-

tor for their really helpful and constructive comments that helped us to improve our paper.

References

1. Amerijckx C. , Legaty J.D. , Verleysen M.: Image Compression Using Self-Organizing Maps. Systems

Analysis Modelling Simulation, Vol. 43, No. 11, pp. 1529–1543 (2003).

2. Argyrou A.: Clustering Hierarchical Data Using Self-Organizing Map: A Graph-Theoretical Approach.

Advances in Self-Organizing Maps, Lecture Notes in Computer Science, Volume 5629, pp. 19–27

(2009).

3. Astudillo C.A., Oommen B.J.: Topology-oriented self-organizing maps: a survey. Pattern Analysis and

Applications, pp. 1–26 (2014).

4. Barreto G.A., Araúo A.F.R., Ritter H.J.: Self-Organizing Feature Maps for Modeling and Control of

Robotic Manipulators. Journal of Intelligent and Robotic Systems, Volume 36, Issue 4, pp. 407–450

(2003).

5. Bradley B.S., Mangasarian O.L.: Feature selection via concave minimization and support vector ma-

chines. Machine Learning Proceedings of the Fifteenth International Conferences (ICML’98), San Fran-

cisco, California, MorganKaufmann, pp. 82–90 (1998).

6. Burger M., Graepel T., Obermayer K.: Phase transitions in stochastic self-organizing maps. Physical

Review E 56, pp. 3876–3890 (1997).

7. ChandraShekar B.H., Shoba Dr.G.: Classification Of Documents Using Kohonens Self-Organizing Map.

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, pp. 610–613 (2009).

8. Chang L., Jun-min L., Chong-xiu Y.: Skin detection using a modified Self-Organizing Mixture Network.

Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International Conference and Work-

shops, vol. 1, no. 6, pp. 22–26 (2013).

9. Collobert R., Sinz F., Weston J., Bottou L.: Trading Convexity for Scalability. International Conference

on Machine Learning ICML (2006).

10. Cottrell M., Hammer B., Hasenfß E., Villmann H.: Batch neural gas. International Workshop on Self-

Organizing Maps (WSOM), pp. 275–282 (2005).

24 Hoai An LE THI and Manh Cuong NGUYEN

11. De A.T. de Carvalho F., Bertrand P., De Melo F.M.: Batch self-organizing maps based on city-block

distances for interval variables. Hal-00706519, version 1 (2012).

12. Dempster A.P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algo-

rithm. J. Roy. Stat. Soc. B. (1977).

13. Dickerson K.B., Ventura D.: Music Recommendation and Query-by-Content Using Self-Organizing

Maps. Proceedings of the International Joint Conference on Neural Networks, pp. 705–710, (2009).

14. Doan N.Q., Azzag H., Lebbah M.: Self-Organizing Map and Tree Topology for Graph Summarization,

Artificial Neural Networks and Machine Learning ICANN 2012, Lecture Notes in Computer Science,

Volume 7553, pp. 363–370 (2012).

15. Dozono H., Tokushima H., Hara S., Noguchi Y.: An Algorithm of SOM using Simulated Annealing

in the Batch Update Phase for Sequence Analysis. International Workshop on Self-Organizing Maps

(WSOM), pp. 171–178 (2005).

16. Fiannaca A., Fatta G.D., Gaglio S., Rizzo R., Urso A.M.: Improved SOM Learning Using Simulated

Annealing. Lecture Notes in Computer Science, Vol. 4668, pp. 279–288 (2007).

17. Fort J.C., Letremy P., Cottrell M.: Advantages and drawbacks of the Batch Kohonen algorithm. The

European Symposium on Artificial Neural Networks conference - ESANN, pp. 223-230 (2002).

18. Fukui K., Numao M.: Topographic Measure Based on External Criteria for Self-Organizing Map. Ad-

vances in Self-Organizing Maps, Lecture Notes in Computer Science, Volume 6731, pp. 131–140,

Springer-Verlag Berlin Heidelberg (2011).

19. Graef G., Schaefer C.: Application of ART2 Networks and Self-Organizing Maps to Collaborative Filter-

ing. Hypermedia: Openness, Structural Awareness, and Adaptivity, Lecture Notes in Computer Science,

Volume 2266, pp. 296–309 (2002).

20. Graepel T., Burger M., Obermayer K.: Self-Organizing Maps: Generalizations and New Optimization

Techniques. Neurocomputing, Volume 21, Issues 13, pp. 173–190 (1998).

21. Günter S., Bunke H.: Self-organizing map for clustering in the graph domain. Pattern Recognition Let-

ters, Volume 23, Issue 4, pp. 405–417 (2002).

22. Guo X., Wang H., Glass D.H.: Bayesian Self-Organizing map for Data Classification and Clustering.

International Journal of Wavelets, Multiresolution and Information Processing 11(5), 12 pages (2013).

23. HagenbuchnerM., Sperduti A., Tsoi A.C.: Graph self-organizing maps for cyclic and unbounded graphs.

Neurocomputing, Volume 72, Issues 79, pp. 1419–1430 (2009).

24. Hagenauer J., Helbich M.: Hierarchical self-organizing maps for clustering spatiotemporal data. Interna-

tional Journal of Geographical Information Science, Volume 27, Issue 10, pp. 2026–2042 (2013).

25. Heiss-Czedik D., Bajla I.: Using Self-Organizing Maps for object classification in Epo image analysis.

MEASUREMENT SCIENCE REVIEW, Volume 5, Section 2, pp. 11–16 (2005).

26. Heskes T.: Energy functions for self organizingmaps. In Oya, S., Kaski, E., eds.:KohonenMaps.Elsevier,

Amsterdam pp. 303–316 (1999).

27. Heskes T.: Self-Organization Maps, vector quantization, and mixture modeling. IEEE transactions on

neural networks, Vol. 12, No. 6 (2001).

28. Hiriart Urruty J.B., Lemarechal C.: Convex Analysis and Minimization Algorithms. SpringerVerlag

berlin Heidelberg (1993).

29. Ismail S., Shabri A., Samsudin R.: A hybrid model of self organizing maps and least square support

vector machine for river flow forecasting. Hydrol. Earth Syst. Sci., 16, pp. 4417–4433 (2012).

30. Kaski S., Lagus K.: Comparing Self-Organizing Maps. Lecture Notes in Computer Science, Vol. 1112,

pp. 809–814 (1996).

31. Khalilia M., Popescu M.: Topology Preservation in Fuzzy Self-Organizing Maps. In Advance Trends in

Soft Computing, Studies in Fuzziness and Soft Computing, Volume 312, pp. 105–114 (2014).

32. Kiviluoto K.: Topology preservation in self-organizing maps. In: Proceedings of ICNN96, IEEE Inter-

national Conference on Neural Networks, vol. 1, pp.294–299 (1996).

33. Kohonen T.: Analysis of a simple self-organizing process. Biol. Cybern. 44, pp. 135–140 (1982).

34. Kohonen T.: Self-Organization Maps. Springer Heidelberg (1997).

35. Krause N., Singer Y.: Leveraging the margin more carefully. International Conference on Machine Learn-

ing ICML (2004).

36. Le Thi H.A.: DC Programming and DCA. http://lita.sciences.univ-metz.fr/∼lethi.

37. Le Thi H.A and Pham Dinh T., Solving a class of linearly constrained indefinite quadratic problems by

D.c. algorithms. Journal of Global Optimization, 11 (1997), pp. 253-285.

38. Le Thi H.A., Pham Dinh T.: DC (difference of convex functions) programming and DCA revisited with

DC models of real world nonconvex optimization problems. Ann. Oper. Res.Springer-Verlag, 133, pp.

23–46 (2005).

39. Le Thi H.A., Le Hoai M., Pham Dinh T.: Fuzzy clustering based on nonconvex optimization approaches

using difference of convex (DC) functions algorithms. Journal of Advances in Data Analysis and Clas-

sification 2:1-20 (2007).

SOM by Difference of Convex functions optimization 25

40. Le Thi H.A., Le Hoai M., Nguyen V.V., Pham Dinh T.: A DC Programming approach for Feature Se-

lection in Support Vector Machines learning. Journal of Advances in Data Analysis and Classification

2(3):259-278 (2008).

41. Le Thi H.A., Le Hoai M., Pham Dinh T., Huynh V.N.: Binary classification via spherical separator by

DC programming and DCA. Journal of Global Optimization , pp. 1-15, doi:10.1007/s10898-012-9859-6

(2012).

42. Le Thi H.A., Le Hoai M., Pham Dinh T., Huynh V.N.: Block Clustering based on DC programming and

DCA. NECO - Neural Computation, Volume 25, Num. 10, pp. 2776–2807 (2013).

43. Le Thi H.A., Pham Dinh T., Nguyen C.N., Le Hoai M.: DC Programming and DCA for Diversity Data

Mining. to appear in Optimization.

44. Le Thi H.A., Le Hoai M., Pham Dinh T.: New and efficient DCA based algorithms for Minimum Sum-

of-Squares Clustering. In press in Patter Recognition (2013).

45. Lee M., Choi P., Woo Y.: A Hybrid Recommender System Combining Collaborative Filtering with Neu-

ral Network. Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Sci-

ence 2347, pp. 531–534, Springer-Verlag Berlin Heidelberg (2002).

46. Lefebvre G., Zheng H., Laurent C.: Objectionable Image Detection by ASSOM Competition. Image and

Video Retrieval, Lecture Notes in Computer Science, Volume 4071, pp. 201–210 (2006).

47. Liu Y., Shen X., Doss H.: MulticategoryΨ -Learning and Support Vector Machine, Computational Tools.

Journal of Computational and Graphical Statistics 14:219-236 (2005).

48. Liu Y., Shen X.: Multicategory Ψ -Learning. Journal of the American Statistical Association, Vol. 101,

No. 474, pp. 500–509 (2006).

49. Madalina O., Nathalie V.V., Christine C.A.: Multiple Kernel Self-Organizing Maps. ESANN 2013 pro-

ceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine

Learning. Bruges (Belgium), pp. 83–88 (2013).

50. Marc M. Van Hulle: Self-organizing Maps. Handbook of Natural Computing, pp. 585–622, Springer-

Verlag Berlin Heidelberg (2012).

51. Marina R.: Graph Mining Based SOM: A Tool to Analyze Economic Stability. In Applications of Self-

Organizing Maps, Magnus Johnsson edit, pp. 1–25, InTech Publisher (2012).

52. Matharage S., Alahakoon D., Rajapakse J., Huang P.: Fast Growing Self Organizing Map for Text Clus-

tering. Neural Information Processing, Lecture Notes in Computer Science, Volume 7063, pp. 406–415

(2011).

53. Matsushita H., Nishio Y.: Batch-Learning Self-Organizing Map with Weighted Connections Avoiding

False-Neighbor Effects. The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–6

(2010).

54. Neme A., Miramontes P.: Self-Organizing Map Formation with a Selectively Refractory Neighborhood.

Neural Processing Letters 39(1), pp. 1–24, 2014.

55. Ogihara M., Matsumoto H., Marumo T., Kuroda C.: Clustering of Pressure Fluctuation Data Using Self-

Organizing Map. Engineering Applications of Neural Networks, Communications in Computer and In-

formation Science, Volume 43, pp. 45–54 (2009).

56. Olteanu M., Villa-Vialaneix N., Cierco-Ayrolles C.: Multiple Kernel Self-Organizing Maps. Hal-

00817920, version 1 (2013).

57. O’Connell C., Kutics A., Nakagawa A.: Layered Self-Organizing Map for Image Classification in Unre-

stricted Domains. In Image Analysis and Processing - ICIAP 2013, Lecture Notes in Computer Science,

Volume 8156, pp. 310–319 (2013).

58. Paul S., Gupta M.: Image Segmentation By Self Organizing Map With Mahalanobis Distance. Inter-

national Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 2, pp. 288–291

(2013).

59. Pham Dinh T. and Le Thi H.A., Convex analysis approach to d.c. programming: Theory, Algorithms and

Applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday), Acta Mathematica

Vietnamica, 22(1997), pp. 289-355.

60. Pham Dinh T., Le Thi H.A.: DC optimization algorithms for solving the trust region sub-problem. SIAM

J. Optim. 8, pp. 476–505 (1998).

61. Pölzlbauer G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In: WDA 2004.

Fifth Workshop on Data Analysis, pp. 67–82. Elfa Academic Press (2004).

62. Pratiwi D.: The Use of Self Organizing Map Method and Feature Selection in Image Database Classi-

fication System. International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, pp. 377-381

(2012).

63. Roh T.H., Oh K.J., Han I.: The collaborative filtering recommendation based on SOM cluster-

indexing CBR. Expert Systems with Applications, Volume 25, Issue 3, pp. 413–423, ISSN 0957-4174,

http://dx.doi.org/10.1016/S0957-4174(03)00067-8 (2003).

26 Hoai An LE THI and Manh Cuong NGUYEN

64. Ruan X., Gao Y., Song H., Chen J.: A New Dynamic Self-Organizing Method for Mobile Robot Envi-

ronment Mapping. Journal of Intelligent Learning Systems and Applications 3, pp. 249–256 (2011).

65. Saarikoski J., Laurikkala J., Järvelin K., Juhola M.: Self-Organising Maps in Document Classification: A

Comparison with Six Machine Learning Methods. Adaptive and Natural Computing Algorithms, Lecture

Notes in Computer Science, Volume 6593, pp. 260–269 (2011).

66. Sarlin P., Eklund T.: Fuzzy Clustering of the Self-Organizing Map: Some Applications on Financial

Time Series. In Advances in Self-Organizing Maps, Laaksonen J. and Honkela T. editor, Lecture Notes

in Computer Science, Volume 6731, pp. 40–50, Springer Berlin Heidelberg (2011).

67. Shen X., Tseng G.C., Zhang X., Wong W. H.: ψ -Learning. Journal of American Statistical Association

98:724-734 (2003).

68. Smith T., Alahakoon D.: Growing Self-Organizing Map for Online Continuous Clustering. Foundations

of Computational Intelligence Volume 4, Studies in Computational Intelligence, Volume 204, pp. 49–83

(2009).

69. Stefanovic P., Kurasova O.: Influence of Learning Rates and Neighboring Functions on Self-Organizing

Maps. Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 141–150 (2011).

70. Szymanski J., Duch W.: Self Organizing Maps for Visualization of Categories. In Neural Information

Processing, Lecture Notes in Computer Science, Volume 7663, pp. 160–167 (2012).

71. Tsoi A.C., HagenbuchnerM., Sperduti A.: Self-organising Map Techniques for Graph Data Applications

to Clustering of XML Documents. Advanced Data Mining and Applications, Lecture Notes in Computer

Science, Volume 4093, pp. 19–30 (2006).

72. Van Laerhoven K.: Combining the Self-Organizing Map and K-Means Clustering for On-Line Classifi-

cation of Sensor Data. Artificial Neural Networks ICANN 2001, Lecture Notes in Computer Science,

Volume 2130, pp. 464–469 (2001).

73. Vembu S., Baumann S.: A Self-Organizing Map Based Knowledge Discovery for Music Recommenda-

tion Systems. Computer Music Modeling and Retrieval, Lecture Notes in Computer Science, Volume

3310, pp. 119–129, Springer-Verlag Berlin Heidelberg (2004).

74. Vesanto J., Alhoniemi E.: Clustering of the Self-Organizing Map. IEEE transactions on neural networks,

VOL. 11, NO. 3, pp. 586–600 (2000).

75. Villa N., Boulet R.: Clustering a medieval social network by SOM using a kernel based distance measure.

ESANN’2007 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), d-

side publi., ISBN 2-930307-07-2 (2007).

76. Wang J., Shen Z., Pan W.: On transductive support vector machines. Proceeding of the International

Conference on Machine Learning ICML (2007).

77. Wehrens R.: Self-Organising Maps for Image Segmentation. Advances in Data Analysis, Data Handling

and Business Intelligence Studies in Classification, Data Analysis, and Knowledge Organization, pp.

373–383 (2010).

78. Yin H.: The Self-Organizing Maps: Background, Theories, Extensions and Applications. Studies in

Computational Intelligence (SCI) 115, pp. 715–762 (2008).

79. Yuille A.L., Rangarajan A.: The Convex Concave Procedure (CCCP). Advances in Neural Information

Processing System 14, Cambrige MA: MIT Press (2002).

Chapter 4

Sparse Semi-Supervised
Support Vector Machines

by DC Programming and DCA

89

90 Sparse S3VM by DC Programming and DCA

Noname manuscript No.
(will be inserted by the editor)

Sparse Semi-Supervised Support Vector Machines by DC
Programming and DCA

Hoai Minh LE · Manh Cuong NGUYEN · Hoai An LE THI

Received: date / Accepted: date

Abstract This paper studies the problem of feature selection in the context of Semi-Supervised
Support Vector Machine (S3VM). The zero norm, a natural concept dealing with sparsity, is used
for feature selection purpose. Due to two nonconvex terms (the loss function of unlabeled data
and the `0 term), we are faced on a NP hard optimization problem. Two continuous approaches
based on DC (Difference of Convex functions) programming and DCA (DC Algorithms) are
developed. The first is DC approximation approach that approximates the `0-norm by a DC
function.

The second is an exact reformulation approach based on exact penalty techniques in DC
programming. All the resulting optimization problems are DC programs for which DCA are
investigated. Several usual sparse inducing functions are considered, and six versions of DCA are
developed. Empirical numerical experiments on several Benchmark datasets show the efficiency
of the proposed algorithms, in both feature selection and classification.

Keywords Semi-Supervised SVM, Feature Selection, Non-Convex Optimization, DC approxi-
mation, exact penalty, DC Programming, DCA

1 Introduction

In machine learning, supervised learning is a task of inferring a predictor function (classifier)
from a labeled training dataset. Each example in training set consists of an input object and a
label. The objective is to build a predictor function which can be used to identify the label of
new examples with highest possible accuracy. Nevertheless, in most of real word applications,
a large portion of training data are unlabeled, and supervised learning can not be used in these
contexts. To deal with this difficulty, recently, in the machine learning community, there has
been an attracting increasing attention in using semi-supervised learning methods. In contrast
to supervised methods, semi-supervised learning methods take into account both labeled and
unlabeled data to construct prediction models.

We are interested in semi-supervised classification, more precisely, in the so called Semi-
Supervised Support Vector Machines (S3VM). Among the semi-supervised classification meth-
ods, the large margin approach S3VM, which extends the Support Vector Machine (SVM) to
semi-supervised learning concept, is certainly the most popular ([6]-[8], [10], [14], [19], [32] [44],
[45], [49]). An extensive overview of semi-supervised classification methods can be found in [51].

Hoai Minh LE · Manh Cuong NGUYEN · Hoai An LE THI
Laboratory of Theoretical and Applied Computer Science - LITA EA 3097,
University of Lorraine, Ile du Saulcy, 57045 Metz, France.
minh.le@univ-lorraine.fr
manh-cuong.nguyen@univ-lorraine.fr
hoai-an.le-thi@univ-lorraine.fr

Submitted.

2 Le et al.

S3VM was originally proposed by Vapnik and Sterin in 1977 ([48]) under the name of trans-
ductive support vector machine. Later, in 1999, Bennett and Demiriz ([3]) proposed the first
optimization formulation of S3VM which is described as follows.

Given a training set which consists of m labeled points {(xi, yi) ∈ IRn×{−1, 1}, i = 1, . . . ,m}
and p unlabeled points {xi ∈ IRn, i = (m+1), . . . , (m+p)}. We are to find a separating hyperplane
P = {x | x ∈ IRn, xTw = b}, far away from both the labeled and unlabeled points. Hence, the
optimization problem of S3VM takes the form

min
w,b
‖w‖22 + α

m∑

i=1

L (yi(〈w, xi〉+ b)) + β

m+p∑

i=m+1

L (|〈w, xi〉+ b|) . (1)

Here, the first two terms define a standard SVM while the third one incorporates the loss
function of unlabeled data points. The loss function of labeled and unlabeled data points are
weighted by penalty parameters α > 0 and β > 0. Usually, in classical SVM one uses the hinge
loss function L(u) = max{0, 1− u} which is convex. On contrary, the problem (1) is nonconvex,
due to the nonconvexity of the third term.

There are two broad strategies for solving the optimization problem (1) of S3VM: the com-
binatorial methods (Mixed Integer Programming ([3]), Branch and Bound algorithm ([7])) and
the continuous optimisation methods such as self-labeling heuristic S3VM light ([15]), gradient
descent ([6]), deterministic annealing ([44]), semi-definite programming ([5]), DC programming
([10]). Combinatorial methods are not available for massive data sets in real applications (high

dimension and large data set). Thus, major efforts have focused on efficient local algorithms.
For more complete reviews of S3VM methods, the reader is referred to [8,51] and references
therein.

On another hand, feature selection is one of the fundamental problems in machine learning.
In many areas of application such as text classification, web mining, gene expression, micro-
array analysis, combinatorial chemistry, image analysis, etc, data sets contain a large number of
features, many of which are irrelevant or redundant. Feature selection is often applied to high
dimensional data prior to classification learning. The main goal is to select a subset of features
of a given data set while preserving or improving the discriminative ability of a classifier. Several
feature-selection methods for SVMs have been proposed in the literature (see e.g. [4,12,16,17,
25,26,29,33,38,41,52,53]).

This paper deals with the feature selection in the context of S3VM. We are to find a sep-
arating hyperplane far away from both the labeled and unlabeled points, that uses the least
number of features. As standard approaches for feature selection in SVM, here we use the zero
norm, a natural concept dealing with sparsity for feature selection purpose. The zero norm of a
vector, denoted `0 or ‖.‖0, is defined as the number of its nonzero components. Similar to SVM,
we replace the term ‖w‖22 in (1) by the `0-norm and then formumate the feature selection S3VM
problem as follows:

min
w,b
‖w‖0 + α

m∑

i=1

L (yi(〈w, xi〉+ b)) + β

m+p∑

i=m+1

L (|〈w, xi〉+ b|) . (2)

While S3VM has been widely studied, there exist few methods in the literature for feature
selection in S3VM. Due to the discontinuity of the `0 term and the non convexity of the third
term, we are facing ”double” difficulties in (2) (it is well known that the problem of minimizing
the zero-norm is NP-Hard ([1])).

During the last two decades, research is very active in models and methods optimization
involving the zero norm. Works can be divided into three categories according to the way to
treat the zero norm: convex approximation (the `0-norm is replaced by a convex function, for
instance the `1-norm [46] or the conjugate function [36]), nonconvex approximation (a contin-
uous nonconvex function is used instead to the `0-norm, usual sparse inducing functions are
introduced in [4,53,12,37,28]), and nonconvex exact reformulation (with the binary variables
ui = 0 if wi = 0 and ui = 1 otherwise, the original problem is formulated as a combinatorial op-
timization problem which is equivalently reformulated as a continuous nonconvex program via

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 3

exact penalty techniques, see [29,47]). An extensive overview of these approaches can be found
in [29]. When the objective function (besides the `0-term) is convex, convex approximation tech-
niques result to a convex optimization problem which is so far ”easy” to solve. Unfortunatly,
for S3VM, the problem (2) remains nonconvex with any approximation - convex or nonconvex,
of the `0-norm.

Since convex approximation approaches have been shown to be, in certain cases, inconsistent
for variable selection and biased [50], we tackle the problem (2) by nonconvex approaches.
The core of our work is DC (Difference of Convex functions) programming and DCA (DC
Algorithms), an efficient approach in nonconvex programming framework. This approach has
been succesfully developed in a variety of works in Machine Learning (see e.g. [10,18,23,24,31,
40,42] and the list of reference in [30]), in particular to feature selection in SVM ([25,26,29,33,
38]). These successes of DCA suggest us to investigate it for solving the hard problem (2).

Paper’s contributions. We develop an unified approach based on DC programming and
DCA for solving the non convex optimization problem (2). Firstly, several DC approximations
of `0-norm will be used to (2): logarithm function [53], Smoothly Clipped Absolute Deviation
(SCAD) [12], piecewise exponential [4], DC polyhedral [37] and piecewise linear approximation
[28]. Secondly, we inspire the same technique in [29,47] to equivalently formulate (2) as a
combinatorial optimization problem. Then, thanks to the new result on exact penalty techniques
recently developed in [27], we reformulate the resulting problem as a continuous optimization
problem and investigate DCA to solve it. Finally, we provide an empirical experimentation, on
several Benchmark datasets, of all proposed algorithms to study their efficiency in both feature
selection and classification.

The remainder of the paper is organized as follows. DC programming and DCA are briefly
presented in Section 2 while Section 3 is devoted to the development of DCA for solving the
feature selection S3VM problem (2). Computational experiments are reported in Section 4 and
finally Section 5 concludes the paper.

2 Outline of DC programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth nonconvex program-
ming and global optimization. They address the problem of minimizing a function f which is the
difference of two convex functions on the whole space IRd or on a convex set C ⊂ IRd. Generally
speaking, a DC program is an optimization problem of the form :

α = inf{f(x) := g(x)− h(x) : x ∈ IRd} (Pdc)

where g, h are lower semi-continuous proper convex functions on IRd. Such a function f is called
a DC function, and g − h a DC decomposition of f while g and h are the DC components of
f. The convex constraint x ∈ C can be incorporated in the objective function of (Pdc) by using
the indicator function on C denoted by χC which is defined by χC(x) = 0 if x ∈ C, and +∞
otherwise:

inf{f(x) := g(x)− h(x) : x ∈ C } = inf{χC(x) + g(x)− h(x) : x ∈ IRd}.

A convex function θ is called convex polyhedral if it is the maximum of a finite family of affine
functions, i.e.

θ(x) = max{〈ai, x〉+ b : i = 1, ...p}, ai ∈ Rd.

Polyhedral DC optimization occurs when either g or h is polyhedral convex. This class of DC
optimization problems, which is frequently encountered in practice, enjoys interesting properties
(from both theoretical and practical viewpoints) concerning local optimality and the convergence
of DCA ([22]).

Let

g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRd}

4 Le et al.

be the conjugate function of a convex function g. Then, the following program is called the dual
program of (Pdc):

αD = inf{h∗(y)− g∗(y) : y ∈ IRd}. (Ddc)

One can prove that α = αD, and there is the perfect symmetry between primal and dual
DC programs: the dual to (Ddc) is exactly (Pdc).

For a convex function θ, the subdifferential of θ at x0 ∈ dom θ := {x ∈ IRd : θ(x0) < +∞},
denoted by ∂θ(x0), is defined by

∂θ(x0) := {y ∈ IRd : θ(x) ≥ θ(x0) + 〈x− x0, y〉, ∀x ∈ IRd}. (3)

The subdifferential ∂θ(x0) generalizes the derivative in the sense that θ is differentiable at x0

if and only if ∂θ(x0) ≡ {5xθ(x0)}. Recall the well-known property related to subdifferential
calculus of a convex function θ:

y0 ∈ ∂θ(x0)⇐⇒ x0 ∈ ∂θ∗(y0)⇐⇒ 〈x0, y0〉 = θ(x0) + θ∗(y0). (4)

The complexity of DC programs resides, in the lack of practical optimal globality conditions.
Local optimality conditions are then useful in DC programming.

A point x∗ is said to be a local minimizer of g− h if g(x∗)− h(x∗) is finite and there exists a
neighborhood U of x∗ such that

g(x∗)− h(x∗) ≤ g(x)− h(x), ∀x ∈ U . (5)

The necessary local optimality condition for (primal) DC program (Pdc) is given by

∅ 6= ∂h(x∗) ⊂ ∂g(x∗). (6)

The condition (6) is also sufficient (for local optimality) in many important classes of DC
programs, for example, when (Pdc) is a polyhedral DC program with h being polyhedral convex
function, or when f is locally convex at x∗ (see [22]).

A point x∗ is said to be a critical point of g − h if

∂h(x∗) ∩ ∂g(x∗) 6= ∅. (7)

The relation (7) is in fact the generalized KKT condition for (Pdc) and x∗ is also called a
generalized KKT point.

Based on local optimality conditions and duality in DC programming, the DCA consists in
constructing of two sequences {xl} and {yl} of trial solutions of the primal and dual programs
respectively, such that the sequences {g(xl) − h(xl)} and {h∗(yl) − g∗(yl)} are decreasing, and
{xl} (resp. {yl}) converges to a primal feasible solution x∗ (resp. a dual feasible solution y∗)
satisfying local optimality conditions:

x∗ ∈ ∂g∗(y∗), y∗ ∈ ∂h(x∗). (8)

It implies, according to (4) that x∗and y∗ are critical points (KKT points) of g − h and h∗ − g∗
respectively.

The main idea behind DCA is to replace in the primal DC program (Pdc), at the current
point xl of iteration l, the second component h with its affine minorization defined by

hl(x) := h(xl) + 〈x− xl, yl〉, yl ∈ ∂h(xl)

to give birth to the primal convex program of the form

(Pl) inf{g(x)− hl(x) : x ∈ IRn} ⇐⇒ inf{g(x)− 〈x, yl〉 : x ∈ IRd}

whose an optimal solution is taken as xl+1.

Dually, a solution xl+1 of (Pl) is then used to define the dual convex program (Dl+1) by
replacing in (Ddc) g

∗ with its affine minorization defined by

(g∗)l(y) := g∗(yl) + 〈y − yl, xl+1〉, xl+1 ∈ ∂g∗(yl)

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 5

to obtain
(Dl+1) inf{h∗(y)− [g∗(yl) + 〈y − yl, xl+1〉]y ∈ IRd}

whose an optimal solution is taken as yl+1. The process is repeated until convergence.
DCA performs so a double linearization with the help of the subgradients of h and g∗.

According to relation (4) it is easy to see that the optimal solution set of (Pl) (resp. (Dl+1)) is
nothing but ∂g∗(yl) (resp. ∂h(xl+1)). Hence, we can say that DCA is an iterative primal-dual
subgradient method that yields the next scheme: (starting from given x0 ∈ dom ∂h)

yl ∈ ∂h(xl); xl+1 ∈ ∂g∗(yl), ∀l ≥ 0. (9)

The generic DCA scheme is shown below.
DCA scheme

Initialization: Let x0 ∈ IRd be a best guess, l = 0.
Repeat

– Calculate yl ∈ ∂h(xl)
– Calculate xl+1 ∈ arg min{g(x)− h(xl)− 〈x− xl, yl〉 : x ∈ IRd} (Pl)
– l = l + 1

Until convergence of
{
xl
}
.

Convergence properties of DCA and its theoretical basic can be found in [22,35]. It is worth
mentioning that

i) DCA is a descent method (without line search): the sequences {g(xl)− h(xl)} is decreasing.
ii) If g(xl+1)− h(xl+1) = g(xl)− h(xl), then xl is a critical point of g − h. In such a case, DCA

terminates at l-th iteration.
iii) If the optimal value α of problem (Pdc) is finite and the infinite sequences {xl} is bounded

then every limit point x∗ of the sequences {xl} is a critical point of g − h.
iv) DCA has a linear convergence for general DC programs.
v) DCA has a finite convergence for polyhedral DC programs. Moreover, if h is polyhedral and

h is differentiable at x∗ then x∗ is a local optimizer of (Pdc).

A deeper insight into DCA has been described in [22]. For instant it is worth to mention
the main feature of DCA: DCA is constructed from DC components and their conjugates but
not the DC function f itself which has infinitely many DC decompositions, there are as many
DCA as there are DC decompositions. Such decompositions play an extremely critical role in
determining the speed of convergence, stability, robustness, and globality of sought solutions.
It is important to study various equivalent DC forms of a DC problem. This flexibility of DC
programming and DCA is of particular interest from both a theoretical and an algorithmical
point of view.

Note that with appropriate DC decompositions and suitably equivalent DC reformulations,
DCA permits to recover most of standard methods in convex and nonconvex programming. For
a complete study of DC programming and DCA the reader is referred to [20,22,35].

3 Feature selection in S3VM by DC programming and DCA

Assume that the m labeled points and p unlabeled points are represented by the matrix A ∈
IRm×n and B ∈ IRp×n, respectively. D is a m×m diagonal matrix where Di,i = yi, ∀i = 1, . . . ,m.
Denote by e the vector of ones in the appropriate vector space. For each labeled point xi
(i = 1, . . . ,m), we introduce a new variable ξi which represents the misclassification error.
Similarly, for each unlabeled point xi (i = (m + 1), . . . , (m + p)), we define ri and si for two
possible misclassification errors. Let r and s be vectors in IRp who ith component are ri and
si respectively. Then, the final class of unlabeled xi corresponds to the one that has minimal
misclassification. The feature selection in S3VM problem (2) can be rewritten as follows:

min {F0(w, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+ ‖w‖0 : (w, b, ξ, r, s) ∈ K} , (10)

6 Le et al.

where K is polyhedral convex set defined by




(w, b, ξ, r, s) ∈ IRn × IR× IRm × IRp × IRp : D(Aw − eb) + ξ ≥ e,
Bw − eb+ r ≥ e,
−Bw + eb+ s ≥ e,
ξ, r, s ≥ 0.




. (11)

3.1 DC approximation functions of `0

Let us define the step function π : R→ R by

π(x) = 1 for x 6= 0 and π(x) = 0 for x = 0.

Hence

‖w‖0 =
n∑

i=1

π(wi).

3.1.1 A piecewise exponential approximation

The first non convex approximation was introduced by Bradley and Mangasarian in [4] where
the step function s is approximated by:

π(x) ' 1− ε−λx, λ > 0, (12)

and then the zero-norm ‖w‖0 is approximated by ‖w‖0 '
n∑
i=1

(1 − ε−λwi). The SLA (Succes-

sive Linear Approximation) method proposed in [4], for solving the resulting Feature Selection
concaVe minimization problem (FSV), consists of solving at each iteration one linear program
(note that SLA is a special DCA scheme applied to FSV).

In [25], the authors proposed another DC formulation of the step function π. The comparative
results on several datasets show the superiority of this approach over SLA proposed in [4] (this
shows the nice effect of DC decompositions for DCA) as well as SVMs using `1-norm. Motivated
by the efficiency of the DC decomposition of proposed in [25], we investigate a similar DC
formulation for the approximate problem of (10).

For x ∈ IR, let η1 be the function defined by (λ > 0)

η1(x, λ) = 1− ε−λ|x|. (13)

In what follows, for a given λ, we will use η1(x) instead of η1(x, λ). It is clear that for moderate
values of λ, one can obtain a very adequate approximation of s. Then the approximation of zero-
norm ‖w‖0 is given by: ‖w‖0 '

∑n
i=1 η1(wi). We first express η1 as a DC function as follows:

η1(x) = g1(x)− h1(x), where

g1(x) := λ|x| and h1(x) := λ|x| − 1 + ε−λ|x|. (14)

With this approximation, we approximate the objective function of (10) by the following

F1(w, b, ξ, r, s) = G1(w, b, ξ, r, s)−H1(w, b, ξ, r, s),

where

G1(w, b, ξ, r, s) = α〈e, ξ〉+
n∑

i=1

g1(wi) (15)

and

H1(w, b, ξ, r, s) = −β〈e,min{r, s}〉+
n∑

i=1

h1(wi) (16)

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 7

are convex functions (especially, G1 is polyhedral convex). Hence, the approximate problem of
(10) is a polyhedral DC program of the form

min {G1(w, b, ξ, r, s)−H1(w, b, ξ, r, s) : (w, b, ξ, r, s) ∈ K} . (17)

According to general DCA scheme in Section 2, DCA applied on (17) consists of computing
the two sequences {(wl, bl, ξl, rl, sl)} and {(w̄l, b̄l, ξ̄l, r̄l, s̄l)} such that

(w̄l, b̄l, ξ̄l, r̄l, s̄l) ∈ ∂H1(wl, bl, ξl, rl, sl)

and (wl+1, bl+1, ξl+1, rl+1, sl+1) is an optimal solution of the convex problem

min





n∑
i=1

max{λwi,−λwi}+ α〈e, ξ〉− 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉

: (w, b, ξ, r, s) ∈ K



 . (18)

Following the computation of a subgradient ofH1, we can take (w̄l, b̄l, ξ̄l, r̄l, s̄l) ∈ ∂H1(wl, bl, ξl, rl, sl)
as follows:

w̄li = λ(1− ε−λw
l
i) if wli ≥ 0, −λ(1− ελw

l
i) if wli < 0, ∀i = 1, . . . , n, (19)

r̄li = −β if rli < sli, 0 if rli > sli, −βµ if rli = sli, ∀i = 1, . . . , p, µ ∈ [0, 1] (20)

s̄li = 0 if rli < sli, −β if rli > sli, −β(1− µ) if rli = sli, ∀i = 1, . . . , p, µ ∈ [0, 1] (21)

and

b̄l = 0, ξ̄l = 0 (22)

Furthermore, solving (18) amounts to solving the following linear program:





min 〈e, t〉+ α〈e, ξ〉 − 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉,
s.t. (w, b, ξ, r, s) ∈ K

ti ≥ λwi, ti ≥ −λwi, ∀i = 1, . . . , n,
(23)

Therefor, DCA applied to (17) can be described as follows:

Algorithm 1 S3VM-PiE
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR× IRm × IRp × IRp.
repeat

1. Set (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l) following (19), (20) and (21).
2. Solve the linear program (23) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1).
3. l = l + 1.

until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1)− (wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl, sl)‖+ 1).

3.1.2 A DC polyhedral approximation

In [37], the author proposed a DC polyhedral approximation which has been successfully applied
in [38]. We will now incorporate this approximation to our problem (10).

For x ∈ IR, let η2 be the function defined by defined as follows

η2(x) := min{1, λ|x|} = 1 + λ|x| −max{1, λ|x|}. (24)

Hence, ‖w‖0 is approximated by: ‖w‖0 '
∑n
i=1 η2(wi). It is easy to see that η2 is a DC function

with following DC decomposition η2(x) = g2(x)− h2(x) where

g2(x) = 1 + λ|x| and h2(x) = max{1, λ|x|}. (25)

8 Le et al.

With this approximation function, the approximate problem of (10) can be represented as
follows:

min

{
F2(w, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+

n∑

i=1

η2(wi) : (w, b, ξ, r, s) ∈ K
}
. (26)

Clearly, F2(w, b, ξ, r, s) is a DC function:

F2(w, b, ξ, r, s) = G2(w, b, ξ, r, s)−H2(w, b, ξ, r, s),

where

G2(w, b, ξ, r, s) = α〈e, ξ〉+
n∑

i=1

g2(wi) (27)

and

H2(w, b, ξ, r, s) = −β〈e,min{r, s}〉+
n∑

i=1

h2(wi) (28)

are convex polyhedral functions. Hence problem (26) can be expressed as:

min{G2(w, b, ξ, r, s)−H2(w, b, ξ, r, s) : (w, b, ξ, r, s) ∈ K}. (29)

Hence, according to the generic DCA scheme, at each iteration l, we have to compute (w̄l, b̄l, ξ̄l, r̄l, s̄l) ∈
∂H2(wl, bl, ξl, rl, sl) and then solve the convex program

min

{
G2(w, b, ξ, r, s)− 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉

: (w, b, ξ, r, s) ∈ K

}
. (30)

to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1).
Similarly to the computation of a subgradient of H1 (note that H2 differs H1 from the second
term that affects only the variable w), we have (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l) with r̄l (resp.
s̄l) being defined in (20) (resp. (21)) and

wli =





0 if − 1/λ ≤ wli ≤ 1/λ,

λ if wli > 1/λ,

−λ if wli < −1/λ,

i = 1, ...n (31)

On the other hand, solving (30) is equivalent to solving (23). Finally, the DCA applied to (29)
is described as follows:

Algorithm 2 S3VM-PoDC
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR× IRm × IRp × IRp.
repeat

1. Set (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l) following (31), (20) and (21).
2. Solve the linear program (23) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1).
3. l = l + 1.

until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1)− (wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl, sl)‖+ 1).

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 9

3.1.3 A piecewise linear approximation

We consider another DC approximation of `0 which is a piecewise linear function ([28]). Let
η3 : R→ R be the function defined by

η3(x) =





0 if |x| ≤ a,
1 if |x| ≥ b,
|x|−a
b−a if a ≤ |x| ≤ b.

(32)

where 0 ≤ a < b. Then an approximation of zero-norm ‖w‖0 can be: ‖w‖0 '
∑n
i=1 η3(wi) and

the resulting approximation problem of (10) takes the form:

min

{
F3(w, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+

n∑

i=1

η3(wi) : (w, b, ξ, r, s) ∈ K
}
. (33)

Observe that η3 is a DC function:

η3(x) = max
(

min(1, |x|−ab−a), 0
)

= 1 + g3(x)− h3(x),

where g3(x) = 1
b−a max(a, |x|) and h3(x) = 1

b−a max(b, |x|) are clearly convex functions. Let G3

and H3 be the functions defined by:

G3(w, b, ξ, r, s) = α〈e, ξ〉+
n∑

i=1

g3(wi) (34)

and

H3(w, b, ξ, r, s) = −β〈e,min{r, s}〉+
n∑

i=1

h3(wi). (35)

Clearly, G3 and H3 are polyhedral convex functions. Then the problem (33) is a DC program
of the form

min{G3(w, b, ξ, r, s)−H3(w, b, ξ, r, s) : (w, b, ξ, r, s) ∈ K}. (36)

Hence DCA applied to (36) amounts to computing the two sequences {(wl, bl, ξl, rl, sl)} and
{(w̄l, b̄l, ξ̄l, r̄l, s̄l)} such that

(w̄l, b̄l, ξ̄l, r̄l, s̄l) ∈ ∂H3(wl, bl, ξl, rl, sl)

and (wl+1, bl+1, ξl+1, rl+1, sl+1) is an optimal solution of the following convex problem

min




α〈e, ξ〉+ 1

b−a
n∑
i=1

max(a, |x|)− 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉

: (w, b, ξ, r, s) ∈ K



 (37)

which is equivalent to

{
min 1

b−a 〈e, t〉+ α〈e, ξ〉 − 〈w,w〉 − 〈r, r〉 − 〈s, s〉
s.t. (w, b, ξ, r, s) ∈ K, ti ≥ a, ti ≥ wi, ti ≥ −wi.

(38)

Similarly to the computation of a subgradient ofH1 andH2, we have (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l)
with r̄l (resp. s̄l) being defined in (20) (resp. (21)) and

wli =





0 if |wli| ≤ b,
1
b−a if wli ≥ 0,

− 1
b−a if wli < 0

i = 1, ..., n. (39)

Finally, DCA scheme applied on (36) is described as follows:

10 Le et al.

Algorithm 3 S3VM-PiL
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR× IRm × IRp × IRp.
repeat

1. Set (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l) following (39), (20) and (21).
2. Solve the linear program (38) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1).
3. l = l + 1.

until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1)− (wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl, sl)‖+ 1).

3.1.4 SCAD (Smoothly Clipped Absolute Deviation) approximation

The SCAD (Smoothly Clipped Absolute Deviation) penalty function has been proposed for the
first time by J. Fan and R. Li ([12]) in the context off feature selection in regression. Later, in
[26], the authors reformulated the SCAD penalty function as a DC function and then developed
an efficient algorithm based on DC programming and DCA (DC Algorithm) for solving the
resulting optimization problem. The SCAD penalty function is expressed as follows

η4(x) =





λx if 0 ≤ x ≤ λ,
−x

2−2γλx+λ2

2(γ−1) if λ < x ≤ γλ,
(γ+1)λ2

2 if x > γλ,

η(−x) if x < 0,

where λ > 0 and γ > 2 are two tuning parameters.
Let h4 be the function given by:

h4(x) =





0 if 0 ≤ x ≤ λ,
1

2(γ−1) (x− λ)2 if λ < x ≤ λγ,
λx− (γ+1)λ2

2 if x > λγ,

h2(−x) if x < 0.

(40)

Clearly h4 is a convex functions and:

η4(x) = g1(x)− h4(x),

with g1 being defined in (14).
Hence, the resulting approximation problem of (10) takes the form:

min

{
F4(w, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+

n∑

i=1

η4(wi) : (w, b, ξ, r, s) ∈ K
}
. (41)

Clearly, F4(w, b, ξ, r, s) is a DC function with the following DC decomposition F4(w, b, ξ, r, s) =
G1(w, b, ξ, r, s)−H4(w, b, ξ, r, s), with G1 being defined in (15) and

H4(w, b, ξ, r, s) = −β〈e,min{r, s}〉+
n∑

i=1

h4(wi). (42)

Then the problem (41) can be expressed as:

min {G1(w, b, ξ, r, s)−H4(w, b, ξ, r, s) : (w, b, ξ, r, s) ∈ K} . (43)

Note that, since G1 is a polyhedral convex function,(43) becomes a DC polyhedral program.
In the same way to the computation of a subgradient of H1 (as well as H2 and H3), we get
(w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l) with r̄l (resp. s̄l) being defined in (20) (resp. (21)) and

wli =





0 if − λ ≤ wli ≤ λ,
(γ − 1)−1(wli − λ) if λ < wli ≤ γλ,
(γ − 1)−1(wli + λ) if − γλ ≤ wli < −λ,
λ if wli > γλ,

−λ if wli < −γλ,

i = 1, ...n. (44)

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 11

Finally, DCA applied to (43) is described as follows:

Algorithm 4 S3VM-SCAD
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR× IRm × IRp × IRp.
repeat

1. Set (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (w̄l, 0, 0, r̄l, s̄l) following (44), (20) and (21).
2. Solve the linear program (23) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1).
3. l = l + 1.

until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1)− (wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl, sl)‖+ 1).

3.1.5 Logarithm approximation

In [53], the authors proposed the following approximation for ‖w‖0:

‖w‖0 ≈
n∑

j=1

ln(ε+ |wj |), (45)

where 0 < ε << 1. Hence the resulting approximate problem of (10) is written as:

min

{
F5(w, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+

n∑

i=1

ln(ε+ |wj |) : (w, b, ξ, r, s) ∈ K
}
. (46)

By introducing a non-negative variable u ≥ 0 and the constraint relaxation −u ≤ w ≤ u, we
obtain the following program

min




F 5(w, b, ξ, r, s, u) := α〈e, ξ〉+ β〈e,min{r, s}〉+

n∑
i=1

ln(ε+ uj)

: (w, b, ξ, r, s, u) ∈ K̄
(47)

where
K̄ := K ∩ {u ∈ IRn : −u ≤ w ≤ u, u ≥ 0}. (48)

Since F 5 is a concave function, it is DC, and a DC decomposition of F 5 can be immediately
given by

F 5(w, b, ξ, r, s, u) = G5(w, b, ξ, r, s, u)−H5(w, b, ξ, r, s, u) (49)

where G5(w, b, ξ, r, s, u) := χK̄ and H5(w, b, ξ, r, s, u) = −F 5(w, b, ξ, r, s, u).
Then the problem (47) can be expressed as:

min
{
G5(w, b, ξ, r, s, u)−H5(w, b, ξ, r, s, u) : (w, b, ξ, r, s, u) ∈ K̄

}
(50)

which is a DC polyhedral program since G5 is polyhedral convex. Hence, applying DCA to
(50) amounts to computing, at each iteration l, the two sequences {(wl, bl, ξl, rl, sl, ul)} and
{(w̄l, b̄l, ξ̄l, r̄l, s̄l), ūl)} such that

(w̄l, b̄l, ξ̄l, r̄l, s̄l, ūl) ∈ ∂H5(wl, bl, ξl, rl, sl, ul),

and (wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1) is an optimal solution of the following convex problem

min
{
−〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉 : (w, b, ξ, r, s, u) ∈ K̄

}
. (51)

The computation of a subgradient of H5 leads us to take (w̄l, b̄l, ξ̄l, r̄l, s̄l, ūl) = (0, 0, 0, r̄l, s̄l, ūl)
with r̄l (resp. s̄l) being defined in (20) (resp. (21)) and

ul =
1

uli + ε
, i = 1, ...n. (52)

12 Le et al.

Hence, DCA applied to (50) is described as follows:

Algorithm 5 S3VM-Log
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0, u0) ∈ IRn × IR× IRm × IRp × IRp × IRn.
repeat

1. Set (w̄l, b̄l, ξ̄l, r̄l, s̄l, ūl) = (0, 0, 0, r̄l, s̄l, ūl) following (52), (20) and (21).
2. Solve the linear program (51) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1).
3. l = l + 1.

until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1)− (wl, bl, ξl, rl, sl, ul)‖ ≤ τ(‖(wl, bl, ξl, rl, sl, ul)‖+ 1).

3.1.6 Convergence

For simplifying the presentation, we use a common function F to name the objective function
of the resulting optimization problems, that is F ∈ {F1;F2;F3;F4;F5}.

Theorem 1 (Convergence properties of Algorithms S3VM-PiE, S3VM-PoDC, S3VM-PiL, S3VM-

SCAD, S3VM-Log)

(i) DCA generates a sequence {(wl, bl, ξl, rl, sl)} (resp. {(wl, bl, ξl, rl, sl, ul)}) such that the sequence

{F (wl, bl, ξl, rl, sl)} (resp. {F (wl, bl, ξl, rl, sl, ul)}) is monotonously decreasing.

(ii) The sequence {(wl, bl, ξl, rl, sl)} (resp. {(wl, bl, ξl, rl, sl, ul)}) converges to (w∗, b∗, ξ∗, r∗, s∗) (resp.

(w∗, b∗, ξ∗, r∗, s∗, u∗)) after a finite number of iterations.

(iii) The point (w∗, b∗, ξ∗, r∗, s∗)/(w∗, b∗, ξ∗, r∗, s∗, u∗) is a critical point of the objective function F .

(iv) The point (w∗, b∗, ξ∗, r∗, s∗)/(w∗, b∗, ξ∗, r∗, s∗, u∗) is almost always a local minimizer of the cor-

responding problem (17), (29), (36), (43), (59). Especially,

– In S3VM-PoDC, if
w∗i 6∈ {− 1

λ ; 1
λ} ∀i = 1..n

r∗i 6= s∗i ∀i = 1..p
(53)

then (w∗, b∗, ξ∗, r∗, s∗) is a local minimizer of (29).

– In S3VM-PiL, if
w∗i 6∈ {−b, b} ∀i = 1..n
r∗i 6= s∗i ∀i = 1..p

(54)

then (w∗, b∗, ξ∗, r∗, s∗) is a local minimizer of (36).

Proof : (i) and (iii) are direct consequences of the convergence properties of general DC programs
while (ii) is a convergence property of a DC polyhedral program. Only (iv) needs a proof.

In S3VM-PoDC, the second DC component of (29), says H2 is a polyhedral convex function.
Moreover, if the condition (53) holds then H2 is differentiable at (w∗, b∗, ξ∗, r∗, s∗). Then using
the convergence property of DCA for DC polyhedral program ([22]), we can conclude that
(w∗, b∗, ξ∗, r∗, s∗) is a local minimizer of (29). The proof is similar for S3VM-PiL since its second
DC component H3 is also polyhedral convex.

In S3VM-PiE, G1 is a polyhedral convex function, so is G∗1. Hence the dual DC program of
(17) is a polyhedral DC program. The necessary local optimality condition

∅ 6= ∂G∗1(w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗) ⊂ ∂H∗1 (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗)

becomes sufficient if G∗1 is differentiable at (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗), the limit point of the sequence
(w̄k, b̄k, ξ̄k, r̄k, s̄k) generated by S3VM-PiE. Since G∗1 is a polyhedral function, it is differentiable
everywhere except for a set of measure zero. Therefore, one can say that (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗) is
almost always a local solution of the dual DC program of (17).

On another hand, according to the property of transportation of local minimizers in DC
programming we have the following (see [22]): let (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗) be a local solution to the
dual program of (17) and (w∗, b∗, ξ∗, r∗, s∗) ∈ ∂G∗1(w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗). If H1 is differentiable at
(w∗, b∗, ξ∗, r∗, s∗) then (w∗, b∗, ξ∗, r∗, s∗) is a local solution of (17). Combining this property

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 13

with the facts that (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗) is almost always a local solution to the dual DC program
of (17) and H1 is differentiable almost everywhere (except when r∗i = s∗i), we conclude that
(w∗, b∗, ξ∗, r∗, s∗) is almost always a local minimizer to Problem (17).

For S3VM-SCAD (resp. S3VM-Log), the proof is similar as its first DC component G4 (resp.
G5) is polyhedral convex. The proof is then complete. �

3.2 A continuous reformulation of `0 via an exact penalty technique

In [29,47], the authors reformulated `0-norm problem as a continuous nonconvex program. More
precisely, the `0-norm is first equivalently formulated as a combinatorial optimization problem
and then the last problem is reformulated as a DC program via an exact penalty technique
([27]). We will use the same techniche for our problem (10).

We suppose that K is bounded in the variable w, i.e. K ⊂ Πn
i=1[ai, bi] × R where ai, bi ∈

R such that ai ≤ 0 < bi for i = 1, ..., n. Let ci := max{|wi| : wi ∈ [ai, bi]} = max{|ai| , |bi|} for
i = 1, ..., n. Define the binary variable ui ∈ {0, 1} as

uj =

{
1 if wj 6= 0,

0 if wj = 0
∀j = 1..n. (55)

The above relation can be expressed by:

|wj | ≤ cjuj ∀j = 1..n.

Then, the problem (10) can be written as:





min F6(w, b, ξ, r, s, u) := α〈e, ξ〉+ β〈e,min{r, s}〉+ 〈e, u〉
s.t. (w, b, ξ, r, s) ∈ K,

|wj | ≤ cjuj ∀j = 1..n,

u ∈ {0, 1}n
. (56)

Let p(u) :=
n∑
j=1

min{uj , (1−uj)} be the polyhedral concave function and L be the polyhedral

convex set defined as:

L :=





(w, b, ξ, r, s) ∈ K,
|wj | ≤ cjuj ∀j = 1..n,
u ∈ [0, 1]n



 . (57)

The problem (56) is equivalent to





min F6(w, b, ξ, r, s, u)

s.t. (w, b, ξ, r, s) ∈ L,
p(u) ≤ 0

. (58)

Using an exact penalty technique in DC programming ([27]), we can reformulate (58) as
a continuous optimization problem (κ, called penalty parameter, is sufficient large positive
number):

min
{
F̄6(w, b, ξ, r, s, u) := F6(w, b, ξ, r, s, u) + κp(u) : (w, b, ξ, r, s, u) ∈ L

}
. (59)

Proposition 1 There is κ0 ≥ 0 such that for every κ > κ0 problems (10) and (59) are equivalent,

in the sense that they have the same optimal value and (w∗, b∗, ξ∗, r∗, s∗) is a solution of (10) iff

there is u∗ ∈ {0, 1}n such that (w∗, b∗, ξ∗, r∗, s∗, u∗) is a solution of (59).

Proof Direct consequences of Theorem 8 in [27].

14 Le et al.

Since F6 and p are concave, the problem (59) is a DC program:

F̄6(w, b, ξ, r, s, u) = G6(w, b, ξ, r, s, u)−H6(w, b, ξ, r, s, u) (60)

where

G6(w, b, ξ, r, s, u) := χL(w, b, ξ, r, s, u) (61)

and

H6(w, b, ξ, r, s, u) := −F6(w, b, ξ, r, s, u)− κp(u). (62)

Furthermore, since G6 and H6 are polyhedral convex functions, (59) is a DC polyhedral
program. According to generic DCA scheme, DCA applied to (59) can be described as follows:

at each iteration l, we compute two sequences {(wl, bl, ξl, rl, sl, ul)} and {(wl, bl, ξl, rl, sl, ul)}
such that

(wl, b
l
, ξ
l
, rl, sl, ul) ∈ ∂H6(wl, bl, ξl, rl, sl, ul) (63)

and (wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1) is an solution of the following convex problem

min
{
−
〈

(wl, b
l
, ξ
l
, rl, sl, ul), (w, b, ξ, r, s, u)

〉
: (w, b, ξ, r, s, u) ∈ L.

}
(64)

The computation of a subgradient of H6 leads us to take (wl, b
l
, ξ
l
, rl, sl, ul) = (0, 0, 0, rl, sl, ul)

with r (resp. s) defined as in (20) (resp. (21)) and

uli =

{
+κ if ulj ≥ 0.5,

−κ if ulj < 0.5
∀i = 1, ...n. (65)

Finally, DCA applied to (59) is described as follows:

Algorithm 6 S3VM-Econ
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0, u0) ∈ IRn × IR× IRm × IRp × IRp × IRn.
repeat

1. Set (w̄l, b̄l, ξ̄l, r̄l, s̄l, ūl) = (0, 0, 0, r̄l, s̄l, ūl) following (65), (20) and (21).
2. Solve the linear program (51) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1).
3. l = l + 1.

until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1)− (wl, bl, ξl, rl, sl, ul)‖ ≤ τ(‖(wl, bl, ξl, rl, sl, ul)‖+ 1).

Theorem 2 (Convergence properties of S3VM-Econ)

(i) S3VM-Econ generates a sequence {(wl, bl, ξl, rl, sl, ul)} contained in V (L) such that the sequence

{F6(wl, bl, ξl, rl, sl, ul) + κp(ul)} is decreasing.

(ii) For a number κ sufficiently large, if at an iteration q we have uq ∈ {0, 1}n, then ul ∈ {0, 1}n for

all l ≥ q.
(iii) The sequence {(wl, bl, ξl, rl, sl, ul)} converges to {(w∗, b∗, ξ∗, r∗, s∗, u∗)} ∈ V (L) after a finite

number of iterations. The point (w∗, b∗, ξ∗, r∗, s∗, u∗) is a critical point of Problem (59). Moreover

if u∗i 6= 1
2 , ∀i = 1...n and r∗i 6= s∗i , ∀i = 1..p then {(x∗, γ∗, ξ∗, ζ∗, u∗)} is a local solution to (59).

Proof. i) is consequence of DCA’s convergence Theorem for a general DC program.

ii) Let κ > κ1 := max
{
F6(w,b,ξ,r,s,u)−η

δ : (w, b, ξ, r, s, u) ∈ V (L), p(u) ≤ 0
}

where η := min{F6(w, b, ξ, r, s, u) : (w, b, ξ, r, s, u) ∈ V (L)} and δ := min{p(u) : (w, b, ξ, r, s, u) ∈
V (L)}. Let {(wl, bl, ξl, rl, sl, ul)} ⊂ V (L) (l ≥ 1) be generated by S3VM-Econ. If V (L) ⊂ {L∩ u ∈
{0, 1}n}, then the assertion is trivial. Otherwise, let (wl, bl, ξl, rl, sl, ul) ∈ {L ∩ u ∈ {0, 1}n} and
(wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1) ∈ V (L) be an optimal solution of the linear program (64). Then
from (i) of this theorem we have

F6(wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1) + κp(ul+1) ≤ F6(wl, bl, ξl, rl, sl, ul) + κp(ul).

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 15

Since p(ul) = 0, it follows

κp(ul+1) ≤ F6(wl, bl, ξl, rl, sl, ul)− F6(wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1)

≤ F6(wl, bl, ξl, rl, sl, ul)− η.

If p(ul+1) > 0, then

κ ≤ F6(wl, bl, ξl, rl, sl, ul)− η
p(ul+1)

≤ F6(wl, bl, ξl, rl, sl, ul)− η
δ

≤ κ1

which contradicts the fact that κ > κ1. Therefore we have p(ul+1) = 0.
iii) Since (59) is a polyhedral DC program, S3VM-Econ has a finite convergence and say, the

sequence {(wl, bl, ξl, rl, sl, ul)} converges to a critical point (w∗, b∗, ξ∗, r∗, s∗, u∗) ∈ V (L) after a
finite number of iterations.

Furthermore, if u∗i 6= 1
2 , ∀i = 1...n and r∗i 6= s∗i ,∀i = 1..p then the function H6 is differen-

tiable at (w∗, b∗, ξ∗, r∗, s∗, u∗). Then using the convergence property of DC polyhedral program,
(w∗, b∗, ξ∗, r∗, s∗, u∗) is a local minimizer of (59). The proof is then complete. �

4 Computational experiments

4.1 Datasets

Numerical experiments were performed on several real-world datasets taken from UCI Machine
Learning Repository and NIPS 2003 Feature Selection Challenge. The information about data
sets is summarized in Table 1 (#Att is the number of features while #Train(resp. #Test) stands
for the number of points in training set (resp. test set)). For GIS, LEU and ARC datasets,
training and test sets are given. For the remaining datasets, training and test sets are randomly
sampled from the original set (cf. 4.3).

Table 1 Datasets

Dataset #Att #Train#Test#Total
W60 30 - - 569
Ionosphere (INO) 34 - - 351
Spambase (SPA) 57 - - 2301
Internet Advertisements (ADV) 1558 - - 3279
Gisette (GIS) 5000 6000 1000 7000
Leukemia (LEU) 7129 38 34 72
Arcene (ARC) 10000 100 100 200

4.2 Comparative algorithms

We compare our DCA based algorithms with the feature selection S3VM using `1-norm, namely

min {F7(w, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+ ‖w‖1 : (w, b, ξ, r, s) ∈ K} . (66)

Once again, problem (66) can be formulated as a DC program and then solved by DC program-
ming and DCA. Let

G7(w, b, ξ, r, s) = α〈e, ξ〉+ ‖w‖1 and H7(w, b, ξ, r, s) = −β〈e,min{r, s}〉.
The objective function of (66) can be written as:

F7(w, b, ξ, r, s) = G7(w, b, ξ, r, s)−H7(w, b, ξ, r, s).

Obviously, G7(w, b, ξ, r, s) and H7(w, b, ξ, r, s) are convex polyhedral functions. Therefore (66) is
a polyhedral DC program. DCA applied to (66) can be described as follows:

16 Le et al.

Algorithm 7 S3VM-`1
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR× IRm × IRp × IRp.
repeat

1. Compute (w̄l, b̄l, ξ̄l, r̄l, s̄l) = (0, 0, 0, r̄l, s̄l) following (20) and (21).
2. Solve the linear following program to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1):





min 〈e, t〉+ α〈e, ξ〉 − 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉,
s.t. (w, b, ξ, r, s) ∈ K,

ti ≥ wi, ti ≥ −wi ∀i = 1, . . . , n.
(67)

3. l = l + 1.
until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1)− (wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl, sl)‖+ 1).

As we have mentioned before, Bradley and Mangasarian ([4]) proposed a concave approx-
imation of `0-norm. Later, in [43], the author used the same approximation for S3VM. As for
Logarithm approximation, by introducing a non-negative variable u ≥ 0 and the constraint
relation −u ≤ w ≤ u, the resulting problem is described as follows

min




F8(w, b, ξ, r, s, u) := α〈e, ξ〉 +β〈e,min{r, s}〉+

n∑
i=1

(1− ε−λui)

: (w, b, ξ, r, s, u) ∈ K̄



 . (68)

with K̄ defined in (48). The objective function of (68) can be written as:

F8(w, b, ξ, r, s, u) = G8(w, b, ξ, r, s, u)−H8(w, b, ξ, r, s, u)

where
G8(w, b, ξ, r, s, u) = χK̄ and H8(w, b, ξ, r, s, u) = −F8(w, b, ξ, r, s, u).
It is clear that G8(w, b, ξ, r, s, u) and H8(w, b, ξ, r, s, u) are convex functions. Therefore (68) is

a DC program. Below is the description of DCA applied to (68):

Algorithm 8 S3VM-FSV
initializations: let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0, u0, u0) ∈ IRn × IR× IRm × IRp × IRp × IRn.
repeat

1. Compute (w̄, b̄, ξ̄, r̄, s̄, ū) = (0, 0, ξ̄, r̄, s̄, ū) with r̄ (resp. s̄) given as in (20) (resp. (21)) and

ξ̄ = −αe,
ūi = λε−λui ∀i = 1, . . . , n.

2. Solve the linear following program to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1):

min
{
−〈(w̄l, b̄l, ξ̄l, r̄l, s̄l, ūl), (w, b, ξ, r, s, u)〉 : (w, b, ξ, r, s, u) ∈ K̄

}
. (69)

3. l = l + 1.
until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1, ul+1, ul+1)− (wl, bl, ξl, rl, sl, ul, ul)‖ ≤ τ(‖(wl, bl, ξl, rl, sl, ul, ul+1)‖+
1).

4.3 Set up experiments and Parameters

All algorithms were implemented in the Visual C++ 2005, and performed on a PC Intel i5
CPU650, 3.2 GHz of 4GB RAM. We stop DCA with the tolerance τ = 10−6. The non-zero
elements of w are determined according to whether |wi| exceeds a small threshold (10−6). For
the W60, INO, SPA and ADV datasets, we randomly chose 60% of the whole original dataset
for training, the 40% remaining data are used as test set. This procedure is repeated 10 times.
On each given training set and test set, each algorithm is performed 10 times from 10 random
starting points. We then report the best result, the average result and the standard deviation

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 17

over the executions. The starting point of DCA is chosen as follows: ξ0, r0, s0 are set to zero
and w0 and b0 are randomly chosen.

For S3VM PiE, we set λ = 5 as proposed by [4]. Following Fan and Li in [12] we set the
parameters λ and γ in S3VM SCAD to, respectively, 0.4 and 3.4. For S3VM PoDC, λ is chosen
from 0.9 to 2.1. For S3VM PiL, we take a = 10−6 and b ∈ {10−4, 10−3, ..., 10−1, 0.2, 0.3}. In
S3VM ECon, the penalty parameter κ is in the set {100, 1000, 2000, 3000, 4000, 5000}, ci is set
to a sufficient large value, say 10, 000. Finally, for S3VM Log, ε is set to 0.1.

We are interested in the classification error and the sparsity of obtained solution as well
as the rapidity of the algorithms. We measure the classification error via two criteria : the
maximum sum (MS) and the accuracy (ACC) which are defined as follows:

MS = (SE + SP)/2, ACC = (TP + TN)/(TP + TN + FP + FN),

where TP and TN denote true positives and true negatives while FP and FN represent false
positives and false negatives. SE = TP/(TP + FN) (resp. SP = TN/(TN + FP)) is the cor-
rectness rate of positive class (resp. negative class). The sparsity of solution is determined by
the number of selected features (SF) while the rapidity of algorithms is measured by the CPU
time in seconds.

4.4 Experimental results and comments

Experiment 1: In the first experiment, we are interested in the effectiveness of all algorithms
when the numbers of unlabeled points varies. For this purpose, we arbitrarily choose a data set
(LEU) and then change the percentage of unlabeled points in training set from 20% to 80%.
We report in Figure 2 (resp. Figure 1), the ACC (resp. SF) of all algorithms on training and
test set.

Fig. 1 Accuracy of classifiers (ACC) on training (right) and test (left) of dataset LEU with different numbers
of unlabeled points.

We observe that:

– In most cases, the DCA based algorithms on the `0 model give better accuracy while choosing
much less features than S3VM-`1 (the gain on number of selected features is up to 5, 6 times).

– When the number of unlabeled points exceeds 70%, the accuracy of all algorithms decrease
dramatically, especially for S3VM-`1.

Experiment 2: In the second experiment, we compare the effectiveness of all the algorithms
with a fixed percentage of unlabeled points . According to the second remark of experiment 1,
60% of training set will be set to be unlabeled points. The comparative results are reported in
Table 2, Table 3, Table 4, Table 5.
From the computational results we observe that:

18 Le et al.

T
a
b
le

2
S

elected
fea

tu
res

(a
n

d
co

rresp
o
n

d
in

g
p

ercen
ta

g
es)

o
f

th
e

a
lg

o
rith

m
s

D
a
ta

S
3
V

M
-P

iE
S

3
V

M
-P

o
D

C
S

3
V

M
-P

iL
S

3
V

M
-S

C
A

D
S

3
V

M
-L

o
g

S
3
V

M
-E

C
o
n

S
3
V

M
-S

F
V

S
3
V

M
-l1

N
a
m

e
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
W

6
0

(#
)

2
2
.9

2±
0
.6

3
4

4
.1

2±
0
.3

3
5

5
.2

4±
0
.4

3
2

2
.4
4±

0
.4

9
3

3
.4

0±
0
.8

0
3

4
.2

7±
1
.1

0
4

4
.2

8±
0
.4

6
6

6
.6

1±
0
.6

4
(%

)
6
.6
7

9
.7

3±
2
.1

0
1
3
.3

3
1
3
.7

3±
1
.1

0
1
6
.6

7
1
7
.4

7±
1
.4

3
6
.6
7

8
.1
3±

1
.6

3
1
0
.0

0
1
1
.3

3±
2
.6

7
1
0
.0

0
1
4
.2

3±
3
.6

7
1
3
.3

3
1
4
.2

7±
1
.5

3
2
0
.0

0
2
2
.0

3±
2
.1

3
IN

O
(#

)
4

5
.5±

0
.6

8
5

8
.2

1±
1
.8

1
7

7
.3

1±
0
.3

5
5

6
.0

1±
0
.5

5
5

8
.1

1±
2
.8

9
6

7
.0

2±
0
.4

4
6

6
.6

4±
0
.8

9
2
8

2
9
.1

0±
0
.6

5
(%

)
1
1
.7
6

1
6
.1
8±

2
.0

0
1
4
.7

1
2
4
.1

5±
5
.3

2
2
0
.5

9
2
1
.5

0±
1
.0

3
1
4
.7

1
1
7
.6

8±
1
.6

2
1
4
.7

1
2
3
.8

5±
8
.5

0
1
7
.6

5
2
0
.6

5
±

1
.2

9
1
7
.6

5
1
9
.5

3±
2
.6

2
8
2
.3

5
8
5
.5

9±
1
.9

1
S

P
A

(#
)

4
9
.6

9±
3
.5

4
3

6
.5

4±
2
.5

1
5

1
2
.3

5±
4
.4

6
5

9
.6

5±
4
.1

0
4

6
.4

1±
1
.0

3
5

1
2
.3

1±
3
.5

2
3

6
.2
6±

1
.7

1
1
5

2
3
.7

1±
5
.2

4
(%

)
7
.0

2
1
7
.0

0±
6
.2

1
5
.2
6

1
1
.4

7±
4
.4

0
8
.7

7
2
1
.6

7±
7
.8

2
8
.7

7
1
6
.9

3±
7
.1

9
7
.0

2
1
1
.2

5±
1
.8

1
8
.7

7
2
1
.6

0
±

6
.1

8
5
.2
6

1
0
.9
8±

3
.0

0
2
6
.3

2
4
1
.6

0±
9
.1

9
A

D
V

(#
)

2
3
.9
7±

1
.6

0
1
4

3
0
.9

3±
1
3
.8

4
2
4

4
5
.6

0±
1
4
.3

2
1
5

2
5
.2

8±
6
.6

2
3

4
.3

2±
0
.6

1
3

2
7
.2

4±
1
4
.9

9
3
2

3
8
.1

7±
6
.8

7
2
6
5

4
8
9
.4

5±
1
0
9
.6

6
(%

)
0
.1
3

0
.2
5±

0
.1

0
0
.9

0
1
.9

9±
0
.8

9
1
.5

4
2
.9

3±
0
.9

2
0
.9

6
1
.6

2±
0
.4

2
0
.1

9
0
.2

8±
0
.0

4
0
.1

9
1
.7

5±
0
.9

6
2
.0

5
2
.4

5±
0
.4

4
1
7
.0

1
3
1
.4

2±
7
.0

4
G

IS
(#

)
1
0
8
2

1
1
1
2
.8±

2
7
.1

1
3
4
4

1
3
9
4
.4±

3
4
.7

5
2
5
8
0
8
.3±

2
7
9
.8

1
3
3
4

1
3
8
9
.0±

3
7
.7

1
1
2
2

1
1
4
4
.8±

1
4
.6

5
2
5
8
0
8
.3±

2
7
9
.8

1
1
3
5

1
2
3
7
.6±

5
1
.2

6
1
9
1
8

2
0
7
3
.5±

1
2
2
.6

(%
)

2
1
.6

4
2
2
.2

6±
0
.5

4
2
6
.8

8
2
7
.8

9±
0
.6

9
1
0
.5

1
6
.1
7±

5
.5

9
2
6
.6

8
2
7
.7

8±
0
.7

5
2
2
.4

4
2
2
.9

0±
0
.2

9
1
0
.5

1
6
.1
7±

5
.5

9
2
2
.7

0
2
4
.7

5±
1
.0

3
3
8
.3

6
4
1
.4

7±
2
.4

5
L

E
U

(#
)

8
1
4
.4

0±
2
.8

7
1
1

1
6
.1

0±
2
.7

7
1
0

1
2
.6

0±
3
.0

1
1
1

1
7
.5

0±
3
.5

8
3

4
.5
0±

1
.2

8
9

1
3
.2

0±
2
.4

4
1
5

2
0
.4

0±
1
2
.9

3
1
1

1
8
.4

0±
5
.4

6
(%

)
0
.1

1
0
.2

0±
0
.0

4
0
.1

5
0
.2

3±
0
.0

4
0
.1

4
0
.1

8±
0
.0

4
0
.1

5
0
.2

5±
0
.0

5
0
.0
4

0
.0
6±

0
.0

2
0
.1

3
0
.1

9±
0
.0

3
0
.2

1
0
.2

9±
0
.1

8
0
.1

5
0
.2

6±
0
.0

8
A

R
C

(#
)

1
0

1
0
.3
0±

0
.4

5
1
4

2
1
.8

0±
6
.2

1
1
8

4
2
.1

0±
1
5
.2

3
4
6

6
2
.9±

1
2
.6

6
1
5

1
5
.7

0±
0
.7

8
1
3

2
0
.2

0±
4
.4

0
2
0

2
9
.6

0±
1
6
.1

1
5
1

7
1
.2

0±
1
3
.4

1
(%

)
0
.1
0

0
.1
0±

0
.0

0
0
.1

4
0
.2

2±
0
.0

6
0
.1

8
0
.4

2±
0
.1

5
0
.4

6
0
.6

3±
0
.1

3
0
.1

5
0
.1

6±
0
.0

1
0
.1

3
0
.2

0±
0
.0

4
0
.2

0
0
.3

0±
0
.1

6
0
.5

1
0
.7

1±
0
.1

3

A
v
era

g
e(%

)
6
.7

8
9
.3
9±

1
.5

7
8
.7

7
1
1
.3

8±
1
.7

9
8
.3

4
1
1
.4

8±
2
.4

3
8
.3

4
1
0
.4

3±
1
.6

8
7
.7

9
9
.9

8±
1
.9

1
6
.7
7

1
0
.6

8±
2
.5

4
8
.7

7
1
0
.3

7±
1
.2

8
2
6
.3

9
3
1
.8

7±
3
.2

8

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 19

T
a
b
le

3
A

cc
u

ra
cy

o
f

cl
a
ss

ifi
er

s
o
f

th
e

a
lg

o
ri

th
m

s
o
n

:
(1

)
-

te
st

se
t,

(2
)

-
tr

a
in

in
g

se
t

D
a
ta

S
3
V

M
-P

iE
S

3
V

M
-P

o
D

C
S

3
V

M
-P

iL
S

3
V

M
-S

C
A

D
S

3
V

M
-L

o
g

S
3
V

M
-E

C
o
n

S
3
V

M
-S

F
V

S
3
V

M
-l

1

N
a
m

e
B

es
t

M
ea

n
±

S
D

B
es

t
M

ea
n
±

S
D

B
es

t
M

ea
n
±

S
D

B
es

t
M

ea
n
±

S
D

B
es

t
M

ea
n
±

S
D

B
es

t
M

ea
n
±

S
D

B
es

t
M

ea
n
±

S
D

B
es

t
M

ea
n
±

S
D

W
6
0

(1
)
9
4
.6
9

9
0
.9

4
±

2
.6

1
9
3
.3

6
9
0
.1

1
±

3
.4

8
9
4
.6
9
9
3
.6
6
±

0
.8

7
9
2
.0

6
9
1
.8

8
±

0
.3

6
9
2
.9

2
9
0
.0

9
±

3
.0

9
9
2
.9

2
9
0
.5

3
±

0
.7

7
8
9
.4

2
8
4
.7

8
±

2
.6

8
8
4
.1

3
8
4
.0

1
±

0
.1

3
(2

)
9
3
.2

9
9
1
.3

5
±

1
.3

2
9
4
.4
6
9
2
.4
0
±

3
.3

6
9
4
.4
6

9
0
.4

1
±

3
.3

1
9
2
.9

0
9
1
.9

3
±

1
.9

4
9
1
.2

5
8
9
.9

1
±

2
.0

3
9
3
.8

8
9
1
.6

5
±

1
.0

9
8
6
.0

5
8
3
.4

2
±

2
.9

6
8
5
.6

6
8
3
.6

6
±

1
.1

7
IN

O
(1

)
8
5
.0
5

7
6
.3

1
±

2
.2

1
8
4
.2

5
7
4
.2

7
±

1
.6

7
7
8
.8

1
7
5
.9

6
±

1
.3

6
7
5
.3

2
7
4
.6

6
±

0
.4

5
7
7
.7

8
7
6
.6
8
±

1
.1

0
7
6
.9

2
7
5
.8

7
±

1
.4

7
7
7
.7

8
7
5
.4

7
±

2
.8

4
7
2
.8

9
7
1
.6

9
±

0
.3

3
(2

)
7
8
.5

2
7
3
.8

9
±

2
.4

4
8
4
.7

7
7
4
.9

8
±

7
.4

9
8
2
.2

4
8
0
.8

8
±

0
.7

1
8
0
.5

5
8
0
.0

4
±

0
.0

9
8
5
.9

0
8
2
.5

6
±

2
.3

6
8
2
.2

4
8
0
.8

6
±

0
.4

1
8
1
.2

7
7
.6

6
±

3
.1

8
8
8
.4
6
8
8
.2
6
±

0
.4

1
S

P
A

(1
)
6
5
.3
6
6
3
.5
6
±

0
.4

2
6
3
.7

2
6
3
.3

8
±

0
.2

8
6
3
.7

2
6
2
.8

8
±

0
.4

9
6
3
.8

8
6
2
.8

7
±

0
.3

8
6
3
.7

2
6
2
.8

7
±

0
.3

3
6
3
.7

8
6
2
.8

9
±

0
.4

4
6
3
.8

9
6
3
.0

2
±

0
.7

2
6
3
.5

5
6
2
.1

1
±

0
.5

2
(2

)
6
5
.6
8
6
3
.1
7
±

0
.4

4
6
3
.3

6
6
2
.8

9
±

0
.4

1
6
4
.4

9
6
2
.3

6
±

0
.7

5
6
3
.9

7
6
2
.9

9
±

0
.5

2
6
3
.9

7
6
2
.9

8
±

0
.4

6
6
4
.4

1
6
2
.5

5
±

0
.6

6
6
4
.7

6
2
.5

6
±

0
.5

3
6
4
.5

6
6
2
.7

4
±

0
.6

4
A

D
V

(1
)

9
5
.5

0
9
3
.1

7
±

1
.7

8
9
5
.0

4
9
3
.8
1
±

0
.8

3
9
5
.0

4
9
3
.4

8
±

3
.2

3
9
4
.3

6
9
2
.4

4
±

1
.2

3
9
5
.0

4
9
3
.6

1
±

1
.1

5
9
5
.8
8

9
3
.2

0
±

1
.9

6
9
2
.8

1
9
1
.7

7
±

0
.8

1
9
3
.8

8
9
2
.1

4
±

0
.6

4
(2

)
9
5
.6

3
9
3
.6

0
±

1
.7

9
9
6
.4
4
9
4
.9
4
±

1
.0

2
9
5
.6

3
9
4
.1

8
±

0
.9

8
9
5
.2

2
9
3
.2

2
±

1
.1

3
9
5
.2

2
9
3
.8

9
±

0
.9

8
9
6
.2

4
9
3
.9

6
±

1
.6

6
9
5
.0

4
9
3
.2

1
±

0
.8

8
9
5
.3

2
9
4
.0

8
±

1
.0

2
G

IS
(1

)
6
8
.4

0
6
7
.3

4
±

0
.8

5
7
0
.1

0
6
8
.2

4
±

1
.2

7
6
8
.6

0
6
6
.4

8
±

1
.1

4
7
3
.0
9

6
9
.3

2
±

1
.8

0
7
0
.7

0
7
0
.0
0
±

0
.4

0
6
8
.6

0
6
6
.4

8
±

1
.1

4
6
9
.9

0
6
9
.0

7
±

0
.8

3
6
5
.1

0
6
2
.9

4
±

1
.5

8
(2

)
6
9
.6

5
6
8
.9

8
±

0
.5

3
6
9
.0

8
6
7
.9

4
±

0
.9

4
6
7
.8

7
6
5
.6

1
±

1
.1

2
6
9
.0

7
6
8
.1

8
±

0
.8

8
7
0
.9

6
9
.7
3
±

0
.6

0
6
7
.8

7
6
5
.6

1
±

1
.1

2
6
9
.3

8
6
9
.1

2
±

0
.2

8
6
4
.6

0
6
3
.4

9
±

0
.5

3
L

E
U

(1
)

8
5
.2

9
7
4
.4

1
±

4
.5

6
8
5
.2

9
7
5
.8

8
±

4
.8

8
7
9
.4

1
7
2
.0

6
±

3
.5

4
8
2
.3

5
7
6
.7

7
±

2
.7

7
9
1
.1
8
8
4
.4
1
±

3
.4

9
8
2
.3

5
6
7
.6

5
±

5
.0

9
8
8
.2

4
7
6
.4

7
±

4
.9

2
7
9
.4

1
7
1
.1

8
±

4
.3

2
(2

)
8
4
.2

1
6
7
.8

9
±

9
.8

3
8
1
.5

8
7
3
.9

5
±

5
.9

4
7
3
.6

8
6
1
.8

4
±

6
.8

9
8
1
.7

9
7
1
.8

4
±

7
.2

6
9
4
.9
7
8
5
.5
3
±

5
.1

6
7
3
.6

8
6
6
.0

5
±

4
.1

5
9
7
.3

7
8
0
.0

0
±

7
.8

2
7
1
.0

6
6
3
.6

8
±

6
.6

4
A

R
C

(1
)

7
5
.0

0
7
5
.0

0
±

0
.0

0
7
6
.0

0
7
2
.5

0
±

2
.2

5
7
1
.0

0
6
6
.8

0
±

2
.2

3
6
8
.0

0
6
4
.0

0
±

1
.6

1
7
9
.0
0
7
5
.3
0
±

1
.6

8
7
1
.0

0
6
7
.5

0
±

1
.5

0
7
2
.0

0
7
0
.8

0
±

0
.7

5
7
5
.0

0
6
6
.4

0
±

3
.2

0
(2

)
7
6
.0

0
7
5
.3

0
±

0
.9

0
6
9
.0

0
6
6
.6

7
±

1
.7

3
7
3
.0

0
6
1
.8

0
±

5
.8

5
7
8
.0

0
6
9
.9

0
±

4
.4

4
8
1
.0
0
7
8
.9
0
±

1
.0

4
7
3
.0

0
6
8
.0

0
±

3
.8

2
8
1
.0

0
7
5
.8

0
±

3
.3

4
7
1
.0

0
6
2
.8

0
±

4
.1

9

A
v
er

a
g
e(

1
)

7
8
.9

7
7
7
.2

5
±

1
.8

7
8
1
.1

1
7
6
.8

8
±

2
.0

9
7
8
.7

5
7
5
.9

0
±

1
.8

4
7
8
.4

4
7
5
.9

9
±

1
.2

3
8
1
.4
8
7
8
.9
9
±

1
.6

1
7
8
.7

8
7
4
.8

7
±

1
.7

7
7
9
.1

5
7
5
.9

2
±

1
.9

4
7
6
.2

8
7
2
.9

2
±

1
.5

3
(2

)
8
0
.4

3
7
6
.3

1
±

2
.4

6
7
9
.8

1
7
6
.2

5
±

2
.9

8
7
8
.7

7
7
3
.8

7
±

2
.8

0
8
0
.2

1
7
6
.8

7
±

2
.3

2
8
3
.3
2
8
0
.5
0
±

1
.8

0
7
8
.7

6
7
5
.5

3
±

1
.8

4
8
2
.1

1
7
7
.4

0
±

2
.7

1
7
7
.2

4
7
4
.1

0
±

2
.0

9

20 Le et al.

T
a
b
le

4
M

a
x
im

u
m

S
u

m
o
f

th
e

a
lg

o
rith

m
s

o
n

:
(1

)
-

test
set,

(2
)

-
tra

in
in

g
set

D
a
ta

S
3
V

M
-P

iE
S

3
V

M
-P

o
D

C
S

3
V

M
-P

iL
S

3
V

M
-S

C
A

D
S

3
V

M
-L

o
g

S
3
V

M
-E

C
o
n

S
3
V

M
-S

F
V

S
3
V

M
-l1

N
a
m

e
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
B

est
M

ea
n±

S
D

B
est

M
ea

n±
S

D
W

6
0

(1
)
9
4
.4
7

9
0
.9

7±
2
.3

1
9
1
.9

6
9
1
.4

9±
0
.2

8
9
4
.0

8
9
3
.6
6±

1
.2

2
9
1
.7

4
9
1
.4

4±
0
.6

1
9
2
.4

7
9
1
.2

4±
2
.3

2
9
3
.1

5
9
1
.4

7±
0
.8

4
9
1
.6

8
7
.2

3±
1
.6

8
8
6
.8

1
8
6
.6

3±
0
.4

7
(2

)
9
4
.0

2
9
1
.4

9±
1
.9

0
9
4
.9

5
9
2
.0

6±
2
.1

2
9
4
.0

2
9
2
.7
7±

2
.7

1
8
9
.5

2
8
9
.3

7±
0
.1

8
9
1
.0

7
9
0
.2

9±
1
.0

3
9
4
.4
9

9
2
.6

7±
0
.9

6
8
8
.7

2
8
5
.3

5±
1
.1

6
8
5
.5

7
8
5
.2

1±
0
.3

3
IN

O
(1

)
8
2
.3
2

7
5
.0

1±
2
.6

9
7
8
.8

9
7
3
.7

1±
1
.8

8
7
7
.5

4
7
2
.9

1±
0
.3

5
7
3
.3

3
7
2
.6

6±
0
.1

4
8
2
.1

4
7
5
.1
1±

2
.3

3
7
5
.5

5
7
2
.8

5±
0
.3

1
7
6
.6

2
7
4
.2

1±
2
.0

1
6
9
.6

8
6
9
.1

8±
0
.1

9
(2

)
7
8
.3

6
7
6
.3

9±
2
.1

8
8
5
.6
7

7
6
.1

7±
5
.8

2
8
1
.5

4
8
1
.1

1±
0
.1

4
8
1
.8

7
8
1
.5

5±
0
.6

4
8
5
.6

6
8
2
.7

2±
3
.1

2
8
2
.2

4
8
1
.2

2±
0
.1

4
8
3
.5

8
0
.3

6±
2
.5

7
8
3
.9

4
8
3
.0
2±

0
.3

2
S

P
A

(1
)

5
4
.6

9
5
3
.8

8±
0
.4

5
5
4
.8
8

5
3
.7

8±
0
.3

3
5
4
.6

5
5
3
.1

8±
0
.4

2
5
3
.8

8
5
3
.2

4±
0
.3

5
5
4
.1

4
5
3
.9
1±

0
.3

7
5
4
.5

5
5
3
.8

4±
0
.6

9
5
4
.3

9
5
3
.9
1±

0
.4

8
5
4
.1

2
5
2
.9

9±
0
.6

8
(2

)
5
3
.8

9
5
3
.1

2±
0
.4

9
5
4
.5

2
5
3
.5
7±

0
.3

8
5
4
.8

8
5
3
.5

6±
1
.1

7
5
3
.9

8
5
2
.1

9±
0
.7

1
5
3
.8

9
5
2
.8

7±
0
.3

6
5
4
.9

6
5
3
.1

1±
1
.0

1
5
5
.1

5
5
2
.5

5±
1
.1

4
5
4
.9
8

5
2
.8

1±
0
.8

2
A

D
V

(1
)

9
2
.1

3
9
0
.4

1±
1
.6

8
9
2
.5
2

8
9
.3

5±
1
.7

4
9
2
.5
2
9
1
.3
1±

0
.7

7
8
9
.6

2
8
7
.4

2
±

1
.1

2
8
9
.0

6
8
3
.0

0±
4
.4

6
9
2
.4

0
8
5
.4

5±
7
.1

3
8
8
.9

1
8
7
.1

9±
0
.8

5
8
9
.0

6
8
6
.6

9±
2
.8

9
(2

)
9
4
.6
5

9
2
.2

4±
0
.8

9
9
4
.1

7
9
2
.1

7±
1
.3

6
9
4
.2

4
9
3
.6

6±
0
.5

1
9
3
.0

4
8
9
.9

6±
1
.6

7
8
8
.4

9
8
3
.6

4±
3
.7

0
9
4
.1

8
8
7
.5

0±
7
.3

8
9
4
.4

4
9
3
.1

2±
0
.6

4
9
4
.3

6
9
3
.8
4±

0
.3

8
G

IS
(1

)
6
8
.4

0
6
7
.3

4±
0
.8

5
7
0
.1

0
6
8
.2

4±
1
.2

7
6
8
.6

0
6
6
.4

8±
1
.1

4
7
4
.9
5

6
9
.6

7±
2
.3

9
7
0
.7

0
7
0
.0
0±

0
.4

0
6
8
.6

0
6
6
.4

8±
1
.1

4
6
9
.9

0
6
9
.0

7±
0
.8

3
6
5
.1

0
6
2
.9

4±
1
.5

8
(2

)
6
9
.6

5
6
8
.9

8±
0
.5

3
6
9
.0

8
6
7
.9

4±
0
.9

4
6
7
.8

7
6
5
.6

1±
1
.1

2
6
9
.0

7
6
8
.1

8±
0
.8

8
7
0
.9

6
9
.7
3±

0
.6

0
6
7
.8

7
6
5
.6

1±
1
.1

2
6
9
.3

8
6
9
.1

2±
0
.2

8
6
4
.6

0
6
3
.4

9±
0
.5

3
L

E
U

(1
)

8
3
.2

1
7
0
.8

6±
5
.8

2
8
4
.2

9
7
3
.2

9±
5
.8

1
8
0
.3

6
7
2
.1

8±
4
.0

9
7
8
.5

7
7
4
.4

6±
2
.9

9
9
0
.3
6
8
1
.2
9±

4
.6

6
8
1
.7

9
6
9
.9

3±
4
.2

6
8
5
.7

1
7
1
.8

6±
5
.8

1
8
0
.3

6
6
8
.3

2±
5
.5

3
(2

)
8
6
.2

0
6
5
.5

6±
1
1
.5

9
7
5
.2

5
6
9
.8

2±
6
.3

5
6
6
.8

4
5
8
.6

0±
6
.0

7
8
7
.0

4
6
9
.6

8±
8
.6

1
9
0
.9

1
7
5
.0
0±

8
.9

2
7
8
.7

9
6
7
.2

2±
5
.5

7
9
0
.1
6

6
6
.1

2±
1
2
.4

9
6
8
.8

6
5
8
.0

1±
7
.7

5
A

R
C

(1
)

7
4
.5

1
7
4
.5
1±

0
.0

0
7
4
.6

8
7
2
.1

6±
1
.6

1
7
0
.9

4
6
6
.1

7±
3
.4

8
6
7
.7

8
6
4
.7

9±
1
.1

6
7
7
.1
1

7
3
.8

1±
1
.5

0
7
0
.7

6
6
.6

2±
1
.5

4
7
1
.1

0
6
9
.0

3±
1
.5

5
7
4
.7

6
6
6
.3

2±
3
.3

1
(2

)
7
5
.4

1
7
4
.7

8±
0
.8

0
7
0
.1

3
6
6
.8

6±
2
.1

8
7
3
.2

1
6
1
.1

4±
7
.1

2
7
8
.9

7
1
.0

6±
4
.7

1
8
0
.3
6
7
8
.2
6±

1
.0

8
7
2
.4

8
6
8
.0

0±
3
.8

0
7
8
.9

0
7
4
.4

7±
2
.4

3
7
2
.8

9
6
3
.1

3±
4
.1

7

A
v
era

g
e

(1
)

7
8
.5

3
7
4
.7

1±
1
.9

7
7
8
.1

9
7
4
.5

7±
1
.8

5
7
6
.9

6
7
3
.7

0±
1
.6

4
7
5
.7

0
7
3
.3

8±
1
.2

5
7
9
.4
3
7
5
.4
8±

2
.2

9
7
6
.6

8
7
2
.3

8±
2
.7

0
7
6
.8

9
7
3
.2

1±
1
.8

9
7
4
.2

7
7
0
.4

4±
2
.0

9
(2

)
7
8
.8

8
7
4
.6

5±
2
.6

3
7
7
.6

8
7
4
.0

8±
2
.7

4
7
6
.0

9
7
2
.3

5±
2
.6

9
7
9
.0

6
7
4
.6

2±
2
.4

9
8
0
.1
8
7
6
.0
7±

2
.6

9
7
7
.8

6
7
3
.6

2±
2
.8

5
8
0
.0

4
7
4
.4

4±
2
.9

6
7
5
.0

3
7
1
.3

6±
2
.0

4

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 21

T
a
b
le

5
C

o
m

p
a
ri

so
n

s
o
f

th
e

a
lg

o
ri

th
m

s
in

te
rm

o
f

C
P

U
ti

m
e

D
a
ta

S
3
V

M
-P

iE
S

3
V

M
-P

o
D

C
S

3
V

M
-P

iL
S

3
V

M
-S

C
A

D
S

3
V

M
-L

o
g

S
3
V

M
-E

C
o
n

S
3
V

M
-S

F
V

S
3
V

M
-l

1

W
6
0

0
.1

3
3
±

0
.0

2
0

0
.1

9
9
±

0
.0

0
9

0
.1

8
1
±

0
.0

0
9

0
.2

2
9
±

0
.0

0
8

0
.1

7
4
±

0
.0

0
6

0
.0
8
7
±

0
.0

1
1

0
.2

5
5
±

0
.0

0
6

0
.1

4
9
±

0
.0

1
7

IN
O

0
.1

2
5
±

0
.1

0
3

0
.1

8
1
±

0
.0

1
1

0
.1
0
1
±

0
.0

0
3

0
.1

5
7
±

0
.0

8
0
.1

3
9
±

0
.0

6
6

0
.1

1
3
±

0
.0

1
6

0
.2

1
9
±

0
.0

0
4

0
.1

6
9
±

0
.0

3
S

P
A

0
.2
5
8
±

0
.1

5
0

0
.4

4
5
±

0
.0

5
5

0
.4

8
4
±

0
.0

5
4

0
.4

3
7
±

0
.0

6
0
.4

5
1
±

0
.0

5
3

0
.4

9
9
±

0
.0

5
4

0
.4

6
8
±

0
.0

8
9

0
.4

9
1
±

0
.0

2
6

A
D

V
7
.4

1
1
±

1
.2

9
7
.2

4
7
±

0
.0

8
4

7
.5

7
±

0
.0

1
9

7
.0

2
8
±

0
.0

9
2

5
.1
0
5
±

0
.1

4
6

6
.8

7
8
±

0
.1

6
9

6
.7

8
5
±

0
.1

7
7

7
.6

9
5
±

0
.2

0
7

G
IS

5
5
1
.5
5
±

4
1
.9

8
6
3
0
.9

2
±

1
6
9
.7

9
8
1
9
.6

6
±

4
3
1
.7

1
5
6
6
.3

4
±

1
0
.4

1
5
9
8
.3

2
±

1
8
.1

7
8
1
9
.6

5
±

4
3
1
.7

0
5
9
9
.8

7
±

4
9
.7

3
5
5
3
.7

7
±

6
.9

4
L

E
U

6
.0

1
±

0
.2

6
5
.9

8
0
±

0
.4

5
5

6
.2

5
3
±

1
.0

4
7

5
.7
8
8
±

1
.0

0
5
.9

3
7
±

0
.2

2
5

6
.3

4
8
±

1
.5

6
9

6
.0

5
9
±

0
.1

4
4

6
.2

6
5
±

0
.2

2
7

A
R

C
1
1
.6
8
±

0
.3

4
1
3
.2

5
4
±

0
.8

1
6

1
8
.6

4
±

2
.0

5
0

1
3
.2

2
8
±

1
.1

9
1
2
.1

5
7
±

0
.5

4
8

2
1
.7

3
9
±

4
.6

7
7

1
1
.0

2
2
±

0
.6

0
2

1
4
.4

3
9
±

0
.5

9
6

A
v
er

a
g
e

8
2
.4
5
±

6
.3

1
9
4
.0

3
±

2
4
.4

6
1
2
1
.8

4
±

6
2
.1

3
8
4
.7

4
±

1
.8

3
8
8
.8

9
±

2
.7

5
1
2
2
.1

9
±

6
2
.6

0
8
9
.2

4
±

7
.2

5
8
3
.2

8
±

1
.1

5

Fig. 2 Percentage of selected features on dataset LEU with different numbers of unlabeled points.

– All DCA based algorithms on `0 model reduce considerably the number of features (from
72.11% to 99.94%) while the accuracy of classifier is quite good (from 61.80% to 94.94%). In
comparison with S3VM-`1, naturally the DCA based algorithms on `0 model suppress much
more features while they always furnish better accuracy (MS/ACC). The gain of percentage
of selected features (SF) with respect to S3VM `1 is up to 123.29 times (S3VM PiE com-
paring to S3VM `1 on dataset ADV). Averagely on all datasets, S3VM PiE is the best on
term of selected features. The number of selected features of S3VM `1 is higher than that
of S3VM PiE (resp. S3VM PoDC, S3VM PiL, S3VM SCAD, S3VM Log and S3VM ECon)
3.39 (resp. 2.80, 2.78, 3.06, 3.19 and 2.98) times.

– In term of ACC/MS, the quality of all five DCA based algorithms on `0 model are compa-
rable. S3VM Log is better than other on 5 out of 7 datasets which can be explained by the
fact that S3VM Log selects slightly more features than other algorithms in these datasets.

– Concerning the computation time, the CPU time of all DCA based algorithms is quite small:
less than 22 seconds (except for dataset GIS).

5 Conclusion

We have intensively investigated a unified DC programming approach for feature selection in the
context of Semi-Supervised Support Vector Machine. Using 5 different approximations and the
continuous exact reformulation via an exact penalty technique leads us to 6 DC programs. Then
we developed 6 based DCA algorithms for solving the resulting problems. Numerical results on
several real datasets showed the robustness, the effectiveness of the DCA based schemes. We
are convinced that DCA is a promising approach for the combined feature selection and S3VMs
applications.

References

1. E. Amaldi and V. Kann. On the approximability of minimizing non zero variables or unsatisfied relations
in linear systems, Theoretical Computer Science. Vol. 209:237–260 (1998).

2. M. Belkin, P. Niyogi, Semi-supervised learning on riemannian manifolds. Machine Learning, 56, 209–239
(2004).

3. Kristin P. Bennett and Ayhan Demiriz, Semi-supervised support vector machines, In Proceedings of the
conference on Advances in neural information processing systems II, Cambridge, MA, USA, 368–374
(1999).

4. P. S. Bradley and O. L. Mangasarian, Feature Selection via concave minimization and support vector
machines, Proceeding of ICML’98, SF, CA, USA, 82–90 (1998).

5. T.D. Bie and N. Cristianini. Convex methods for transduction. In Adv. in Neural Information Proc.
Systems 16, p. 73- MIT Press (2004).

Sparse Semi-Supervised Support Vector Machines by DC Programming and DCA 23

6. O. Chapelle, A. Zien A, Semi-supervised classification by low density separation. In Proc. 10th Internat.
Workshop on Artificial Intelligence and Statistics, Barbados, 57–64 (2005).

7. O. Chapelle, V. Sindhwani and S. Keerthi, Branch and bound for semi-supervised support vector machines.
In Advances in Neural Information Processing Systems, MIT Press, Cambridge, 17, 217–224 (2006).

8. O. Chapelle, V. Sindhwani and S. S. Keerthi Optimization Techniques for Semi-Supervised Support Vector
Machines, Journal of Machine Learning Research, Vol. 9:203–233 (2008).

9. H. Choi, J. Kim, Y. Kim, A sparse large margin semi-supervised learning method, Journal of the Korean
Statistical Society, Vol. 39(4), pp. 479- (2010).

10. R. Collobert, F. Sinz, J. Weston, L. Bottou, Large scale transductive SVMs. J. Machine Learn, Vol.
7:1687–1712 (2006).

11. W. Emara, M.K.M. Karnstedt, K. Sattler, D. Habich and W. Lehner, An Approach for Incremental Semi-
supervised SVM, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007),
pp. 539–544 (2007).

12. J. Fan, R. Li, (2001) Variable selection via nonconcave penalized likelihood and its Oracle Properties.
Journal of the American Statistical Association 96, pp. 1348-1360.

13. G. Fung and O. Mangasarian, Semi-supervised support vector machines for unlabeled data classification,
Optimization Methods and Software, Vol.15:29-(2001).

14. F. Gieseke, A. Airola, T. Pahikkala and O. Kramer, Sparse Quasi-Newton Optimization for Semi-
Supervised Support Vector Machines, Proceedings of the 1st International Conference on Pattern Recog-
nition Applications and Methods (ICPRAM), pp. 45–54 (2012).

15. T. Joachims, Transductive inference for text classification using support vector machines. In 16th Inter.
Conf. on Machine Learning ,SF, USA, 200–209 (1999).

16. Hermes, L., Buhmann, J.M.: Feature selection for support vector machines. Proceedings. 15th Interna-
tional Conference on Pattern Recognition, vol.2, pp. 712–715.

17. Hui, Z.: The Adaptive Lasso and Its oracle Properties. Journal of the American Statistical Association
101:476, pp. 1418–1429 (2006).

18. N. Krause and Y. Singer, Leveraging the margin more carefully, Proceeding of ICML ’04, NY, USA, 63–71
(2004).

19. Y.F. Li , J.T. Kwok and Z.H. Zhou, Semi-Supervised Learning Using Label Mean, in Proceedings of the
26th International Conference on Machine Learning, Montreal, Canada, pp. 1–8 (2009).

20. H.A. Le Thi, Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algoritmes et
Applications, Habilitation à Diriger des Recherches, Université de Rouen (1997).

21. H.A. Le Thi and T. Pham Dinh, Solving a class of linearly constrained indefinite quadratic problems by
DC algorithms, Journal of Global Optimization, Vol. 11(3):253–285 (1997).

22. H.A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) Programming and DCA revisited
with DC models of real world nonconvex optimization problems, Annals of Operations Research, Vol.
133:23–46 (2005).

23. H.A. Le Thi, T. Belghiti and T. Pham Dinh, A new efficient algorithm based on DC programming and
DCA for Clustering, Journal of Global Optimization, Vol. 37:593–608 (2006).

24. H.A.Le Thi , M. Le Hoai and T. Pham Dinh, Optimization based DC programming and DCA for Hier-
archical Clustering, European Journal of Operational Research, Vol. 183:1067–1085 (2007).

25. H.A. Le Thi , M. Le Hoai, N.V. Nguyen and T. Pham Dinh, A DC Programming approach for Feature
Selection in Support Vector Machines learning, Journal of Advances in Data Analysis and Classification,
Vol 2(3):259–278 (2008).

26. H.A Le Thi, V.V Nguyen, S. Ouchani, Gene Selection for Cancer Classification Using DCA, Journal of
Fonctiers of Computer Science and Technology, Vol.3 No.6 Sum No.15 (2009).

27. Le Thi Hoai An, Huynh Van Ngai and Pham Dinh Tao, Exact Penalty and Error Bounds in DC Program-
ming, Journal of Global Optimization dedicated to Reiner Horst ISSN 0925-5001, DOI: 10.1007/s10898-
011-9765-3.

28. H.A. Le Thi . A new approximation for the `0-norm. Research Report LITA EA 3097, University of
Lorraine, France (2012).

29. H.A. Le Thi , M. Le Hoai and T. Pham Dinh, Feature Selection in machine learning: an exact penalty
approach using a Different of Convex function Algorithm, submitted (2013).

30. H.A. Le Thi, DC Programming and DCA. http://lita.sciences.univ-metz.fr/∼lethi.
31. Y. Liu, X. Shen and H. Doss, Multicategory ψ-Learning and Support Vector Machine: Computational

Tools, Journal of Computational and Graphical Statistics, Vol. 14:219–236 (2005).
32. J. Ma and X. Zhang, A full smooth semi-support vector machine based on the cubic spline function, 6th

International Conference on Biomedical Engineering and Informatics (BMEI), pp. 650–655 (2013).
33. J. Neumann , C. Schnörr and G. Steidl, Combined SVM-based feature selection and classification, Machine

Learning, Vol. 61(1–3):129–150 (2005).
34. K. Nigam, A. McCallum, S. Thrun and T. Mitchell, Text classification from labeled and unlabeled docu-

ments using EM. Machine Learning, 39, 103–134 (2000).
35. T. Pham Dinh and H.A. Le Thi, Convex analysis approach to d.c. programming: Theory, Algorithm and

Applications. Acta Mathematica Vietnamica 22, pp. 289–355 (1997).
36. T. Pham Dinh, H.A. Le Thi, Recent advances on DC programming and DCA. Transactions on Compu-

tational Intelligence XIII, Lecture Notes in Computer Science Volume 8342, 2014, pp 1-37.
37. D. Peleg and R. Meir, A bilinear formulation for vector sparsity optimization. Signal Processing, 8(2),

375–389 (2008).

24 Le et al.

38. C.S Ong and H.A. Le Thi, Learning sparse classifiers with Difference of Convex functions Algorithms,
Optimization Methods and Software, Vol 28:4 (2013).

39. Qi, Y. Tian, Y. Shi and X. Yu, Cost-Sensitive Support Vector Machine for Semi-Supervised Learning,
Procedia Computer Science, Volume 18, pp. 1684–1689 (2013).

40. M. Thiao, T. Pham Dinh and H.A. Le Thi, DC programming approach for a class of nonconvex programs
involving l0 norm, in ”Modelling, Computation and Optimization in Information Systems and Man-
agement Sciences”, Communications in Computer and Information Science CCIS Volume 14, Springer,
358–367 (2008).

41. A. Rakotomamonjy, Variable Selection Using SVM-based Criteria, Journal of Machine Learning Research,
Vol. 3:1357–1370 (2003).

42. C. Ronan, S. Fabian, W. Jason and B. Lé, Trading Convexity for Scalability, Proceedings of the 23rd
international conference on Machine learning ICML 2006. Pittsburgh, Pennsylvania, 201–208 (2006).

43. L. Yang and L.Wang, Simultaneous Feature Selection and Classification via Semi-Supervised Models,
Proceeding ICNC ’07, Third International Conference on Natural Computation-Cover, 646–650 (2007).

44. V. Sindhwani, S. Keerthi, and O. Chapelle, Deterministic annealing for semi-supervised kernel machines,
Proceedings of ICML’06, NY, USA, 841–848 (2006).

45. V. Sindhwani, S. Keerthi, Large scale semi-supervised linear SVMs, Proceeding SIGIR ’06 Proceedings
of the 29th annual international ACM SIGIR conference on Research and development in information
retrieval, 477–484 (2006).

46. R. Tibshirani, Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc., Vol. 46:, pp.431–439
(1996).

47. M. Thiao, T. Pham Dinh, and H.A. Le Thi A DC programming approach for Sparse Eigenvalue Problem,
Proceeding of ICML 2010, 1063–1070 (2010)..

48. V. Vapnik and A. Sterin, On structural risk minimization or overall risk in a problem of pattern recogni-
tion. Automation and Remote Control, 10(3):1495-03 (1977).

49. R. Zhang, T.B. Liu and M.W. Zheng, Semi-Supervised Learning for Classification with Uncertainty,
Advanced Materials Research, volumes 433 - 440, pp. 3584–3590 (2012).

50. H. Zou, The adaptive lasso and its oracle properties. J. Amer. Stat. Ass., 101, 1418–1429 (2006).
51. X. Zhu and A.B. Goldberg, Introduction to Semi-Supervised Learning, Morgan and Claypool,

ISBN:1598295470 9781598295474 (2009).
52. Wang, H., Li, G., Jiang, G.: Robust regression shrinkage and consistent variable selection via the LAD-

LASSO. Journal of Business & Economics Statistics 25:3, pp. 347–355 (2007).
53. J. Weston and A. Elisseeff and B. Scholkopf and M. Tipping. Use of the Zero-Norm with Linear Models

and Kernel Methods. Journal of Machine Learning Research. Vol.3 pp.1439-1461 (2003).

Chapter 5

DCA based Algorithms for
Feature Selection in Multi-class

Support Vector Machine

115

116 DCA based Algorithms for Feature Selection in MSVM

Noname manuscript No.
(will be inserted by the editor)

DCA based algorithms for Feature Selection
in Multi-class Support Vector Machine

Hoai An LE THI · Manh Cuong NGUYEN

Received: date / Accepted: date

Abstract This paper addresses the problem of feature selection for Multi-class Support Vector
Machines (MSVM). Two models involved the l0 (the zero norm) and the l2-l0 regularizations are
considered for which two continuous approaches based on DC (Difference of Convex functions)
programming and DCA (DC Algorithms) are investigated. The first is DC approximation via
several sparse inducing functions and the second is an exact reformulation approach using
penalty techniques. Twelve versions of DCA based algorithms are developed on which empirical
computational experiments are fully performed. Numerical results on real-world datasets show
the efficiency and the superiority of our methods versus one of the best standard algorithms on
booth feature selection and classification.

Keywords Feature selection, MSVM, DC programming, DCA, DC approximation, exact
penalty.

1 Introduction

One of challenges of Machine Learning is the handling of the input datasets with very large
number of features. Many techniques are proposed to address this challenge. The goals are to
remove the irrelevant and redundant features, reduce store space and execution time, and avoid
the course of dimensionality to improve the prediction performance [23].

Here, we are interested in the feature selection task for Multi-class Support Vector Machine
(MSVM). The objective is to simultaneously select a subset of features (representative features)
and construct a good classifier. Whereas most feature selection methods were initially devel-
oped for binary-Support Vector Machine (SVM) classification (see e.g. [1], [10], [12], [14], [22],
[23], [32],[38], [42]), several extensions to feature selection for MSVM are recently investigated
(see e.g. [2], [4], [5], [8], [9], [16], [13], [25] - [27], [43] - [49]). We first consider the model of
MSVM proposed by Weston and Watkins [44], a direct approach (without using binary-SVM)
for learning multiclass, known to be appropriate to capture correlations between the different
classes, which can be described as follows.

Let X be a set of vectors in IRd and Y = {1, ..., Q} be a set of class labels. Given a training
dataset D = {(x1, y1), (x2, y2), .., (xn, yn)} ∈ Rn×(d+1), where xi ∈ X , yi ∈ Y, i = {1, ..., n}. The
task is to learn a classification rule f : X 7→ Y that maps an element x to a class label y ∈ Y.

In a more natural way than the classical SVM based approaches for multi-classification,
Weston and Watkins [44] proposed to construct a piecewise linear separation that gives the
decision function:

Hoai An LE THI · Manh Cuong NGUYEN
Laboratory of Theoretical and Applied Computer Science LITA EA 3097
University of Lorraine, Ile du Saulcy, 57045 Metz, France.
E-mail: hoai-an.le-thi@univ-lorraine.fr, manh-cuong.nguyen@univ-lorraine.fr

Submitted.

2 Hoai An LE THI and Manh Cuong NGUYEN.

f(x) = arg max
1≤i≤Q

fi(x), (1)

where fi stands for the hyperplane fi(x) = 〈wi, x〉 + bi, with wi ∈ Rd, bi ∈ R, i = 1, ...Q. Let

w =
(
w1, w2, ..., wQ

)
be the vector in RQ×d and let b = (bi)

Q
i=1 ∈ RQ. Then the MSVM model

given in [44], the first ”all-together” implementation of multi-class SVM, is a single optimization
problem of the form:

min



C

n∑

i=1

∑

k 6=yi
ξik +

Q∑

k=1

‖wk‖22 : (w, b, ξ) ∈ Ω



 , (2)

where

Ω =

{
(w, b, ξ) ∈ RQ×d ×RQ ×Rn×Q+ :
〈wyi − wk, xi〉+ byi − bk ≥ 1− ξik, ∀1 ≤ i ≤ n, 1 ≤ k 6= yi ≤ Q

}
,

and ξ ∈ Rn×Q+ is a slack variable. In the objective function, C
∑n
i=1

∑
k 6=yi ξik is the hinge

loss term which presents the training classification errors. The remaining term is known as a
regularization. C is a parameter that presents the trade-off between the hinge loss and the
regularizer term.

For the feature selection purpose, we use a natural concept dealing with sparsity, that is
the zero norm (denoted l0 or ‖.‖0). The zero norm of a vector is defined as the number of its
nonzero components. The function l0, apparently very simple, is lower-semicontinuous on Rn,
but its discontinuity at the origin makes nonconvex programs involving ‖.‖0 challenging.

We study two models obtained from (2) by replacing the second term in the objective
function with the l0 and/or the l2-l0 regularization, that lead to the so called l0-MSVM and
l2-l0-MSVM problems which are defined respectively by

min
(w,b,ξ)∈Ω

C

n∑

i=1

∑

k 6=yi
ξik +

Q∑

k=1

‖wk‖0 (l0 −MSVM) (3)

and

min
(w,b,ξ)∈Ω

C

n∑

i=1

∑

k 6=yi
ξik + β

Q∑

k=1

‖wk‖22 +

Q∑

k=1

‖wk‖0 (l2 − l0 −MSVM). (4)

Due to the l0 term, these problems are nonsmooth and nonconvex.
During the last two decades, research is very active in models and methods optimization

involving the zero norm. Works can be divided into three categories according to the way to
treat the zero norm: convex approximation, nonconvex approximation, and nonconvex exact
reformulation. Our work deals with the two nonconvex approaches, both are based on Differ-
ence of Convex functions (DC) programming and DC Algorithms (DCA), because our main
motivation is to exploit the efficiency of DCA to solve these hard problems. DC programming
and DCA were introduced by Pham Dinh Tao in their preliminary form in 1985 and have been
extensively developed since 1994 by Le Thi Hoai An and Pham Dinh Tao and become now clas-
sic and more and more popular (see, e.g. [19,17,35,36], and references therein), in particular in
machine learning for which they provide quite often a global solution and proved to be more
robust and efficient than standard methods.

In the first approach, the l0-norm is approximated by a DC function that leads to a DC
program for which a DCA scheme is investigated. This general DCA scheme is developed to
various sparse inducing DC approximation functions: the piecewise exponential function pro-
posed in [1], the SCAD penalty function [10], the logarithm function introduced in [45], the
capped-`1 function [34] and the piecewise linear function recently proposed in [18]. In the sec-
ond approach, the original problem is equivalently reformulated, via an exact penalty technique
in DC programming [24], as a DC program which is solved by a DCA based algorithm. Hence,
using a unified DC programming framework, we unify all solution methods into DCA, and then
convergence properties of our algorithms are guaranteed thanks to general convergence results

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 3

of the generic DCA scheme. We perform empirical comparative numerical experiments of 12
versions of DCA based algorithms, with various approximate functions as well as with the exact
continuous reformulations.

The remainder of the paper is organized as follows. Section 2 is devoted to a brief presentation
of DC Programming and DCA. The approximation approach is presented in Section 3 while the
exact approach via an penalty technique is developed in Section 4. Computational experiments
are reported in Section 5 and finally Section 6 concludes the paper.

2 A brief presentation of DC programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth nonconvex program-
ming and global optimization. A general DC program takes the form:

inf{F (x) := G(x)−H(x) : x ∈ Rn}, (Pdc)

where G and H are lower semicontinuous proper convex functions on IRp. Such a function F is
called DC function, and G−H, DC decomposition of F while G and H are DC components of
F . The convex constraint x ∈ C can be incorporated in the objective function of (Pdc) by using
the indicator function on C denoted χC which is defined by χC(x) = 0 if x ∈ C; +∞ otherwise:

inf{f(x) := G(x)−H(x) : x ∈ C} = inf{χC(x) +G(x)−H(x) : x ∈ IRp}.

A convex function θ is called convex polyhedral if it is the maximum of a finite family of affine
functions, i.e.

θ(x) = max{〈ai, x〉+ b : i = 1, ...m}, ai ∈ Rn.

Polyhedral DC optimization occurs when either G or H is polyhedral convex. This class of DC
optimization problems, which is frequently encountered in practice, enjoys interesting properties
(from both theoretical and practical viewpoints) concerning local optimality and the convergence
of DCA ([19,35]).

A point x∗ is said to be a local minimizer of G−H if G(x∗)−H(x∗) is finite and there exists
a neighbourhood U of x∗ such that

G(x∗)−H(x∗) ≤ G(x)−H(x), ∀x ∈ U . (5)

The necessary local optimality condition for (primal) DC program (Pdc) is given by

∅ 6= ∂H(x∗) ⊂ ∂G(x∗). (6)

The condition (6) is also sufficient (for local optimality) in many important classes of DC
programs, for example, when (Pdc) is a DC polyhedral program with H being polyhedral convex
function, or when f is locally convex at x∗ (see [19,35,36]).

A point x∗ is said to be a critical point of G−H if

∂H(x∗) ∩ ∂g(x∗) 6= ∅. (7)

The relation (7) is in fact the generalized KKT condition for (Pdc) and x∗ is also called a
generalized KKT point.

DCA is based on local optimality conditions and duality in DC programming. The main
idea of DCA is simple: each iteration of DCA approximates the concave part −H by its affine
majorization (that corresponds to taking yl ∈ ∂H(xl)) and minimizes the resulting convex
function.

The generic DCA scheme can be described as follows:

DCA - General scheme

Initializations: let x0 ∈ Rn be a best guess, l← 0.
Repeat

1. Calculate yl ∈ ∂H(xl).

4 Hoai An LE THI and Manh Cuong NGUYEN.

2. Calculate xl+1 ∈ argmin{G(x)−H(xl)− 〈x− xl, yl〉} : x ∈ IRp.
3. l← l + 1.

Untilconvergence of {xl}.

Convergence properties of DCA and its theoretical basic can be found in [19,36,35]. It is
worth mentioning that (for simplify we omit here the dual part of DCA)

i) DCA is a descent method (without line search): the sequences {G(xl)−H(xl)} is decreasing.
ii) If G(xl+1) −H(xl+1) = G(xl) −H(xl), then xl is a critical point of G −H. In such a case,

DCA terminates at l-th iteration.
iii) If the optimal value α of problem (Pdc) is finite and the infinite sequences {xl} is bounded

then every limit point x∗ of the sequences {xl} is a critical point of G−H.
iv DCA has a linear convergence for general DC programs, and has a finite convergence for DC

polyhedral programs.
v) If H is polyhedral convex and H is differentiable at x∗, then x∗ is a local minimizer of (Pdc).

A deeper insight into DCA has been described in [19,35–37]. For instant it is crucial to
note the main features of DCA: DCA is constructed from DC components and their conjugates
but not the DC function f itself which has infinitely many DC decompositions, and there are
as many DCA as there are DC decompositions. Such decompositions play a critical role in
determining the speed of convergence, stability, robustness, and globality of sought solutions.
It is important to study various equivalent DC forms of a DC problem. This flexibility of DC
programming and DCA is of particular interest from both a theoretical and an algorithmic point
of view. Moreover, with suitable DC decompositions DCA generates most standard algorithms
in convex and nonconvex optimization For a complete study of DC programming and DCA the
reader is referred to [19,35–37] and the references therein.

In the last decade, a variety of works in Machine Learning based on DCA have been devel-
oped. The efficiency and the scalability of DCA have been proved in a lot of works (see e.g. [7,
20–23,28,32,40] and the list of reference in [17]).

3 Approximation methods based on DC programming and DCA

For simplifying the presentation, we will consider the following common optimization problem:

min

{
F (w, b, ξ) +

Q∑

k=1

‖wk‖0 : X = (w, b, ξ) ∈ Ω
}
, (8)

where F stands for F1 in the l0-MSVM problem, and for F2 in the l2-l0-MSVM problem, say

F1(w, b, ξ) := C

n∑

i=1

∑

k 6=yi
ξik, (9)

F2(w, b, ξ) := C

n∑

i=1

∑

k 6=yi
ξik + β

Q∑

k=1

‖wk‖22. (10)

Here F1 is a linear function while F2 is a quadratic convex function.

We introduce here a class of DC approximation functions of the l0 norm. Define the step
function s : R→ R by

s(x) = 1 for x 6= 0 and s(x) = 0 for x = 0.

Then for X ∈ Rn we have ‖X‖0 =
∑n
i=1 s(Xi). Let ϕθ : R→ R be a function depending on the

parameter θ which approximates s(x), say

lim
θ→+∞

ϕθ(x) = s(x), ∀x ∈ R. (11)

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 5

Table 1 DC approximation functions

Name Formula of ϕθ(x)

Piecewise exponential ([1]) 1− e−α|x|, α > 0

SCAD ([10])





λ|x| if |x| ≤ λ
−x

2−2αλ|x|+λ2

2(α−1)
if λ < |x| ≤ αλ

(α+1)λ2

2
if |x| > αλ

, α > 2, λ > 0

Capped-l1 ([33]) min{1, α|x|}, α > 0

Piecewise linear ([18]) min
{

1,max
{

0,
|x|−a
b−a

}}
, 0 < a < b

Logarithm ([45]) ρε log
(

1 +
|x|
ε

)
, ρε = 1

log(1+ 1
ε)

Suppose that ϕθ can be expressed as a DC function of the form

ϕθ(x) = g(x)− h(x), x ∈ R (12)

where g and h are convex functions. Using this approximation, the l0 term in (8) can be written
as

Q∑

k=1

‖wk‖0 ≈
Q∑

k=1

d∑

j=1

ϕθ(wkj) =

Q∑

k=1

d∑

j=1

g(wkj)−
Q∑

k=1

d∑

j=1

h(wkj), (13)

and the problem (8) can be represented as follows:

min
{
G(X)−H(X) : X ∈ RQ×d ×RQ ×Rn×Q

}
, (14)

where

G(X) = χΩ(X) + F (X) +

Q∑

k=1

d∑

j=1

g(wkj); H(X) =

Q∑

k=1

d∑

j=1

h(wkj).

Since the functions F, g and h are convex, G and H are convex too. Therefore (14) is a DC
program. Thanks to the general DCA scheme given in Section 2, DCA applied on (14) can be
described as follows.

DCA-dcApp

Initializations: Let τ be a tolerance sufficiently small, set l = 0. Let X0 = (w0, b0, ξ0) be a
guess.
Repeat

1. Compute wlkj ∈ ∂h(wlkj) ∀k = 1, . . . , Q, j = 1, . . . , d and set Y l = (wl, 0, 0).

2. Compute Xl+1 = (wk+1, bk+1, ξk+1) by solving the convex optimization problem

min



F (X) +

Q∑

k=1

d∑

j=1

g(wkj)−
Q∑

k=1

d∑

j=1

wlkjwkj : X = (w, b, ξ) ∈ Ω



 . (15)

3. l← l + 1.
Until‖ Xl+1 −Xl ‖≤ τ(1+ ‖ Xl ‖).

We consider now usual sparse inducing DC approximation functions ϕθ and develop the
corresponding DCA-dcApp to solve the resulting optimization problems. The list of approxi-
mation functions is reported in Table 1. Obviously, these functions verify the conditions (11).

First, let us consider the piecewise exponential (PiE) function [1], the SCAD function [10],
the Capped-`1 ([34]), and the piecewise linear (PiL) approximation recently proposed in [18].
The definition of these functions are presented in Table 1. They are all DC functions with DC
decompositions given in Table 2.

The implementation of Algorithm DCA-dcApp according to each specific function ϕθ differs
from one of others by the computation of wlkj ∈ ∂h(wlkj) in the step 1, and the subproblem

6 Hoai An LE THI and Manh Cuong NGUYEN.

Table 2 DC decomposition ϕ = g − h and calculation of ∂h.

Name g(x) h(x) x ∈ ∂h(x)

PiE α|x| α|x| − 1 + e−α|x| sgn(x)(α|x| − e−α|x|)

SCAD λ|x|





0 if |x| ≤ λ
(|x|−λ)2
2(α−1)

if λ ≤ |x| ≤ αλ
λ|x| − (α+1)λ2

2
otherwise





0 if |x| ≤ λ
sgn(x)

|x|−λ
α−1

if λ < |x| < αλ

sgn(x)λ otherwise

Capped-l1 α|x| max{1, α|x|} − 1

{
0 if |x| ≤ 1

α
sgn(x)α otherwise

PiL
max{a,|x|}

b−a
max{b,|x|}

b−a − 1

{
0 if |x| ≤ b
sgn(x)
b−a otherwise

(15) in the step 2. The computation of wlkj ∈ ∂h(wlkj) is given in Table 2. The subproblem,
for instance, in case of l0-MSVM with the piecewise exponential (PiE) function, is written as
follows (to simplify the presentation we use ϕ instead of ϕθ):

- l0-DCA-PiE (ϕ = PiE, F = F1)

min



C

n∑

i=1

∑

k 6=yi
ξik +

Q∑

i=1

d∑

j=1

max(αwij ,−αwij)−
Q∑

k=1

d∑

j=1

wlkjwkj : X = (w, b, ξ) ∈ Ω





⇐⇒





min
(w,b,ξ,t)

C
n∑
i=1

∑
k 6=yi

ξik +
Q∑
k=1

d∑
j=1

tkj −
Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ αwkj , tkj ≥ −αwkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(16)

Similarly, the subproblem in other algorithms is given by:
- l2 − l0-DCA-PiE (ϕ = PiE, F = F2)





min
(w,b,ξ,t)

β
Q∑
k=1

‖wk‖22 + C
n∑
i=1

∑
k 6=yi

ξik +
Q∑
k=1

d∑
j=1

tkj −
Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ αwkj , tkj ≥ −αwkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(17)

- l0-DCA-SCAD (ϕ = SCAD, F = F1)





min
(w,b,ξ,t)

C
n∑
i=1

∑
k 6=yi

ξik +
Q∑
k=1

∑d
j=1 tkj −

Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ λwkj , tkj ≥ −λwkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(18)

- l2 − l0-DCA-SCAD (ϕ = SCAD, F = F2)





min
(w,b,ξ,t)

β
Q∑
k=1

‖wk‖22 + C
n∑
i=1

∑
k 6=yi

ξik +
∑Q
k=1

d∑
j=1

tkj −
Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ λwkj , tkj ≥ −λwkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(19)

- l0-DCA-Capped-l1 (ϕ = Capped-l1, F = F1)





min
(w,b,ξ,t)

C
n∑
i=1

∑
k 6=yi

ξik +
Q∑
k=1

d∑
j=1

tkj −
Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ αwkj , tkj ≥ −αwkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(20)

- l2 − l0-DCA-Capped-l1 (ϕ = Capped-l1, F = F2)





min
(w,b,ξ,t)

C
n∑
i=1

∑
k 6=yi

ξik + β
Q∑
k=1

‖wk‖22 +
Q∑
k=1

d∑
j=1

tkj −
Q∑
k=1

∑d
j=1 w

l
kjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ αwkj , tkj ≥ −αwkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(21)

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 7

- l0-DCA-PiL (ϕ = PiL, F = F1)





min
(w,b,ξ,t)

1
b−a

Q∑
k=1

d∑
j=1

tkj + C
n∑
i=1

∑
k 6=yi ξik −

Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ a, tkj ≥ wkj , tkj ≥ −wkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(22)

- l2 − l0-DCA-PiL (ϕ = PiL, F = F2)





min
(w,b,ξ,t)

1
b−a

Q∑
k=1

d∑
j=1

tkj + β
Q∑
k=1

‖wk‖22 + C
n∑
i=1

∑
k 6=yi

ξik −
Q∑
k=1

d∑
j=1

wlkjwkj

s.t. (w, b, ξ) ∈ Ω, tkj ≥ a, tkj ≥ wkj , tkj ≥ −wkj , ∀k = 1, . . . , Q, j = 1, . . . , d.

(23)

We observe that when F = F1 (resp. F = F2), the subproblem (15) is a linear (resp. convex
quadratic) program.

Convergence properties of the algorithms:

i) When F = F1, for all the four above approximation functions, (14) is a polyhedral DC
program since the first DC component G is polyhedral convex function. Thus, the corre-
sponding DCA has finite convergence, say the sequence {(wk, bk, ξk)} converges to a critical
point (w∗, b∗, ξ∗) after a finite number of iterations. Moreover, by considering the dual prob-
lem of (14) in which the second DC component is polyhedral convex and using the DCA’s
convergence property v) mentioned in Section 2, we can prove that (w∗, b∗, ξ∗) is almost
always a local minimizer of (14).

ii) When the approximation function ϕ is Capped-l1 or PiL, (14) is a polyhedral DC program
since the second DC component H is polyhedral convex (for both F1 and F2). Hence the
corresponding DCA has finite convergence. Moreover, by property v) mentioned in Section
2, if H is differentiable at (w∗, b∗, ξ∗), then (w∗, b∗, ξ∗) is actually a local minimizer of (14).
More precisely, when ϕ = Capped−l1 (resp. ϕ = PiL), if w∗kj /∈ {− 1

α ,
1
α} (resp. w∗kj /∈ {−b, b}),

then (w∗, b∗, ξ∗) is a local minimizer of (14).

Consider now the logarithm (Log) approximation function defined in Table 1. We introduce

the variable v ∈ RQ×d+ and rewrite the problem (8) as

min
(w,b,ξ,v)∈Ω̃

F (w, b, ξ) +
∑Q
k=1

∑d
j=1 ϕ(vkj), (24)

where Ω̃ = {(w, b, ξ, v) : (w, b, ξ) ∈ Ω,−v ≤ w ≤ v}.
Let g(x) = 0 and h(x) = −ρε log(1 + x/ε). Clearly ϕ(x) = g(x) − h(x) and g, h are convex

functions on R+. Then we can express the problem (24) as a DC program

min
{
G̃(X̃)− H̃(X̃) : X̃ = (w, b, ξ, v) ∈ RQ×d+Q+n×Q+Q×d

}
, (25)

where G̃(X̃) = χ
Ω̃

(X̃) + F (w, b, ξ), H̃(X̃) =
∑Q
k=1

∑d
j=1 h(vkj) are convex functions on Ω̃.

It can be seen that H̃ is differentiable and ∇H̃(w, b, ξ, v) = (0, 0, 0, v), where

vkj = ∇h(vkj) = − ρε

vkj + ε
, k = 1, . . . , Q, j = 1, . . . , d. (26)

Hence DCA applied to (25) can be described as follows.

l0-DCA-Log

Initialization Let τ be a tolerance sufficiently small, set l = 0. Choose X̃0 = (w0, b0, ξ0, v0) be
a guess.
Repeat

1. Compute vl via (26).
2. Compute X̃l+1 = (wk+1, bk+1, ξk+1, vk+1) by solving the linear problem

min



C

n∑

i=1

∑

k 6=yi
ξik −

Q∑

k=1

d∑

j=1

vlkjvkj : (w, b, ξ, v) ∈ Ω̃



 . (27)

8 Hoai An LE THI and Manh Cuong NGUYEN.

3. l← l + 1.
Until ‖Xl+1 −Xl‖ ≤ τ(1 + ‖Xl‖).

l2 − l0-DCA-Log

Replace the step 2 of l0-DCA-Log by
Compute X̃l+1 = (wk+1, bk+1, ξk+1, vk+1) by solving the convex quadratic problem

min



C

n∑

i=1

∑

k 6=yi
ξik + β

Q∑

k=1

‖wk‖22 −
Q∑

k=1

d∑

j=1

vkjvkj : (w, b, ξ, v) ∈ Ω̃



 . (28)

Similarly to the property i) above, when F = F1, (25) is a DC polyhedral program. So l0-

DCA-Log has a finite convergence. Moreover, l0-DCA-Log converges almost always to a local
minimizer of (25).

4 An exact reformulation approach via exact penalty techniques

In this section we reformulate equivalently the problem (8) in the form of a DC proram and
develop a DCA based algorithm for solving it. Denote by e the vector of ones in the appropriate
space. Let u ∈ RQ×d be the binary variable defined by:

ukj =

{
1 if wkj 6= 0
0 if wkj = 0,

∀k = 1, . . . , Q, j = 1, . . . , d. (29)

We have
Q∑

k=1

‖wk‖0 =

Q∑

k=1

d∑

j=1

ukj = 〈e, u〉. (30)

Suppose that Ω is bounded in the variable w, i.e. Ω ⊂ [−B,B]Q×d×RQ×Rn×Q+ for some B > 0.
Then the problem (8) can be expressed as





min
(w,b,ξ,u)

F (w, b, ξ) + 〈e, u〉
s.t. (w, b, ξ) ∈ Ω,

| wkj |≤ Bukj , ukj ∈ {0, 1}, ∀k = 1, . . . , Q; j = 1, . . . , d.

(31)

Let p : RQ×d×RQ×Rn×Q× [0, 1]Q×d → R be the function defined as p(w, b, ξ, u) = p(u) with

p : RQ×d → R, p(u) :=
Q∑
k=1

d∑
j=1

ukj(1− ukj), and let Λ be the polyhedral convex set determined

by

Λ :=
{

(w, b, ξ, u) ∈ Ω × [0, 1]Q×d : |wkj | ≤| Bukj , ∀k = 1, . . . , Q, j = 1, . . . , d,
}
. (32)

We observe that p is concave and p(w, b, ξ, u) ≥ 0 ∀(w, b, ξ, u) ∈ Λ. By dint of the exact penalty
technique developed recently in [24], the problem (31) is equivalent to the following continu-
ous optimization problem, with sufficient large positive numbers η > η0 ≥ 0 (called penalty
parameters)

min {F (w, b, ξ) + 〈e, u〉+ ηp(u) : X = (w, b, ξ, u) ∈ Λ} (33)

We investigate now a DCA based algorithm for solving (33). Let G and H be the functions
defined by

G(X) := F (X) + χΛ(X)

and

H(X) := η

Q∑

k=1

d∑

j=1

u2kj − (η + 1)

Q∑

k=1

d∑

j=1

ukj .

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 9

The problem (33) can be expressed as:

min
{
G(X)−H(X) : X = (w, b, ξ, u) ∈ RQ×d+Q+n×Q+Q×d

}
. (34)

Obviously, G and H are convex functions and so (34) is a DC program. DCA applied on (34)
consists of computing, at each iteration l,

Yl ∈ ∂H(Xl), Xl+1 ∈ arg min
{
G(X)− 〈Yl,X〉 : X ∈ Λ

}
.

Clearly, H is differentiable and Yl = ∇H(Xl) can be computed as

Yl = (0, 0, 0, ul), with ulkj = 2ηulkj − (η + 1), ∀k = 1, . . . , Q, j = 1, . . . , d. (35)

And Xl+1 = (wl+1, bl+1, ξl+1, ul+1) is an optimal solution of the convex optimization problem

min
{
F (X)− 〈ul, u〉 : X ∈ Λ

}
. (36)

Hence, the DCA applied to (34) when F = F1 (the l0-MSVM problem) is described as follows:

l0-DCA-Econ

Initializations: let τ > 0 be given and X0 = (w0, b0, ξ0, u0) be an initial point. Select η,B, C
and set l = 0.
Repeat

1. Calculate Yl via (35).
2. Calculate Xl+1, an optimal solution of the linear program

min



C

n∑

i=1

∑

k 6=yi
ξik − 〈ul, u〉 : X = (w, b, ξ, u) ∈ Λ





3. l← l + 1.
Until ‖Xl+1 −Xl‖ ≤ τ‖Xl‖.

Note that since G is polyhedral convex, (34) is a polyhedral DC program and then l0-DCA-

Econ has a finite convergence. Furthermore, by considering the dual problem of (34) in which
the second DC component is polyhedral convex and using the property v) mentioned in Section
2, we can prove that l0-DCA-Econ converges almost always to a local minimizer of (34).

Similarly, the DCA applied to (34) when F = F2 (the l2 − l0-MSVM problem) is described
as follows:

l2-l0-DCA-Econ

Replace the step 2 of l0-DCA-Econ by
Calculate Xl+1, an optimal solution of the convex quadratic problem

min



C

n∑

i=1

∑

k 6=yi
ξik + β

Q∑

k=1

‖wk‖22 − 〈ul, u〉 : X = (w, b, ξ, u) ∈ Λ



 .

5 Numerical experiments

We have implemented the algorithms in the V.S C++ v6.0 environment and performed the
experiments a Intel CoreTM I7 (2× 2.2 Ghz) processor, 4 GB RAM.

10 Hoai An LE THI and Manh Cuong NGUYEN.

5.1 Datasets

We consider eight popular datasets often used for feature selection. The Lung Cancer (LUN),
Optical Recognition of Handwritten Digits (OPT), Libras Movement (MOV), Semeion Hand-
written Digit (SEM), Multiple Features (MFE), CNAE-9 (CNA) and Internet Advertisement
(ADV) datasets are taken from UCI Machine Learning Repository. The ADN dataset (ADN)
that consists of 3186 genes, described by 60 DNA sequel elements can be found at ftp:

//genbank.bio.net. For the OPT dataset, both training set and test set are given in UCI Ma-
chine Learning Repository. The LUN dataset contains a very small number of samples, therefore
the whole dataset is used as the training set as well as the test set. For the remaining datasets,
training and test sets are randomly sampled from the original set with 60% for training and the
remaining 40% for test (cf. 5.3). These datasets are described in details in the table 3.

Dataset #feature #class #train #test
LUN 56 3 16 16
OPT 63 10 3823 1797
ADN 60 3 1913 1273
MOV 90 15 225 135
SEM 256 10 960 633
MFE 649 10 1200 800
CNA 856 9 648 432
ADV 1558 2 1967 1312

Table 3 The description of the datasets

5.2 Experiment setting

The CPLEX 12.5 solver is used to solve linear and convex quadratic problems.
The parameters are taken as follows: for all methods, the most appropriate values of the

parameter C are chosen by a five-folds cross-validation; β, the coefficient of the l2 term is set to
0.01; the tolerance τ (in the stoping criterion of DCA) is set to 10−6.

Observe that, in one hand, theoretically, the larger value of α is, the better DC approximation
of l0-norm would be, and on another hand, practically, when α is large, the algorithms give
sometimes bad local minima. Hence, we use an α updating procedure during the algorithms.
Starting with a small value of α0, we increase it at each iteration l by αl+1 = αl + ∆α until a
given threshold α. For l0-DCA PiE and l2-l0-DCA PiE, α0 = 1.5 and ∆α = 0.5, α = 5.5. For
l0-DCA Capped-l1 and l2-l0-DCA Capped-l1, we set α0 ∈ {0.7, 0.8, 0.9},∆α = 0.2, α = 5.5. For
l0-DCA PiL and l2-l0-DCA PiL, we take a = 10−6 and b ∈ {10−4, 10−3, ..., 10−1, 0.2, 0.3}. The
parameters α and λ in l0-DCA SCAD and l2-l0-DCA SCAD are, respectively, set to 3.4 and 0.4
as proposed by Fan and Li in [10]. In l0-DCA Log and l2-l0-DCA Log, ε is set to 10−4. Finally,
for l0-DCA Econ and l2-l0-DCA Econ, the starting value of η is chosen in {10, 20, ..., 50} and η

is doubled at each iteration until 10, 000. The parameter B is set to 1000.
The starting vectors w0, u0 and v0 of the DCA based algorithms are randomly chosen in

[−0.5, 0.5]Q×d.
We compare our methods with one of the best algorithms for feature selection in MSVM,

called the Adaptive Sub-Norm (ASN) method (see [47] for more details). To select relevant
features, we first compute the feature ranking score cj , j = 1, ..., d for each feature ([9]) as
follows

cj =

Q∑

i=1

|wij |.

This ranking score is then normalized. Let ς = maxj cj , we compute cj =
cj
ς for each j = 1, ..., d.

Then, we remove the features j for which cj is smaller than a given threshold (0.01 in our

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 11

Fig. 1 Selected features (%) of l0-DCAs and ASN

experiments). After removing features, for computing the accuracy of classifier, we apply again
l2-MSVM (2) on the new training datasets and calculate the classification’s accuracy on the
new test sets.

5.3 Numerical results

We are interested in the efficiency (the sparsity and the classification error) and the rapidity
of the algorithms. The comparative results of the DCA based algorithms and the concurrent
ASN method (resp. of the DCA based algorithms) for the l0 model (resp. the l2-l0 model) are
presented in Table 4 (resp. Table 5). In each table, we present the number of selected features and
the corresponding percentage, the accuracy of classifiers and the CPU times of all algorithms.
For the ADN, MOV, SEM, MFE, CNA and ADV datasets, we chose randomly 60% for training
and the 40% remaining for test. This procedure is repeated 10 times. On each given training set
and test set, each algorithm is performed 10 times and the results are reported, for each dataset,
on average and its standard deviation (the best results are emphasized in bold font). For an
easy observation, the number of selected features and the corresponding accuracy of classifiers
on the l0 model are shown in the figures 1 and 2.

Comments on numerical results:
Sparsity of solutions:

– All the DCA based algorithms applied on the l0 model give a good sparsity of solutions.
Their percentage of selected features vary from 0.33% to 52.49%. On all datasets, DCAs are
better than ASN which selects from 3.39% to 84.13% features. On average of 8 datasets,
DCA based algorithms on the l0 model selects less than 20.52% of features while ASN selects
35.04% of features.

– On average, l0-DCA-Capped-l1 gives the best solutions in term of sparsity (averagely, its
selected 16.28% of features).

– The percentage of selected features of the DCA based algorithms for the l2-l0 model are
quite close to (but slightly larger than) those for the l0 model and, on all datasets, they
are better than those given by ASN. On average, the results of the l2-l0 DCAs vary from
16.898% to 24.30%.

Accuracy of classifiers:

– The DCA based algorithms on both l0 and l2-l0 models not only provide a good performance
in term of feature selection, but also give a high accuracy of classifiers (from 68.75% to 96.88%

12 Hoai An LE THI and Manh Cuong NGUYEN.

D
a
ta

set
l0

-D
C

A
P

iE
l0

-D
C

A
C

a
p

p
ed

-l1
l0

-D
C

A
P

iL
l0

-D
C

A
S

C
A

D
l0

-D
C

A
L

o
g

l0
-D

C
A

E
co

n
A

S
N

Number (and percentage)

of selected features

L
U

N
4
.3
8±

0
.4

8
5
.0

2±
1
.1

1
7
.3±

1
.2

7
7
.0

2±
0
.8

8
7
.8

4±
0
.7

9
8
.0

0±
0
.8

4
1
1
.2±

1
.1

7
7
.8
2

%
±

0
.8

6
%

8
.9

6
%
±

1
.9

8
%

1
3
.0

4
%
±

2
.2

7
%

1
2
.5

4
%
±

1
.5

7
%

1
4
.0

0
%
±

1
.4

1
%

1
4
.2

9
%
±

1
.5

0
%

2
0
.0

0
%
±

2
.0

9
%

O
P

T
2
5
.8

2±
2
.3

6
3
1
.7

8±
1
.2

1
3
3
.0

7±
0
.8

0
2
6
.7

8±
0
.6

3
2
2
.5
8±

0
.9

1
2
6
.9

6±
0
.5

6
5
3±

0
.8

9
4
0
.9

8
%
±

3
.7

5
%

5
0
.4

4
%
±

1
.9

2
%

5
2
.4

9
%
±

1
.2

7
%

4
2
.5

1
%
±

1
.0

0
%

3
5
.8
4

%
±

1
.4

4
%

4
2
.7

9
%
±

0
.8

9
%

8
4
.1

3
%
±

1
.4

1
%

A
D

N
7
.1

0±
2
.7

1
6
.9
8±

0
.5

8
1
2
.0

4±
0
.9

2
1
4
.1

8±
0
.8

2
1
2
.0

0±
0
.7

3
1
3
.0

7±
0
.8

5
1
8
.3

0±
0
.6

4
1
1
.8

3
%
±

4
.5

2
%

1
1
.6
3

%
±

0
.9

7
%

2
0
.0

7
%
±

1
.5

3
%

2
3
.6

3
%
±

1
.3

7
%

2
0
.0

0
%
±

1
.2

2
%

2
1
.7

8
%
±

1
.4

2
%

3
0
.5

0
%
±

1
.0

7
%

M
O

V
2
4
.2

7±
1
.8

5
2
3
.5

3±
0
.9

8
3
3
.1

3±
0
.6

9
2
6
.6

9±
0
.8

4
3
1
.2

4±
1
.3

2
2
3
.2
7±

1
.3

6
3
7
.9

0±
0
.9

4
2
6
.9

7
%
±

2
.0

6
%

2
6
.1

4
%
±

1
.0

9
%

3
6
.8

1
%
±

0
.7

7
%

2
9
.6

6
%
±

0
.9

3
%

3
4
.7

1
%
±

1
.4

7
%

2
5
.8
6

%
±

1
.5

1
%

4
2
.1

1
%
±

1
.0

4
%

S
E

M
7
3
.0

4±
1
.1

1
3
7
.1
6±

0
.7

6
7
9
.8

7±
1
.1

5
6
7
.7

3±
0
.4

9
8
3
.4

2±
1
.1

4
7
0
.4

0±
1
.2

7
2
0
2
.4±

3
.8

3
2
8
.5

3
%
±

0
.4

3
%

1
4
.5
2

%
±

0
.3

0
%

3
1
.2

0
%
±

0
.4

5
%

2
6
.4

6
%
±

0
.1

9
%

3
2
.5

9
%
±

0
.4

5
%

2
7
.5

0
%
±

0
.5

0
%

7
9
.0

6
%
±

1
.5

0
%

M
F

E
4
9
.7

8±
2
.3

2
4
7
.8

4±
1
.1

3
1
5
.9
1±

0
.8

1
4
9
.2

7±
1
.0

0
3
4
.7

6±
0
.9

7
5
1
.2

0±
1
.2

6
5
9±

0
.7

7
7
.6

7
%
±

0
.3

6
%

7
.3

7
%
±

0
.1

7
%

2
.4
5

%
±

0
.1

2
%

7
.5

9
%
±

0
.1

5
%

5
.3

6
%
±

0
.1

5
%

7
.8

9
%
±

0
.1

9
%

9
.0

9
%
±

0
.1

2
%

C
N

A
5
8
.8

0±
5
.8

7
7
8
.9

8±
0
.9

1
5
2
.0

9±
1
.3

6
7
7
.8

0±
1
.1

3
1
6
.0
4±

0
.7

6
4
5
.1

8±
1
.4

0
1
0
2
.9

0±
1
.5

1
6
.8

7
%
±

0
.6

9
%

9
.2

3
%
±

0
.1

1
%

6
.0

9
%
±

0
.1

6
%

9
.0

9
%
±

0
.1

3
%

1
.8
7

%
±

0
.0

9
%

5
.2

8
%
±

0
.1

6
%

1
2
.0

2
%
±

0
.1

8
%

A
D

V
1
1
.0

2±
1
.6

1
3
0
.5

6±
1
.2

2
3
0
.9

6±
1
.0

3
2
0
.9

3±
0
.5

7
6
.0

2±
0
.7

1
5
.1
8±

0
.7

1
5
2
.8±

1
.8

9
0
.7

1
%
±

0
.1

0
%

1
.9

6
%
±

0
.0

8
%

1
.9

9
%
±

0
.0

7
%

1
.3

4
%
±

0
.0

4
%

0
.3

9
%
±

0
.0

5
%

0
.3
3

%
±

0
.0

5
%

3
.3

9
%
±

0
.1

2
%

A
v
era

g
e

1
6
.4

2
%

1
6
.2
8

%
2
0
.5

2
%

1
9
.1

0
%

1
8
.0

9
%

1
8
.2

1
%

3
5
.0

4
%

Accuracy of

classifiers (%)

L
U

N
6
8
.7

5±
0
.0

0
6
8
.7

5±
0
.0

0
6
8
.7

5±
0
.0

0
6
8
.7

5±
0
.0

0
6
8
.7

5±
0
.0

0
6
8
.7

5±
0
.0

0
6
8
.7

5±
0
.0

0
O

P
T

9
3
.5

5±
0
.1

7
9
3
.9

5±
1
.0

1
9
5
.2
5±

0
.5

6
9
4
.5

8±
0
.1

5
9
2
.2

8±
0
.5

1
9
4
.1

2±
0
.8

5
9
3
.2

3±
0
.4

6
A

D
N

8
6
.8

6±
0
.9

7
8
3
.2

1±
0
.9

8
8
5
.8

8±
2
.2

3
8
7
.0
7±

0
.6

4
8
6
.7

5±
1
.1

2
8
6
.1

2±
0
.9

8
8
6
.5

1±
0
.6

7
M

O
V

7
5
.9
3±

3
.9

5
6
9
.2

9±
0
.3

6
7
5
.6

8±
1
.0

2
7
3
.4

9±
0
.5

3
7
0
.1

2±
0
.9

8
7
2
.2

2±
0
.5

4
7
1
.0

2±
0
.8

9
S

E
M

8
1
.8

9±
0
.1

6
9
0
.5
5±

0
.2

6
8
3
.0

1±
0
.2

5
7
9
.8

9±
0
.5

6
8
2
.5

6±
0
.5

4
8
2
.5

5±
0
.3

2
8
6
.1

4±
0
.6

6
M

F
E

9
5
.7

3±
0
.1

5
9
6
.1

5±
0
.4

2
9
6
.3

5±
0
.5

5
9
6
.2

2±
0
.2

7
9
5
.3

3±
0
.1

5
9
6
.8
8±

0
.5

2
9
5
.6

8±
0
.3

2
C

N
A

8
6
.9

9±
1
.6

6
9
0
.5

9±
0
.5

6
8
9
.3

3±
0
.9

6
9
0
.6
8±

0
.5

1
7
6
.5

7±
0
.1

8
8
6
.6

7±
0
.9

5
9
0
.1

2±
0
.7

4
A

D
V

9
5
.4
7±

1
.0

1
9
3
.6

4±
0
.6

8
9
3
.2

5±
0
.4

5
9
4
.2

8±
0
.7

7
9
4
.5

2±
1
.1

5
9
3
.6

6±
0
.5

1
9
3
.4

2±
0
.5

4
A

v
era

g
e

8
5
.6

5
8
5
.7

7
8
5
.9
4

8
5
.6

2
8
3
.3

6
8
5
.1

2
8
5
.6

1

CPU time
(in second)

L
U

N
0
.1

1±
0
.0

2
0
.0

7±
0
.0

3
0
.1

1±
0
.0

4
0
.1

3±
0
.0

2
0
.0
5±

0
.0

6
0
.0

9±
0
.0

3
0
.1

1±
0
.0

2
O

P
T

8
9
.8

8±
1
.4

6
5
5
.0
5±

8
.1

2
1
8
6
.5

7±
3
.5

2
5
6
.8

8±
2
.2

3
1
9
9
.8

6±
1
.0

2
1
0
4
.3

5±
1
.6

5
4
2
5
.9

8±
0
.7

7
A

D
N

1
.7
7±

0
.6

2
3
.3

9±
0
.3

8
2
.8

5±
0
.1

5
3
.3

2±
0
.2

7
4
.8

9±
1
.3

3
2
.3

2±
0
.5

6
1
1
.2

1±
0
.6

9
M

O
V

4
8
.5

2±
1
0
.8

2
1
6
0
.3

5±
3
.3

5
0
.5
9±

0
.2

4
4
5
.3

6±
1
1
.2

5
0
.6

1±
0
.1

9
6
.5

2±
0
.9

8
2
5
.5

6±
0
.7

1
S

E
M

1
4
5
.8

6±
1
.8

8
7
7
.6

4±
1
.1

3
1
7
2
.5

6±
4
.1

2
1
5
5
.8

5±
2
.8

6
2
5
.3

5±
1
.2

2
1
2
.3
5±

0
.7

7
1
6
9
.9

9±
0
.5

6
M

F
E

3
0
0
.5

1±
1
8
.5

5
7
0
.6
8±

1
.5

6
4
2
1
.2

6±
2
.8

9
3
0
2
.5

6±
7
.5

4
9
3
.2

6±
0
.3

1
4
3
2
.5

5±
1
2
.2

5
4
4
1
.3

2±
1
.0

1
C

N
A

1
1
.8

5±
4
.8

1
6
0
.5

1±
5
.6

4
1
1
.5

2±
0
.3

6
1
1
.2

1±
0
.6

7
3
.1
2±

0
.1

1
1
2
.2

3±
1
.5

4
4
2
.9

7±
0
.9

6
A

D
V

4
.1

1±
0
.1

8
3
.5

5±
0
.5

8
3
.2

1±
0
.3

2
3
.3

5±
0
.1

5
1
.8
1±

0
.2

4
2
.7

8±
0
.7

7
1
3
.3

8±
0
.6

4
A

v
era

g
e

7
5
.3

3
5
3
.9

1
9
9
.8

3
7
2
.3

3
4
1
.1
2

7
1
.6

5
1
4
1
.3

2

T
a
b
le

4
C

o
m

p
a
ra

tiv
e

resu
lts

o
f
l0

-D
C

A
s

a
n

d
th

e
co

n
cu

rren
t

A
S

N
a
lg

o
rith

m

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 13

D
a
ta

se
t
l 2

-l
0
-D

C
A

P
iE

l 2
-l
0
-D

C
A

C
a
p

p
ed

-l
1
l 2

-l
0
-D

C
A

P
iL

l 2
-l
0
-D

C
A

S
C

A
D

l 2
-l
0
-D

C
A

L
o
g
l 2

-l
0
-D

C
A

E
co

n

Number(andpercentage)

ofselectedfeatures

L
U

N
4
.5
3
±

0
.5

0
6
.4

0
±

1
.2

0
7
.6

9
±

0
.9

4
7
.0

0
±

1
.1

9
5
.0

0
±

0
.3

0
9
.0

2
±

1
.1

6
8
.0
9

%
±

0
.8

9
%

1
1
.4

3
%
±

2
.1

4
%

1
3
.7

3
%
±

1
.6

8
%

1
2
.5

0
%
±

2
.1

3
%

8
.9

3
%
±

0
.5

4
%

1
6
.1

1
%
±

2
.0

7
%

O
P

T
2
5
.7

3
±

1
.2

4
3
2
.3

1
±

1
.9

8
3
4
.3

1
±

0
.6

6
4
6
.8

2
±

0
.5

7
2
2
.4
7
±

1
.0

2
2
7
.8

7
±

1
.2

0
4
0
.8

4
%
±

1
.9

7
%

5
1
.2

9
%
±

3
.1

4
%

5
4
.4

6
%
±

1
.0

5
%

7
4
.3

2
%
±

0
.9

0
%

3
5
.6
7

%
±

1
.6

2
%

4
4
.2

4
%
±

1
.9

0
%

A
D

N
1
4
.7

2
±

1
.7

7
6
.1
9
±

1
.2

0
1
8
.0

2
±

0
.4

1
1
4
.9

8
±

0
.4

1
1
2
.1

3
±

0
.6

3
1
3
.0

2
±

0
.3

3
2
4
.5

3
%
±

2
.9

5
%

1
0
.3
2

%
±

2
.0

0
%

3
0
.0

3
%
±

0
.6

8
%

2
4
.9

7
%
±

0
.6

8
%

2
0
.2

2
%
±

1
.0

5
%

2
1
.7

0
%
±

0
.5

5
%

M
O

V
3
2
.0

7
±

4
.8

0
2
5
.6

2
±

0
.4

8
3
4
.3

4
±

0
.8

0
3
2
.7

8
±

1
.4

9
3
1
.0

4
±

0
.4

2
2
4
.9
8
±

0
.5

4
3
5
.6

3
%
±

5
.3

3
%

2
8
.4

7
%
±

0
.5

3
%

3
8
.1

6
%
±

0
.8

9
%

3
6
.4

2
%
±

1
.6

6
%

3
4
.4

9
%
±

0
.4

7
%

2
7
.7
6

%
±

0
.6

0
%

S
E

M
7
4
.5

3
±

1
.8

6
3
8
.2
±

0
.5

4
8
1
.0

0
±

1
.4

6
7
0
.3

8
±

1
.0

8
8
2
.9

6
±

0
.8

9
8
2
.7

8
±

0
.8

7
2
9
.1

1
%
±

0
.7

3
%

1
4
.9
2

%
±

0
.2

1
%

3
1
.6

4
%
±

0
.5

7
%

2
7
.4

9
%
±

0
.4

2
%

3
2
.4

1
%
±

0
.3

5
%

3
2
.3

4
%
±

0
.3

4
%

M
F

E
5
1
.0

9
±

1
.7

5
4
8
.1

8
±

0
.8

5
5
1
.4

2
±

1
.2

4
4
9
.4

4
±

1
.3

4
3
5
.0
2
±

1
.0

2
5
4
.4

7
±

0
.8

3
7
.8

7
%
±

0
.2

7
%

7
.4

2
%
±

0
.1

3
%

7
.9

2
%
±

0
.1

9
%

7
.6

2
%
±

0
.2

1
%

5
.4
0

%
±

0
.1

6
%

8
.3

9
%
±

0
.1

3
%

C
N

A
5
9
.0

8
±

4
.2

6
7
9
.6

7
±

1
.2

5
6
4
.0

9
±

0
.6

9
7
7
.9

1
±

0
.6

9
2
7
.0
4
±

1
.3

8
4
4
.9

3
±

1
.0

6
6
.9

0
%
±

0
.5

0
%

9
.3

1
%
±

0
.1

5
%

7
.4

9
%
±

0
.0

8
%

9
.1

0
%
±

0
.0

8
%

3
.1
6

%
±

0
.1

6
%

5
.2

5
%
±

0
.1

2
%

A
D

V
1
1
.4

6
±

2
.2

0
3
0
.8

0
±

1
.2

2
1
4
.0

0
±

0
.7

3
3
1
.1

1
±

1
.4

9
6
.0

4
±

0
.6

3
5
.9
1
±

0
.6

3
0
.7

4
%
±

0
.1

4
%

1
.9

8
%
±

0
.0

8
%

0
.9

0
%
±

0
.0

5
%

2
.0

0
%
±

0
.1

0
%

0
.3

9
%
±

0
.0

4
%

0
.3
8

%
±

0
.0

4
%

A
v
er

a
g
e

1
9
.2

2
%

1
6
.8
9

%
2
3
.0

4
%

2
4
.3

0
%

1
7
.5

8
%

1
9
.5

2
%

Accuracyof

classifiers(%)

L
U

N
6
8
.7

5
±

0
.0

0
6
8
.7

5
±

0
.0

0
6
8
.7

5
±

0
.0

0
6
8
.7

5
±

0
.0

0
6
8
.7

5
±

0
.0

0
6
8
.7

5
±

0
.0

0
O

P
T

9
3
.5

9
±

0
.1

6
9
3
.8

8
±

0
.6

9
9
5
.8
1
±

0
.1

1
9
4
.3

5
±

0
.1

5
9
2
.2

8
±

0
.1

9
9
4
.8

7
±

1
.0

1
A

D
N

8
7
.2
6
±

0
.8

8
8
3
.1

9
±

1
.5

1
8
5
.8

1
±

2
.5

6
8
7
.2

1
±

0
.7

3
8
5
.4

5
±

3
.1

8
8
6
.6

1
±

3
.3

5
M

O
V

7
2
.3

1
±

0
.9

8
6
9
.8

4
±

1
.2

1
7
6
.5
8
±

0
.8

9
7
3
.5

3
±

1
.5

4
6
9
.9

8
±

1
.3

3
7
3
.4

4
±

1
.6

4
S

E
M

8
2
.1

1
±

0
.2

1
9
0
.5
7
±

0
.5

6
8
3
.1

5
±

0
.1

1
8
2
.5

1
±

0
.6

3
8
4
.5

6
±

0
.2

5
8
2
.8

8
±

0
.5

2
M

F
E

9
5
.8

8
±

0
.2

2
9
6
.8
9
±

0
.1

8
9
6
.8

8
±

0
.1

9
9
6
.4

4
±

0
.2

9
9
5
.3

1
±

0
.1

5
9
6
.3

5
±

0
.2

9
C

N
A

8
5
.4

4
±

2
.1

3
9
0
.3
1
±

0
.5

2
8
9
.5

5
±

0
.5

4
9
0
.1

5
±

0
.8

9
8
4
.4

7
±

1
.5

9
8
6
.3

3
±

0
.6

8
A

D
V

9
5
.9
4
±

0
.5

8
9
3
.6

6
±

0
.5

1
9
5
.1

2
±

0
.6

9
9
5
.1

4
±

0
.6

9
9
4
.3

3
±

0
.6

9
9
3
.9

8
±

0
.5

8
A

v
er

a
g
e

8
5
.1

6
8
5
.8

9
8
6
.4
6

8
6
.0

1
8
4
.3

9
8
5
.4

0

CPUtime
(insecond)

L
U

N
0
.1

2
±

0
.0

3
0
.1

2
±

0
.0

5
0
.1

4
±

0
.0

2
0
.1

3
±

0
.0

1
0
.0
2
±

0
.0

1
0
.0

7
±

0
.0

2
O

P
T

1
5
6
.5

1
±

3
.1

3
1
8
5
.6

8
±

0
.8

9
1
8
5
.6

5
±

4
.2

1
3
9
.9
8
±

1
.5

9
4
2
9
.3

5
±

8
.8

9
2
0
5
.3

2
±

1
.5

2
A

D
N

4
2
.5

3
±

4
.1

8
9
5
.3

5
±

1
0
.2

6
3
0
.2

5
±

1
.1

5
2
1
.3

2
±

1
.9

8
1
9
.6

6
±

0
.2

5
4
.9
9
±

1
0
.2

3
M

O
V

4
8
.1

8
±

1
4
.8

1
1
6
6
.5

3
±

5
.6

9
7
2
.5

8
±

1
.1

1
5
2
.3

9
±

6
.8

5
0
.8
9
±

0
.1

5
3
5
.9

2
±

2
2
.8

9
S

E
M

3
5
1
.2

5
±

3
.3

2
1
8
9
.6

5
±

3
.2

5
3
0
9
.2

5
±

1
.9

9
3
5
1
.3

5
±

1
.8

9
1
0
3
.7

3
±

2
.3

5
4
4
.3
9
±

1
.8

2
M

F
E

5
3
1
.2

1
±

7
.2

2
1
5
2
.9

6
±

1
.2

6
6
5
5
.2

5
±

3
.5

9
5
1
2
.3

9
±

7
.6

2
2
0
1
.3

6
±

1
.9

1
1
2
5
.3
9
±

1
.5

7
C

N
A

5
5
.1

7
±

9
.7

6
6
1
.2

5
±

5
.7

8
1
5
.6
8
±

0
.5

2
5
3
.2

2
±

3
.1

2
2
0
.5

5
±

0
.3

2
1
8
.5

6
±

8
.9

5
A

D
V

4
.8

8
±

0
.7

9
5
.8

3
±

1
.8

9
3
.0

1
±

0
.4

6
5
.1

2
±

0
.5

6
1
.3
6
±

0
.0

9
4
.4

5
±

1
.5

2
A

v
er

a
g
e

1
4
8
.7

3
1
0
7
.1

7
1
5
8
.9

8
1
2
9
.4

9
9
7
.1

2
5
4
.8
9

T
a
b
le

5
C

o
m

p
a
ra

ti
v
e

re
su

lt
s

o
f
l 2

-l
0
-D

C
A

s

14 Hoai An LE THI and Manh Cuong NGUYEN.

Fig. 2 Accuracy of classifiers (%) of l0-DCAs and ASN

for the l0 model and from 68.75% to 96.89% for the l2-l0 model). These results are higher
than (or quite closed to) that of ASN.

– l0-DCA PiL and l2-l0-DCA PiL give the best accuracy of classifiers. These values are, re-
spectively, 85.94% and 86.46% and they are slightly better than that of ASN (85.61%).

– As for the comparison between the l0 and the l2-l0 models: the accuracy of classifiers of
l2-l0-DCAs are slightly better than that of l0-DCAs.

CPU times:

– All DCA based algorithms on the l0 model are generally faster than ASN. On average, the
gain is up to 3.44 times. l0-DCA Log and l0-DCA Econ are faster than ASN on 8/8 datasets
and the 4 remaining l0-DCAs are faster than ASN on 6/8 datasets. The gain is up to 43.32
times (l0-DCA PiL on MOV dataset).

– l0-DCA Log is the fastest algorithm. On average, it takes 41.12 seconds. Whereas, the cor-
responding CPU time of ASN is 141.32 seconds. For the l2-l0 model, the l2-l0-DCA Econ is
the fastest algorithm (on average, it takes 54.89 seconds).

– In general, not surprisingly, the l0-DCAs are faster than l2-l0-DCAs: at each iteration of
l0-DCAs we solve one linear program instead of one quadratic program in l2-l0-DCAs.

6 Conclusion

We have developed efficient approaches based on DC programming and DCA for feature selection
in multi-class support vector machine. Based on appropriate approximation functions of zero-
norm and an exact penalty technique, the l0-MSVM and l2-l0-MSVM problems are reformulated
as DC programs. It fortunately turns out that the corresponding DCA consist in solving, at each
iteration, one linear program (in l0 regularization) and/or one convex quadratic program (in
l2-l0 regularization). Moreover, several DCA based algorithms converge, after a finite number of
iterations, almost always to a local solution. Numerical results on several real datasets showed
the robustness, the effectiveness of the DCAs based schemes. We are convinced that DCA is a
promising approach for feature selection in MSVM.

References

1. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines.
In: J.Shavlik, editor, Machine Learning Proceedings of the Fifteenth International Conferences (ICML’98),
pp. 82–90. Morgan Kaufmann, San Francisco (1998).

DCA based algorithms for Feature Selection in Multi-class Support Vector Machine 15

2. Cai, X., Nie, F., Huang, H., Ding, C.: Multi-Class l2,1-Norm Support Vector Machine. Data Mining
(ICDM), 2011 IEEE 11th International Conference, pp. 91–100 (2011).

3. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. Journal of
Fourier Analysis and Applications 14, pp. 877–905 (2008).

4. Chapelle, O.: Multi-Class Feature Selection with Support Vector Machines. Technical report YR-2008-002
(2008).

5. Chen, X., Zeng, X., Alphen, D.V.: Multi-class feature selection for texture classification. Pattern Recog-
nition Letters 27, pp. 1685–1691 (2006).

6. Chen, Y.W., Lin, C.J.: Combining SVMs with Various Feature Selection Strategies. Feature Extraction
207, Studies in Fuzziness and Soft Computing Volume, pp. 315–32.

7. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs. J. Machine Learn. 7, pp.
1687–1712 (2006).

8. Deng, S., Xu, Y., Li, L., Li, X., He, Y.: A feature-selection algorithm based on Support Vector Machine-
Multiclass for hyperspectral visible spectral analysis. Journal of Food Engineering 119, Issue 1, pp. 159–166
(2013).

9. Duan, K.B., Rajapakse, J.C, Wang, H., Azuaje, F.: Multiple SVM-RFE for Genne Selection in Cancer
Classification With Expression Data. IEEE Transactions on NANOBIOSCIENCE 4, pp. 228–234 (2005)

10. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its Oracle Properties. Journal
of the American Statistical Association 96, pp. 1348–1360 (2001)

11. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning
Research 3, pp. 1157–1182 (2003)

12. Hermes, L., Buhmann, J.M.: Feature selection for support vector machines. Proceedings. 15th Interna-
tional Conference on Pattern Recognition, vol.2, pp. 712–715 (2000).

13. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Transactions
on Neural Networks 13:2, pp. 415–425 (2002).

14. Hui, Z.: The Adaptive Lasso and Its oracle Properties. Journal of the American Statistical Association
101:476, pp. 1418–1429 (2006)

15. Huang, J., Ma, S., Zhang, C.H.: Adaptive Lasso for sparse high-dimentional regression models. Statistica
Sinica 18, pp. 1603–1618 (2008)

16. Huang, L., Zhang, H.H., Zeng, Z.B., Bushel, P.R.: Improved Sparse Multi-Class SVM and Its Application
for Gene Selection in Cancer Classification. Cancer Inform 12, pp. 143–153 (2013).

17. Le Thi, H.A.: DC Programming and DCA. http://lita.sciences.univ-metz.fr/~lethi/DCA.html
18. Le Thi H.A., A new approximation for the `0-norm, Research Report LITA EA 3097, University of

Lorraine, 2012.
19. Le Thi, H.A., Pham Dinh, T.: The DC (Difference of convex functions) programming and DCA revisited

with DC models of real world nonconvex optimization problems. Annals of Operations Research 133, pp.
23–46 (2005).

20. Le Thi, H.A., Belghiti, T., Pham Dinh, T.: A new efficient algorithm based on DC programming and
DCA for Clustering. Journal of Global Optimization 37, pp. 593–608 (2006).

21. Le Thi, H.A., Le Hoai, M., Pham Dinh, T.: Optimization based DC programming and DCA for Hierar-
chical Clustering. European Journal of Operational Research 183, pp. 1067–1085 (2007).

22. Le Thi, H.A., Le Hoai, M., Nguyen, V.V., Pham Dinh, T.: A DC Programming approach for Feature
Selection in Support Vector Machines learning. Journal of Advances in Data Analysis and Classification
2:3, pp. 259–278 (2008).

23. Le Thi, H.A., Nguyen, V.V., Ouchani, S.: Gene Selection for Cancer Classification Using DCA. In: Tang,
C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 62–72.
Springer, Heidelberg (2008).

24. Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Exact Penalty and Error Bounds in DC Programming.
Journal of Global Optimization dedicated to Reiner Horst ISSN 0925-5001, DOI: 10.1007/s10898-011-
9765-3 (2011).

25. Lee, Y., Kim, Y., Lee, S., Koo, J.: Structured multicategory support vector machines with analysis of
variance decomposition. Biometrika 93(3), pp. 555–71 (2006)

26. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and application to the clas-
sification of microarray data and satellite radiance data. Journal of the American Statistical Association
99:465, pp. 67–81 (2004).

27. Li, G.Z., Yang, J., Liu, G.P., Xue, L.: Feature Selection for Multi-Class Problems Using Support Vector
Machines. PRICAI 2004: Trends in Artificial Intelligence, Lecture Notes in Computer Science 3157, pp.
292–300, Springer Berlin Heidelberg (2004).

28. Liu, Y., Shen, X.: Multicategory Ψ -Learning. Journal of the American Statistical Association 101:474, pp.
500–509, (2006).

29. Liu, Y., Zhang, H.H., Park, C., Ahn, J.: Support vector machines with adaptive Lq penalty. Computational
Statistics & Data Analysis 51, pp. 6380–6394 (2007).

30. Liu, D., Qian, H., Dai, G., Zhang, Z.: An iterative SVM approach to feature selection and classification
in high-dimensional datasets. Pattern Recognition 46, Issue 9, pp. 2531–2537 (2013).

31. Maldonado, S., Weber, R., Basak, J.: Simultaneous feature selection and classification using kernel-
penalized support vector machines. Information Sciences 181, Issue 1, pp. 115–128 (2011).

32. Neumann, J., Schnörr, C., Steidl, G.: SVM-based Feature Selection by Direct Objective Minimisation. In:
Proc. of 26th DAGM Symposium Pattern Recognition, pp. 212–219 (2004)

16 Hoai An LE THI and Manh Cuong NGUYEN.

33. Ong, C.S., Le Thi, H.A.: Learning sparse classifiers with Difference of Convex functions Algorithms.
Optimization Methods and Software 28:4 (2013).

34. Peleg, D. and Meir, R.: A bilinear formulation for vector sparsity optimization. Signal Processing, 8(2),
375–389 (2008).

35. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithm and
Applications. Acta Mathematica Vietnamica 22, pp. 289–355 (1997).

36. Pham Dinh, T., Le Thi, H.A.: Optimization algorithms for solving the trust region subproblem. SIAMJ.
Optimization 2, pp. 476–505 (1998).

37. T. Pham Dinh, H.A. Le Thi, Recent advances on DC programming and DCA. Transactions on Compu-
tational Intelligence XIII, Lecture Notes in Computer Science Volume 8342, 2014, pp 1-37.

38. A. Rakotomamonjy, Variable Selection Using SVM-based Criteria, Journal of Machine Learning Research,
Vol. 3:1357–1370 (2003).

39. Ramona, M., Richard, G., David, B.: Multiclass Feature Selection With Kernel Gram-Matrix-Based Cri-
teria. IEEE Transactions on Neural Networks and Learning Systems 23:10, pp. 1611–1623 (2012).

40. Ronan, C., Fabian, S., Jason, W., Lé, B.: Trading Convexity for Scalability. Proceedings of the 23rd
international conference on Machine learning ICML 2006, Pittsburgh, Pennsylvania, pp. 201–208 (2006).

41. Yeh, Y., Chung, Y., Lin, T., Wang, Y.: Group lasso regularized multiple kernel learning for heterogeneous
feature selection. The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2570–2577
(2011).

42. Wang, H., Li, G., Jiang, G.: Robust regression shrinkage and consistent variable selection via the LAD-
LASSO. Journal of Business & Economics Statistics 25:3, pp. 347–355 (2007).

43. Wang, L., Shen, X.: On l1-norm multi-class support vector machine: methodology and theory. Journal of
the American Statistical Association 102, pp. 583–594 (2003)

44. Weston, J., Watkins, C.: Support Vector Machines for Multi-Class Pattern Recognition. In: Proceedings -
European Symposium on Artificial Neural Networks, ESANN 1999, pp. 219–224. D-Facto public (1999).

45. Weston, J., Elisseeff, A., Schölkopf, B.: Use of Zero-Norm with Linear Models and Kernel Methods.
Journal of Machine Learning Research 3, pp. 1439–1461 (2003).

46. Wu, K., Lu, B., Uchiyama, M., Isahara, H.: A Probabilistic Approach to Feature Selection for Multi-class
Text Categorization. D. Liu et al. (Eds.): ISNN 2007, Part I, LNCS 4491, pp. 1310–1317 (2007).

47. Zhang, H.H., Liu, Y., Wu, Y., Zhu, J.: Variable selection for the multicategory SVM via adaptive sup-norm
regularization. Journal of Statistics 2, pp. 149–167 (2008).

48. Zhou, X., Tuck, D.P.: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA mi-
croarray data. Bioinformatics 23:9, pp. 1106–1114 (2007).

49. Zhou, Y., Jin, R., Hoi, S.C.: Exclusive Lasso for Multi-task Feature Selection. In AISTATS 9 (2010).

Conclusion Générale

Cette thèse est consacrée au développement d’une approche innovante de l’optimisation
non-convex: la programmation DC (Difference of Convex functions) et DCA (DC Algo-
rithms), pour la résolution de certaines classes de problèmes en Machine Learning et Data
Mining.

L’utilisation avec succès de DCA, pour la première fois, dans les deux thématiques
importantes d’apprentissage non supervisée - la maximisation du critère de Modularité et
la cartes auto-organisatrice (SOM) représente un grand intérêt pour la communauté des
chercheurs / practiciens en Machine Learning. Grâce aux outils théoriques rigoureux, nous
obtenons des schémas DCA simples, faciles à implémenter qui sont surtout non coûteux
en temps de calcul et donc capables de traiter des problèmes de grande dimension. Les
résultats numériques ont montré l’efficacité, la scalabilité et la supériorité de DCA par
rapport aux méthodes standard.

La maximisation du critère de Modularité: est un problème d’optimisation non-convexe
et NP-difficile. La première contribution pour ce problème porte sur le développement d’un
algorithme basé sur la programmation DC et DCA. Le problème non convexe est reformulé
en un programme DC pour lequel nous proposons une décomposition DC appropriée et
un algorithme DC efficace pour le résoudre. Cet algorithme permet de partitionner de
grands réseaux (plus de 4 millions de sommets et plus de 30 millions d’arêtes) en commu-
nautés disjointes dont tous les calculs sont explicites. Notre algorithme ne nécessite pas
de raffinement et converge vers une bonne solution après un nombre fini d’itérations. Par
ailleurs, le nombre de clusters est automatiquement détecté lors des itérations de DCA.
Cette originalité de DCA constitue une contribution importante et intéressante de notre
approche. Une seconde contribution pour ce problème porte sur le développement d’un
nouvel algorithme d’analyse hiérarchique de la structure d’un réseau. Cet algorithme,
Mod-Müllner, permet de trouver la même solution que les algorithmes hiérarchiques déjà
existants avec des temps de calcul beaucoup plus courts. Un réseau de plus de 50 millions
d’arêtes a ainsi pu être décomposé en moins d’une minute.

L’apprentissage du SOM a été considéré comme un problème d’optimisation avec une
fonction d’énergie non smooth et non convexe. La programmation DC et DCA sont étudiés
pour résoudre efficacement ce problème. Outre cette première version de l’algorithme
DCA, une variante, basée sur une gestion efficace de la décroissance de la température
du modèle, est aussi proposée. Dans les deux cas, nous avons obtenu des algorithmes
simples et efficaces car ils ne nécessitent que des opérations simples (sommes et produits
de matrices). Grâce à l’efficacité de DCA, notre algorithme d’apprentissage nécessite un
nombre très faible d’étapes, alors que dans les méthodes classiques ce nombre doit être très
grande pour obtenir une bonne solution. Les résultats numériques montrent que l’approche
proposée donne de meilleurs résultats que la méthode standard (Batch SOM).

Ces travaux sucsitent des sujets qui peuvent être envisagés dans une future proche:

Pour le problème de la détection de communautés dans des réseaux complexes:
Il nous semble plus pertinent d’utiliser des mesures bien adaptées à la structure du réseau,
par la suite il est intéressant d’investir DCA aux problèmes de maximisation des nouvelles
mesures. Citons, par exemple, ”distance based modularity” proposé par Wangqun Lin et
al. en 2012 pour des réseaux d’information incomplète dans le sens où les graphes ont un
nombre faible des arrêttes, la modularité densitée proposée par Li et al. en 2008 pour les

133

134 Conclusion Générale

réseaux ayant des petites communautés (les méthodes basées sur la mesure de modularité
ont la tendance à fusionner de les petites communautés à une plus grande), ou encore la
mesure du modularité adaptée à des graphes bipartis de Michael J. Barber en 2007.

Pour SOM: Nous souhaitons développer DCA pour les versions du noyau de BSOM et/ou
pour minimiser la fonction d’énergie dans laquelle la fonction de voisinage est modifiée à
chaque étape t.

Par ailleurs l’efficacité de DCA pour ces deux thématiques d’apprentissage non super-
visée nous encourage à appliquer nos algorithmes aux problèmes concrets.

Si DCA est utilisé pour la première fois dans les deux précédents problèmes, il n’en
est pas de même pour la sélection des variables en classification supervisée: DCA a été
développé pour la sélection des variables en SVM utilisant la norme zéro dans certains
articles. Notre façon de traiter la norme zéro est la même que celle dans ces travaux, mais
nos problèmes sont bien plus complexes.

Pour la sélection de variables en apprentissage semi-supervisé dans les machines à
vecteurs de support (S3VM): les problèmes d’optimisation sont non smooth et non con-
vexes. Au point de vue algorithmique, la sélection des variables en S3VM est plus difficile
que la sélection des variables en SVM parce qu’il y a la double difficulté venant d’une
part de la norme zéro et d’autre part de la non convexité et non différentiabilité de la
fonction de perte. Pour résoudre ce problème, nous utilisons 5 différentes approximations
et une reformulation continue de la norme l0 ce qui conduit à 6 problèmes non convexes.
Ensuite, nous avons développé 6 schémas DCA efficaces pour les résoudre. Les résultats
numériques sur plusieurs jeux de données réels ont montré la robustesse, l’efficacité de nos
méthodes, aussi bien en classification qu’en sélection de variables.

Pour la sélection de variables en MSVM, nous avons considéré le modèle de SVM
multi-classes proposé par J. Weston et C. Watkins. Par rapport à la sélection de variables
en SVM, sa difficulté réside plutôt dans l’aspect numérique (et non en construction des
schémas DCA) car la taille du problème devient beaucoup plus importante en MSVM.
De manière similaire au problème de S3VM ci-dessus, nous avons développé les deux
approches non convexes basées sur la programmation DC et DCA: l’approximation et la
reformulation via la pénalité exacte. Les expériences numériques menées sur des données
réelles, là encore, montre l’efficacité de nos méthodes par rapport au meilleur algorithme
existent (Adaptive Sub-Norm). En effet, les modèles obtenus sont plus parcimonieux et
obtenus avec meilleurs temps de calcul.

Suite à ces travaux, nous envisageons des études suivantes dans les prochains jours:

Pour MSVM: Les algorithmes basés sur DCA donnent des bons résultats sur des données
linéairement séparables. Dans un travail futur, la mise au point d’un algorithme DC dans le
cas où les données sont non linéairement séparables est nécessaire. De manière classique,
une fonction noyau sera utilisée afin de séparer les données dans un espace de grande
dimension, et un DCA sera proposé pour résoudre efficacement ce problème.

De plus, la sélection de groupes de variables parcimonieux (Sparse Group Feature Se-
lection) est un problème intéressant. Le modèle de ”Group Lasso” ne permet pas d’obtenir
une représentation parcimonieuse dans les groupes. Par conséquent, nous souhaitons ex-
plorer le modèle de ”Sparse Group Lasso” qui produit parcimonie tant au niveau de groupe
de variables et au niveau de l’individuels dans des groupes. Basé sur la norme l0, nous
souhaitons développer des DCA pour ce problème.

Conclusion Générale 135

Pour S3VM: Nous souhaitons utiliser nos algorithmes dans les applications concrètent,
en particulier en apprentissage des données textuelles.

136 Conclusion Générale

	Titre
	Remerciements
	Résumé
	Curriculum Vitae
	Publications
	Contents
	Introduction générale
	DC programming and DCA
	Introduction
	DC programming and DCA
	Notations and properties
	Fundamentals of DC analysis
	DC optimization
	DCA

	Conclusion

	Modularity maximization in network and application to community detection
	DC programming approach
	Hierarchical Community Analysis approach

	Self-Organizing Maps by Difference of Convex functions optimization
	Sparse S3VM by DC Programming and DCA
	DCA based Algorithms for Feature Selection in MSVM
	Conclusion Générale

