Méthodes primales-duales régularisées pour l'optimisation non linéaire avec contraintes
Auteur / Autrice : | Riadh Omheni |
Direction : | Paul Armand |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et applications |
Date : | Soutenance le 14/11/2014 |
Etablissement(s) : | Limoges |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018) |
Partenaire(s) de recherche : | Laboratoire : XLIM |
Jury : | Président / Présidente : Sonia Cafieri |
Examinateurs / Examinatrices : Paul Armand, Samir Adly, Joël Benoist | |
Rapporteurs / Rapporteuses : Dominique Orban, Serge Gratton |
Mots clés
Résumé
Cette thèse s’inscrit dans le cadre de la conception, l’analyse et la mise en œuvre d’algorithmes efficaces et fiables pour la résolution de problèmes d’optimisation non linéaire avec contraintes. Nous présentons trois nouveaux algorithmes fortement primaux-duaux pour résoudre ces problèmes. La première caractéristique de ces algorithmes est que le contrôle des itérés s’effectue dans l’espace primal-dual tout au long du processus de la minimisation, d’où l’appellation “fortement primaux-duaux”. En particulier, la globalisation est effectuée par une méthode de recherche linéaire qui utilise une fonction de mérite primale-duale. La deuxième caractéristique est l’introduction d’une régularisation naturelle du système linéaire qui est résolu à chaque itération pour calculer une direction de descente. Ceci permet à nos algorithmes de bien se comporter pour résoudre les problèmes dégénérés pour lesquels la jacobienne des contraintes n’est pas de plein rang. La troisième caractéristique est que le paramètre de pénalisation est autorisé à augmenter au cours des itérations internes, alors qu’il est généralement maintenu constant. Cela permet de réduire le nombre d’itérations internes. Une étude théorique détaillée incluant l’analyse de convergence globale des itérations internes et externes, ainsi qu’une analyse asymptotique a été présentée pour chaque algorithme. En particulier, nous montrons qu’ils jouissent d’un taux de convergence rapide, superlinéaire ou quadratique. Ces algorithmes sont implémentés dans un nouveau solveur d’optimisation non linéaire qui est appelé SPDOPT. Les bonnes performances de ce solveur ont été montrées en effectuant des comparaisons avec les codes de références IPOPT, ALGENCAN et LANCELOT sur une large collection de problèmes.