Études et développement de transistors bipolaires Si/SiGe : C rapides dans un nœud BiCMOS 55 nm
Auteur / Autrice : | Élodie Canderle |
Direction : | Christophe Gaquière, Pascal Chevalier |
Type : | Thèse de doctorat |
Discipline(s) : | Micro et nanotechnologies, acoustique et télécommunications |
Date : | Soutenance le 10/12/2014 |
Etablissement(s) : | Lille 1 |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Lille) |
Partenaire(s) de recherche : | Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie |
Mots clés
Résumé
Le travail de cette thèse s’inscrit dans le contexte du développement de la technologie BiCMOS055 en plateforme 300 mm, première technologie BiCMOS en nœud 55 nm au monde, avec des fréquences caractéristiques fT / fMAX = 320 / 370 GHz. Une première partie présente l’étude de différentes solutions visant à réduire la résistance de base extrinsèque de l’architecture DPSA-SEG afin d’améliorer la fréquence maximale d’oscillation fMAX. Nous montrons alors que changer la nature des matériaux n’apporte pas d’amélioration, mais que l’ajout de différents recuits après réalisation de la base intrinsèque permet d’augmenter significativement les performances du transistor tout en restant compatible avec les transistors MOS. La seconde partie de ce travail s’est attachée à démontrer les potentialités d’un transistor avec un module collecteur totalement implanté, où couche enterrée et tranchées d’isolation profondes ont été retirées. Les résultats obtenus montrent qu’il est possible, en optimisant le dessin des structures, d’obtenir des fT et fMAX atteignant respectivement 96% et 91% des paramètres de la technologie de référence. Enfin la dernière partie présente l’étude de l’impact des interconnexions métalliques sur les paramètres électriques du transistor sous-jacent. Il en ressort que la contrainte mécanique a un impact significatif, mais que les interconnexions influencent peu le comportement thermique du composant.