Fonctionnalisation par voie physique de géotextiles destinés à la dépollution des sédiments de dragage
Auteur / Autrice : | Marianne Vandenbossche |
Direction : | Michel Traisnel, Mathilde Casetta |
Type : | Thèse de doctorat |
Discipline(s) : | Molécules et Matières Condensée |
Date : | Soutenance le 28/10/2014 |
Etablissement(s) : | Lille 1 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....) |
Partenaire(s) de recherche : | Laboratoire : UMET - Unité Matériaux et Transformations |
Mots clés
Résumé
Le traitement des sédiments de dragage pollués aux métaux lourds est une alternative à leur stockage sur sites homologués et pourrait permettre la réutilisation des sédiments en technique routière ou en butte paysagère. Le procédé de dépollution envisagé dans ce projet consiste à déposer les sédiments contaminés sur des géotextiles, matériaux présentant une structure poreuse idéale pour la filtration. La lixiviation permet ensuite de rendre mobile une partie des polluants métalliques afin qu’ils puissent être adsorbés par les géotextiles. Cependant, ces matériaux, généralement synthétiques, n’ont pas de capacité intrinsèque à retenir les métaux et doivent donc être fonctionnalisés avec des molécules capables de fixer les métaux lourds. Cette thèse est orientée vers le développement de procédés de fonctionnalisation par plasma et laser, l’objectif final étant d’immobiliser des biomolécules chélatantes à la surface des géotextiles. Ces biomolécules sont fixées par couplage chimique sur des fonctions –COOH obtenues préalablement par greffage d’un agent intermédiaire, l’acide acrylique. La surface des fibres a été analysée à chaque étape de traitement par microscopie électronique à balayage, spectrométrie infrarouge, et par spectrométrie photoélectronique à rayons X, prouvant le greffage covalent de l’acide acrylique puis des biomolécules. Enfin, des tests avec des solutions métalliques ont été effectués afin de pouvoir sélectionner le textile fonctionnalisé le plus efficace pour réaliser des essais à l’échelle pilote. Parallèlement, une étude de modélisation a été amorcée afin d’étudier plus précisément la structure des complexes métal/biomolécule obtenus.