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Résumé

Dans cette thèse nous obtenons des approximations et les erreurs associées pour la

distribution de la statistique de scan discrète multi-dimensionnelle. La statistique

de scan est vue comme le maximum d'une suite de variables aléatoires station-

naires 1-dépendante. Dans ce cadre, nous présentons un nouveau résultat pour

l'approximation de la distribution de l'extremum d'une suite de variables aléatoire

stationnaire 1-dépendante, avec des conditions d'application plus larges et des er-

reurs d'approximations plus petites par rapport aux résultats existants en littéra-

ture. Ce résultat est utilisé ensuite pour l'approximation de la distribution de la

statistique de scan. L'intérêt de cette approche par rapport aux techniques exis-

tantes en littérature est du à la précision d'une erreur d'approximation, d'une part,

et de son applicabilité qui ne dépend pas de la distribution du champ aléatoire

sous-adjacent aux données, d'autre part.

Les modèles considérés dans ce travail sont le modèle i.i.d et le modèle de dépen-

dance de type block-factor.

Pour la modélisation i.i.d. les résultats sont détaillés pour la statistique de scan

uni, bi et tri-dimensionnelle. Un algorithme de simulation de type "importance

sampling" a été introduit pour le calcul e�ectif des approximations et des erreurs

associées. Des études de simulations démontrent l'e�cacité des résultats obtenus.

La comparaison avec d'autres méthodes existantes est réalisée.

La dépendance de type block-factor est introduite comme une alternative à

la dépendance de type Markov. La méthodologie développée traditionnellement

dans le cas i.i.d. est étendue à ce type de dépendance. L'application du résultat

d'approximation pour la distribution de la statistique de scan pour ce modèle de

dépendance est illustrée dans le cas uni et bi-dimensionnel.

Ces techniques, ainsi que celles existantes en littérature, ont été implémentées

pour la première fois à l'aide des programmes Matlab R© et une interface graphique.





Abstract

In this thesis, we derive accurate approximations and error bounds for the proba-

bility distribution of the multidimensional scan statistics.

We start by improving some existing results concerning the estimation of the

distribution of extremes of 1-dependent stationary sequences of random variables,

both in terms of range of applicability and sharpness of the error bound. These

estimates play the key role in the approximation process of the multidimensional

discrete scan statistics distribution.

The presented methodology has two main advantages over the existing ones

found in the literature: �rst, beside the approximation formula, an error bound is

also established and second, the approximation does not depend on the common

distribution of the observations. For the underlying random �eld under which the

scan process is evaluated, we consider two models: the classical model, of indepen-

dent and identically distributed observations and a dependent framework, where the

observations are generated by a block-factor.

In the i.i.d. case, in order to illustrate the accuracy of our results, we consider

the particular settings of one, two and three dimensions. A simulation study is

conducted where we compare our estimate with other approximations and inequal-

ities derived in the literature. The numerical values are e�ciently obtained via an

importance sampling algorithm discussed in detail in the text.

Finally, we consider a block-factor model for the underlying random �eld, which

consists of dependent data and we show how to extend the approximation method-

ology to this case. Several examples in one and two dimensions are investigated.

The numerical applications accompanying these examples show the accuracy of our

approximation.

All the methods presented in this thesis leaded to a Graphical User Interface

(GUI) software, implemented in Matlab R©.
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Introduction

There are many �elds of application where an observed cluster of events could have

a great in�uence on the decision taken by an investigator. To know if such an

agglomeration of events is due to hazard or not, plays an important role in the

decision-making process. For example, an epidemiologist observes over a prede�ned

period of time (a week, a month, etc.) an accumulation of cases of an infectious

disease among the population of a certain region. Under some model for the distri-

bution of events, if the probability to observe such an unexpected cluster is small,

with respect to a given threshold value, then the investigator can conclude that an

atypical situation occurred and can take the proper measures to avoid a pandemic

crisis. The problem of identifying accumulations of events that are unexpected or

anomalous with respect to the distribution of events belongs to the class of cluster

detection problems. Depending on the application domain, these anomalous ag-

glomeration of events can correspond to a diversity of phenomena: for example one

may want to search for clusters of stars, deposits of precious metals, outbreaks of

disease, batches of defective pieces, brain tumors and many other possibilities.

A general class of testing procedures, used by practitioners to evaluate the likelihood

of such clusters of events, are the tests based on scan statistics. These statistics,

considered for the �rst time in the work of Naus in the 60s, are random variables

de�ned as the maximum number of observations in a scanning window of prede�ned

size and shape that is moved in a continuous fashion over all possible locations

of the region of study. The tests based on scan statistics are usually employed

when one wants to detect a local change (a hot spot) in the distribution of the

underlying random �eld via testing the null hypothesis of uniformity against an

alternative hypothesis which favors clusters of events. The importance of the tests

based on scan statistics have been noted in many scienti�c and technological �elds,

including: DNA sequence analysis, brain imaging, distributed target detection in

sensors networks, astronomy, reliability theory and quality control among many

other domains.

To implement these testing procedures, one needs to �nd the distribution of the

scan statistics. The main di�culty in obtaining the distribution of the scan random

variable, under the null hypothesis, resides in the high dependent structure of the

observations over which the maximum is taken. As consequence, several approxima-

tions have been proposed, especially for the case of one, two and three dimensional

scan statistics.

In this thesis, we consider the multidimensional discrete scan statistics into a gen-

eral framework. Viewed as maximum of some 1-dependent sequences of random

variables, we derive accurate approximations and error bounds for its distribution.

Our methodology applies to a larger class of distributions and extends the i.i.d. case

to some new dependent models based on block-factor constructions.

This manuscript is organized into four chapters as follows.



2 Introduction

In Chapter 1, we review some of the existing approaches used to develop exact and

approximate results for the distribution of the unconditional discrete scan statistics.

We consider, separately, the cases of one, two and three dimensional scan statis-

tics. In the one dimensional setting, we include, along various approximations and

bounds, three general methods used for determining the exact distribution of the

scan statistics over a sequence of i.i.d. binary trials: the combinatorial method, the

�nite Markov chain imbedding technique and the conditional probability generating

function method. A new upper bound for the distribution of the two dimensional

scan statistics is presented. We should mention that most of the results presented

in this chapter are given in their general form, extending thus their corresponding

formulas that appear in the literature.

Chapter 2 introduces a series of results concerning the approximation of the distri-

bution of the extremes of 1-dependent stationary sequences of random variables. We

improve some existing results in terms of error bounds and range of applicability.

Our new approximations will constitute the main tools in the estimation of the dis-

tribution of the multidimensional discrete scan statistics derived in the subsequent

chapters.

The general case of d dimensional discrete scan statistics, d ≥ 1 for independent

and identically distributed observations, is considered in Chapter 3. Employing

the results derived in Chapter 2, we present the methodology used for obtaining

the approximation of the probability distribution function of the multidimensional

dimensional discrete scan statistics. The main advantage of the described approach

is that, beside the approximation formula, we can also establish sharp error bounds.

Since the quantities that appear in the approximation of the scan statistics for-

mula are usually evaluated by simulation, two types of errors are considered: the

theoretical error bounds and the simulation error bounds. We give detailed expres-

sions, based on recursive formulas, for the computation of these bounds. Due to the

simulation nature of the problem, we also include a general importance sampling

procedure to increase the e�ciency of the proposed estimation. We discuss di�er-

ent computational aspects of the procedure and we compare it with other existing

algorithms. We conclude the chapter with a series of examples for the special cases

of one, two and three dimensional scan statistics. In these frameworks, we explicit

the general formulas obtained for the d dimensional setting and we investigate their

accuracy via a simulation study.

In Chapter 4, we consider the multidimensional discrete scan statistics over a

random �eld generated by a block-factor model. This dependent model generalizes

the i.i.d. model presented in Chapter 3. We extend the approximation methodology

developed for the i.i.d. case to this model. We provide recurrent formulas for

the computation of the approximation, as well as for the associated error bounds.

In the �nal section, we present several examples for the special cases of one and

two dimensional scan statistics to illustrate the method. In particular, we give an

estimate for the length of the longest increasing run in a sequence of i.i.d. random

variables and we investigate the scan statistics for moving average of order q models.

Numerical results are included in order to evaluate the e�ciency of our results.



Introduction 3

To illustrate the e�ciency and the accuracy of the methods presented in this thesis,

we developed a Graphical User Interface (GUI) software, implemented in Matlab R©.

This software application provides estimates for the distribution of the discrete scan

statistics for di�erent scenarios. In this GUI, the user can choose the dimension of

the problem and the distribution of the random �eld under which the scan process

is performed. We consider the cases of one, two and three dimensional scan statis-

tics over a random �eld distributed according to a Bernoulli, binomial, Poisson or

Gaussian model. In the particular situation of one dimensional scan statistics, we

have also included a moving average of order q model. A more detailed description

of this GUI application is given in Appendix C.





Chapter 1

Existing methods for �nding the

distribution of discrete scan

statistics

In this chapter, we review some of the existing methods used in the study of the un-

conditional discrete scan statistics. In Section 1.1, we consider the one dimensional

case and describe some of the approaches used to determine the exact distribution

of scan statistics along with various approximations and bounds. In Section 1.2 and

Section 1.3, we focus on the two and three dimensional scan statistics, respectively.
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1.1 One dimensional scan statistics

There are many situations when an investigator observes an accumulation of events

of interest and wants to decide if such a realisation is due to hazard or not. These

type of problems belong to the class of cluster detection problems, where the basic

idea is to identify regions that are unexpected or anomalous with respect to the

distribution of events. Depending on the application domain, these anomalous ag-

glomeration of events can correspond to a diversity of phenomena: for example one
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may want to �nd clusters of stars, deposits of precious metals, outbreaks of disease,

mine�eld detections, defectuous batches of pieces and many other possibilities.

If such an observed accumulation of events exceeds a preassigned threshold, usually

determined from a speci�ed signi�cance level corresponding to a normal situation

(the null hypothesis), then it is legitimate to say that we have an unexpected cluster

and proper measures has to be taken accordingly.

Searching for unusual clusters of events is of great importance in many scienti�c

and technological �elds including: DNA sequence analysis ([Sheng and Naus, 1994],

[Hoh and Ott, 2000]), brain imaging ([Naiman and Priebe, 2001]), target detection

in sensors networks ([Guerriero et al., 2009], [Guerriero et al., 2010b]), astronomy

([Darling and Waterman, 1986], [Marcos and Marcos, 2008]), reliability theory and

quality control ([Boutsikas and Koutras, 2000]) among many other domains. One of

the tools used by practitioners to decide on the unusualness of such agglomeration of

events is the scan statistics. Basically, the tests based on scan statistics are looking

for events that are clustered amongst a background of those that are sporadic.

Let 2 ≤ m1 ≤ T1 be two positive integers and X1, . . . , XT1 be a sequence of inde-

pendent and identically distributed random variables with the common distribution

F0. The one dimensional discrete scan statistics is de�ned as

Sm1(T1) = max
1≤i1≤T1−m1+1

Yi1 , (1.1)

where the random variables Yi1 are the moving sums of length m1 given by

Yi1 =

i1+m1−1∑
i=i1

Xi. (1.2)

Usually, the statistical tests based on the one dimensional discrete scan statistics

are employed when one wants to detect a local change in the signal within a se-

quence of T1 observations via testing the null hypothesis of uniformity, H0, against

a cluster alternative, H1 (see [Glaz and Naus, 1991] and [Glaz et al., 2001]). Under

H0, the random observations X1, . . . , XT1 are i.i.d. distributed as F0, while under

the alternative hypothesis, there exists a location 1 ≤ i0 ≤ T1 −m1 + 1 where Xi,

i ∈ {i0, . . . , i0 + m1 − 1}, are distributed according to F1 6= F0 and outside this

region Xi are distributed as F0.

We observe that whenever Sm1(T1) exceeds the threshold τ , where the value of τ is

computed based on the relation PH0 (Sm1(T1) ≥ τ) = α and α is a preassigned signif-

icance level of the testing procedure, the generalized likelihood ration test rejects the

null hypothesis in the favor of the clustering alternative (see [Glaz and Naus, 1991]).

It is interesting to note that most of the research has been done for F0 being bi-

nomial, Poisson or normal distribution (see [Naus, 1982], [Glaz and Naus, 1991],

[Glaz and Balakrishnan, 1999], [Glaz et al., 2001] or [Wang et al., 2012]).

In Chapter 3, we present a new approximation method for the distribution of the

discrete scan statistics, following the work of [Haiman, 2000], that can be evaluated

no matter what distribution we have under the null hypothesis.
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In this section, we revisit some of the existing methods used to obtain the exact

values or the approximation of the distribution of the one dimensional discrete scan

statistics.

1.1.1 Exact results for binary sequences

In this section, we consider that the random variables X1, X2, . . . , XT1 , are i.i.d.

binary trials (Bernoulli model). From the best of our knowledge, there are three

main approaches used for investigating the exact distribution of the one dimensional

discrete scan statistics: the combinatorial method, the Markov chain imbedding

technique (MCIT) and the conditional probability generating function method. We

will give a short description of each method in the subsequent sections.

1.1.1.1 The combinatorial approach

Let X1, . . . , XT1 be a sequence of i.i.d. 0 − 1 Bernoulli random variables of pa-

rameter p. The combinatorial method is based on a consequence of a Markov pro-

cess result of [Karlin and McGregor, 1959], used for solving the ballot problem (see

[Barton and Mallows, 1965, page 243]) and is brie�y described in the following.

The probability distribution function of the one dimensional discrete scan statistics

can be obtained, using the law of total probability, from the relation

P (Sm1(T1) ≤ n) =

T1∑
k=0

(
T1

k

)
pk(1− p)T1−kP

(
Sm1(T1) ≤ n

∣∣∣∣∣
T1∑
i=1

Xi = k

)
, (1.3)

where in the last relation we used the fact that X1 ∈ {0, 1} with P(X1 = 1) = p and
T1∑
i=1

Xi follows a binomial distribution with parameters T1 and p.

In [Naus, 1974, Theorem 1] (see also [Glaz et al., 2001, Chapter 12]), the author

presented a combinatorial formula for the conditional distribution of Sm1(T1) given

the total number of realisations in T1 trials, i.e.

T1∑
i=1

Xi = k.

Assuming that T1 = m1L and partitioning the total number of trials into L disjoint

groups of size m1, we have

P

(
Sm1(T1) ≤ n

∣∣∣∣∣
T1∑
i=1

Xi = k

)
=

(m1!)L(
T1
k

) ∑
σ∈Γn

det|di,j |, (1.4)

where σ denote a partition of the k realisations (successes) into L numbers

(n1, . . . , nL) such that ni ≥ 0 represents the number of realisations in the ith

group. The set Γn denote the collection of all the partitions σ such that for each

i ∈ {1, . . . , L} we have ni ≤ n. The L × L matrices di,j are determined based on

the formulas

di,j =

{
0, if ci,j < 0 or ci,j > m1

1
ci,j !(n+1−ci,j)! , otherwise

(1.5)
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with

ci,j =


(j − i)(n+ 1)−

j−1∑
l=1

nk + ni, for i < j

(j − i)(n+ 1) +
i∑
l=j

nk, for i ≥ j.
(1.6)

It is important to emphasize that the evaluation of P (Sm1(T1) ≤ n) via the combi-

natorial method is complex and requires excessive computational time. The problem

arises from the large number of terms in the set Γn and from the fact that for each

element in such a set one needs to evaluate the determinant of a L × L matrix.

As [Naus, 1982] noted, the expression in Eq.(1.3) can only be evaluated for small

window sizes and moderate L.

We include, for completeness, the formulas for the particular cases of T1 = 2m1

and T1 = 3m1. [Naus, 1982] using the relations in Eq.(1.3) and Eq.(1.4), gave the

following closed form expressions for the distribution of the discrete scan statistics:

P (Sm1(2m1) ≤ n) = F 2(n;m1, p)− nb(n+ 1;m1, p)F (n− 1;m1, p)

+m1pb(n+ 1;m1, p)F (n− 2,m1 − 1), (1.7)

P (Sm1(3m1) ≤ n) = F 3(n;m1, p)−A1 +A2 +A3 −A4, (1.8)

with

A1 = 2b(n+ 1;m1, p)F (n;m1, p)[nF (n− 1;m1, p)−m1pF (n− 2;m1 − 1, p)],

A2 = 0.5b2(n+ 1;m1, p) [n(n− 1)F (n− 2;m1, p)− 2(n− 1)m1F (n− 3;m1 − 1, p)

+m1(m1 − 1)p2F (n− 4;m1 − 2, p)
]
,

A3 =
n∑
r=1

b(2(n+ 1)− r;m1, p)F
2(r − 1;m1, p),

A4 =

n∑
r=2

b(2(n+ 1)− r;m1, p)b(r + 1;m1, p) [rF (r − 1;m1, p)

−m1pF (r − 2;m1 − 1, p)] , (1.9)

and where b(s; t, p) and F (s; t, p) are the probability mass function and cumulative

distribution function of the binomial random variable B(t, p), that is

b(s; t, p) =

(
t

s

)
ps(1− p)t−s (1.10)

F (s; t, p) =

s∑
i=0

b(i; t, p). (1.11)

As we will see in Section 1.1.2, the foregoing relations are successfully used in the

product type approximation of the scan statistics over a Bernoulli sequence.
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1.1.1.2 Markov chain imbedding technique

In this section, we present succinctly the second approach used for �nding the exact

distribution of the one dimensional discrete scan statistics for binary trials, namely

the Markov Chain Imbedding Technique (for short MCIT). The method was devel-

oped by [Fu, 1986] and [Fu and Koutras, 1994] and successfully employed to derive

the exact distribution associated with several runs statistics in either independent

and identically distributed or Markov dependent trials. The two monographs of

[Fu and Lou, 2003] and [Balakrishnan and Koutras, 2002] give a full account of the

development and the applications of the method and also provide a lot of references

in this research area.

The main idea behind the MCIT method, as the name suggests, is to imbed the ran-

dom variable of interest into a Markov chain with an appropriate state space. Using

the Chapman-Kolmogorov equation, the desired probability can be computed via

multiplication of the transition probability matrices of the imbedded Markov chain.

To know if the studied random variable is Markov chain embeddable is not an easy

task. For some particular classes of runs in multistate trials (number of occurrences

of pattern, waiting time variables associated with a pattern, etc.) a general proce-

dure, called the forward-backward principle, was introduced in [Fu, 1996] (see also

[Fu and Lou, 2003, Chapter 4]). This procedure systematically shows how to imbed

the random variable of interest into a Markov chain that carry all the necessary

information.

In [Koutras and Alexandrou, 1995, Section 4c], the authors showed that the scan

statistics Sm1(T1) is Markov chain embeddable, thus, its distribution function,

P (Sm1(T1) < n), can be evaluated in terms of the transition probability matrix

of the imbedded chain. The imbedded Markov chain is de�ned on a state space

that, at each step t > m1, keeps track of the number of the occurrences of the event

{Sm1(t) < n} in the �rst t trials and of the last m1 realisations of the sequence

Xt−m1+1, . . . , Xt. A similar methodology was adopted by [Wu, 2013], where the

author de�ned the imbedded chain on the state space of all tuples containing the

locations of the successes (1's) counting backward in a window of size m1 at each

time t. The drawback of both of their approaches is that the state space of the

imbedded chain is rather large (is equal with 2m1), so the transition matrix becomes

quickly intractable even for moderate window sizes.

[Fu, 2001] (see also [Fu and Lou, 2003, Section 5.9]) suggested a di�erent approach

for �nding the distribution of the scan statistics which involves a smaller state

space for the imbedded chain. The author expressed the distribution function

P (Sm1(T1) < n) as the probability of the tail of a waiting time variable associ-

ated to a compound pattern. This type of random variable was extensively studied

and has been shown to be Markov chain embeddable (see [Fu and Chang, 2002] or

[Fu and Lou, 2003, Chapter 5]).

We will describe succinctly both the approach proposed by [Fu, 2001] and the one

in [Wu, 2013], in order of publication.

For simplicity, we consider only the case of i.i.d. two state Bernoulli trials, the
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case of homogeneous Markov trials being similar. Let X1, . . . , XT1 be i.i.d. 0 − 1

Bernoulli random variables with success probability P(X1 = 1) = p.

For a given window size m1 and n, with 0 ≤ n ≤ m1, we consider the following set

of simple patterns:

Fm1,n = {Λi|Λ1 = 1 . . . 1︸ ︷︷ ︸
n

,Λ2 = 10 1 . . . 1︸ ︷︷ ︸
n−1

, . . . ,Λl =

m1︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸
n−1

0 . . . 01} (1.12)

that is the set of all the simple patterns that start and end with a success (1),

contain exactly n symbols of 1 and with length at most m1. As [Fu, 2001] showed,

the number of elements in Fm1,n is given by the formula:

l =

m1−n∑
j=0

(
n− 2 + j

j

)
. (1.13)

Considering the compound pattern Λm1,n =
l⋃

i=1

Λi, we observe that the scan statis-

tics Sm1(T1) and the waiting time W (Λm1,n) to observe one of the simple patterns

Λ1 . . . ,Λl, are related by the following relation:

P (Sm1(T1) < n) = P (W (Λm1,n) > T1) . (1.14)

The state space of the imbedded chain can be written as

Ω = {0, 1}
l⋃

i=1

S(Λi), (1.15)

where S(Λi) is the set of all sequential subpatterns of Λi.

[Chang, 2002] (see also [Fu and Chang, 2002]) showed that the transition matrix of

the Markov chain that corresponds to the waiting time W (Λm1,n) variable has the

form

Mm1,n =

(
Ω�A Nm1,n C

A O I

)
d×d

(1.16)

where Ω is the state space of the chain and has d elements, A = {α1, . . . , αl}
denote the set of the absorbing states corresponding to the simple patterns Λ1 . . . ,Λl
respectively, Nm1,n is an (d − l) × (d − l) matrix called essential matrix, O is an

l×(d− l) zero matrix and I is an l× l identity matrix. Given u, v ∈ Ω, the transition

probabilities of the imbedded chain {Zt} are computed via

pu,v = P (Zt = v|Zt−1 = u) =


q, if Xt = 0, u ∈ Ω�A and v = [u, 0]Ω,

p, if Xt = 1, u ∈ Ω�A and v = [u, 1]Ω,

1, if u ∈ A and v = u,

0, otherwise,

(1.17)
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where the notation v = [u, a]Ω, a ∈ {0, 1}, means that v is the longest ending

subsequence of observations that determines the status of forming the next pattern

Λi from Xt−m1+1, . . . , Xt (see [Fu and Lou, 2003, Theorem 5.2]).

It follows from [Fu, 2001, Theorem 2] that the probability of the tail of the waiting

time W (Λm1,n) is given by:

P (W (Λm1,n) > T1) = ξNT1
m1,n1

ᵀ, (1.18)

where ξ = (q, p, 0, . . . , 0) is the initial distribution (q = 1−p), Nm1,n is the essential

matrix and 1ᵀ is the transpose of the vector (1, . . . , 1).

The methodology proposed by [Wu, 2013] is di�erent from the foregoing procedure

and is worth mentioning since it leads to a recurrence relation for the distribution of

the one dimensional scan statistics. As pointed out at the beginning of the section,

the idea is to construct a Markov chain that keeps track of the locations of the

successes counting backward in the window of size m1 at each moment t. Hence,

the state space of the imbedded chain {Zt} is

Ω = {0} ∪ {w1 . . . wj |wj = 1, . . . ,m1, w1 < · · · < wj , j = 1, . . . ,m1}. (1.19)

Assume that at time t the Markov chain takes the value Zt = w1 . . . wj , then the

m1−ws+1, s ∈ {1, . . . , j}, element of the realisation ofXt−m1+1, . . . , Xt is a success.

Employing a base-2 relabeling of the state space Ω,

v = w1 . . . wj → vL =

j∑
i=1

2wi−1 + 1, (1.20)

the author showed ([Wu, 2013, Theorem 1]) that the distribution function of the

scan statistics variable Sm1(T1) can be evaluated via

P (Sm1(T1) < n) =
∑
v→vL
vL∈An

P (ZT1 = v) =
∑
vL∈An

aT1(vL), (1.21)

where An is the set of labels associated with the states that corresponds to less than

n successes within the m1 trailing observations and where aT1(vL) are computed by

the following recurrence relations:

at(vL) =

{
qat−1

(
vL+1

2

)
+ qat−1

(
2m1−1 + vL+1

2

)
, vL odd,

pat−1

(
vL
2

)
+ pat−1

(
2m1−1 + vL

2

)
, vL even,

(1.22)

with t ∈ {1, . . . , T1}, vL ∈ {1, . . . , 2m1} and the initial conditions a0(1) = 1,

a0(vL) = 0 if vL 6= 1, and at(vL) = 0 if vL /∈ An.
We note that in the above relations both the size of the scanning window and the

size of the sequence play an important role. In the approach presented by [Fu, 2001],

only the size of the window in�uenced the transition matrix. Nevertheless, due to

the recursive aspect, the second method seems to compute faster the distribution of

the scan statistics for small-moderate values of m1 (m1 ≤ 30) and moderate values

of T1 (T1 ≤ 500). For long sequences (T1 ≥ 1000) and small-moderate window sizes,

the �rst method is desirable.
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Remark 1.1.1. Recently, [Nuel, 2008a] and [Nuel, 2008b] proposed a new approach

for constructing the optimal state space of the imbedded Markov chain. The method,

called Pattern Markov Chain, is based on the theory of formal language and au-

tomata (deterministic �nite automata) and was successfully applied in the context

of biological data.

1.1.1.3 Probability generating function methodology

Another method used for determining the exact distribution of the one dimensional

discrete scan statistics is the conditional probability generating function (pgf ) ap-

proach. This method provides a way of deriving the probability generating function

for the variable of interest and then, by di�erentiating it a number of times, yield the

probability distribution function. The pgf method was introduced by [Feller, 1968,

Chapter XIII] in the context of the theory of recurrent events and has been inten-

sively used in research and education since then. This method is also one of the

main tools for investigating the exact distribution of runs and scans statistics and,

as in the case of the Markov chain imbedding technique, can be applied in both the

case of independent and identically distributed or Markov dependent trials.

For example, [Ebneshahrashoob and Sobel, 1990] applied the method for determin-

ing the exact distribution of the sooner and later waiting time of some succession

of events in Bernoulli trials, [Aki, 1992] (see also [Uchida, 1998]) used the same ap-

proach to generalize this problem to independent nonnegative integer value random

variables and [Uchida and Aki, 1995] extended the results to the Markov dependent

binary case. [Balakrishnan et al., 1997] successfully applied the method for start-up

demonstration tests under Markov dependence.

The basic idea behind the pgf approach is to construct a system of recurrent relations

of conditional probability generating functions of the desired random variable by

considering the condition of one-step ahead from every condition. Then, by solving

the resulted system of equations with respect to the conditional generating functions,

we can get the (unconditional) probability generating function (see for example

[Han and Hirano, 2003] or [Chaderjian et al., 2012]). It is interesting to note that

[Feller, 1968, Chapter XIV] exploited this idea for �nding the generating function for

the �rst passage time in the classical ruin problem. Even if in some cases the system

of recurrent relations cannot be solved symbolically, due to the large dimension of

the problem, in many cases the conditional probability generating functions can be

written explicitly (for example in [Aki, 1992] or [Uchida and Aki, 1995]).

Recently, [Ebneshahrashoob et al., 2004] and [Ebneshahrashoob et al., 2005], by

utilizing sparse matrix computational tools, enlarged the range of applicability of

the pgf method.

In [Ebneshahrashoob et al., 2005], the authors applied the method of conditional

probability generating functions to derive the exact distribution of the one di-

mensional discrete scan statistics over a sequence of i.i.d. or Markov binary tri-

als. In what follows, we give an outline of their results. We consider, for sim-

plicity, the case of i.i.d. observations. As we will see, both the pgf approach of
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[Ebneshahrashoob et al., 2005] and the MCIT given by [Fu, 2001] require roughly

the same computational e�ort.

Let 2 ≤ m1 ≤ T1 be positive integers and X1, . . . , XT1 be a sequence of i.i.d. 0− 1

Bernoulli of parameter p random variables. Let Wm1,n, n ≤ m1, denote the waiting

time until we �rst observe at least n successes in a window of size m1. Clearly (see

[Glaz et al., 2001, Chapter 13]), the random variables Sm1(T1) and Wm1,n satisfy

the relation

P (Sm1(T1) ≥ n) = P (Wm1,n ≤ T1) . (1.23)

Thus, �nding the exact distribution of the waiting time Wm1,n, automatically gives

the exact distribution of the scan statistics Sm1(T1) via Eq.(1.23). To derive the

distribution of Wm1,n, we employ the pgf methodology.

Let G(t) be the probability generating function of the waiting time variable,

G(t) = E
[
tWm1,n

]
=

∞∑
k=0

tkP (Wm1,n = k) (1.24)

and denote with G1(t) and G0(t),

G1(t) =

∞∑
k=0

tkP ((Wm1,n|X1 = 1) = k), (1.25)

G0(t) =

∞∑
k=0

tkP ((Wm1,n|X1 = 0) = k), (1.26)

the pgf's of the conditional distribution of the waiting time given that the �rst trial

was a success or a failure, respectively. We immediately observe (see [Feller, 1968,

Chapter XIV, Section 4]), that between the probability generating functions G(t),

G1(t) and G0(t) the following recurrence relation holds

G(t) = ptG1(t) + qtG0(t), (1.27)

where q = 1 − p is the failure probability. To take into account the realisations of

Wm1,n, we condition on the positions of the successes in the last m1 trials. If k ≤ n
and 1 ≤ x1 < x2 < · · · < xk < m1, let Gx1,...,xk(t) denote the probability generating

function of the waiting time given that there was a success x1, x2, . . . , xk steps

back, respectively and no other in the last m1 trials. As in the case of Eq.(1.27),

the pgf's Gx1,...,xk(t) verify the following recurrences

Gx1,...,xk(t) = ptG1,x1+1,...,xk+1(t) + qtGx1+1,...,xk+1(t). (1.28)

We should note that the above approach resembles the procedure proposed by

[Wu, 2013] in the Markov chain imbedding context.

Note that the Eqs.(1.27) and (1.28) lead to a system of linear equations consisting

of conditional probability generating functions whose solution determines the pgf of
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the waiting time Wm1,n. If the pgf G(t) can be computed, then the distribution of

the waiting time can be evaluated by di�erentiation via

P (Wm1,n = k) =
G(k)(0)

k!
, k ∈ 1, 2, . . .. (1.29)

We remark that among the conditional pgf's that satisfy Eq.(1.28) there are several

which are redundant and need to be eliminated. For example, if m1 − x1 < n − 1,

then Gx1(t) = G0(t), since the success occurred x1 steps back can no longer in�uence

the outcome of the waiting time variable (from the de�nition of Wm1,n). Similarly

we have

Gx1,...,xk(t) = Gx1,...,xk−1
(t), if m1 − xk < n− k, (1.30)

Gx1,...,xk(t) = 1, if k = n. (1.31)

Since for large values of the scanning window m1 the resulted system of equations

cannot be solved symbolically, [Ebneshahrashoob et al., 2005] proposed an alterna-

tive method to overcome this di�culty. The idea is to write the system in matrix

form and to employ sparse matrix tools for the evaluation. Let G(t) be the N × 1

vector of pgf's

G(t) = (G(t), G0(t), G1(t), . . . , Gm1−n+1,...,m1−1(t))ᵀ , (1.32)

where N is the number of non constant pgf's Gx1,...,xk(t) after applying the re-

duction rules in Eqs.(1.30) and (1.31). It is not hard to verify (see for example

[Ebneshahrashoob et al., 2005] or [Gao and Wu, 2006]), that this number is equal

with

N = 1 +

(
m1

n− 1

)
. (1.33)

Note that in the expression of G(t), the pgf Gx1,...,xk(t), k ≥ 1, occupy the position

given by the index

Nx1,...,xk = 1 +

(
m1 − n+ k + 1

k

)
−
(
m1 − n+ k − x1

k

)
−
(
m1 − n+ k − x2

k − 1

)
− · · · −

(
m1 − n+ k − xk

1

)
. (1.34)

We observe that the system of recurrence relations given by Eqs.(1.27) and (1.28),

can be written in matrix form

G(t) = tAG(t) + tb, (1.35)

where A is a N ×N matrix and b is a N × 1 vector.

The entries in the matrix A and the vector b are determined based on the recurrence

relations in Eq.(1.28) and the elimination rules from Eqs.(1.30) and (1.31), used in

order to verify if a generated pgf is new, constant or equivalent with a previous one.

For example, in Eq.(1.28), consider Nx1,...,xk the position of the pgf Gx1,...,xk(t) in



1.1. One dimensional scan statistics 15

the vector G(t). If after applying the reduction rules G1,x1+1,...,xk+1(t) = 1, then

the Nx1,...,xk 's component of the vector b is equal with p. By contrary, if none of the

pgf's G1,x1+1,...,xk+1(t) and Gx1+1,...,xk+1(t) is constant and after the application of

the reduction rules are transformed in Gy1,...,yl(t) and Gz1,...,zr(t), respectively, then

A (Nx1,...,xk , Ny1,...,yl) = p, (1.36)

A (Nx1,...,xk , Nz1,...,zr) = q, (1.37)

and A(i, j) = 0 otherwise. We note that the matrix A has at most two non zero

values on each row thus its sparse character. It is interesting to observe that, as the

authors pointed out, the matrix A and the matrix Nm1,n obtained from the MCIT

by [Fu, 2001] are similar.

Simple calculation show that

G(k)(0)

k!
= Ak−1b, (1.38)

hence P (Wm1,n = k) is the �rst component of Ak−1b.

Remark 1.1.2. [Shinde and Kotwal, 2008] derived the exact distribution of the one

dimensional scan statistics in a sequence of binary trials in a di�erent fashion. They

employed the conditional probability generating functions method to determine the

joint distribution of (MT1,m1,1, . . . ,MT1,m1,m1), where MT1,m1,k is the number of

overlapping m1-tuples which contain at least k successes in a sequence of T1 tri-

als. Then the distribution of the scan statistic Sm1(T1) can be obtained from the

relation

P (Sm1(T1) = n) = P (MT1,m1,n+1 = 0)− P (MT1,m1,n = 0) . (1.39)

Since their formulas are rather long we will not include them here.

1.1.2 Approximations

Due to the high complexity and the limited range of application of the exact

formulas, a considerable number of approximations and bounds have been devel-

oped for the estimation of the distribution of the one dimensional discrete scan

statistics, for example [Naus, 1982], [Glaz and Naus, 1991], [Chen and Glaz, 1997]

or [Wang et al., 2012]. A full treatment of these results is presented in the reference

books of [Glaz and Balakrishnan, 1999] and [Glaz et al., 2001]. In this section, we

choose to describe the class of product type approximations since, in most cases, are

the most accurate ones.

Let X1, . . . , XT1 be a sequence of independent and identically distributed random

variables with the common distribution F0. Assume that T1 = Lm1 + l, with L ≥ 3,

m1 ≥ 2 and 0 ≤ l ≤ m1 − 1, and denote the distribution function of the scan

statistics by

Qm1(T1) = P (Sm1(T1) ≤ n) . (1.40)



16 Chapter 1. Existing methods for discrete scan statistics

[Naus, 1982] showed that the following product type approximation

P (Sm1(T1) ≤ n) ≈ Qm1(2m1 + l)

[
Qm1(3m1)

Qm1(2m1)

]L−2

, (1.41)

is highly accurate for the entire range of the distribution. A slightly di�erent product

type approximation is given by

P (Sm1(T1) ≤ n) ≈ Qm1(2m1 − 1)

[
Qm1(2m1)

Qm1(2m1 − 1)

]T1−2m1+1

. (1.42)

The foregoing relation is especially useful when one can evaluate Qm1(T ) only for

T < 3m1. The intuition behind the approximation formula given by Eq.(1.41)

arise from writing the distribution of the scan statistics as the intersection of L

1-dependent events. Applying the product rule, we have

P (Sm1(T1) ≤ n) = P

(
L⋂
i=1

Ei

)
= P (E1)P (E2|E1) · · ·P

(
EL

∣∣∣∣∣
L−1⋂
i=1

Ei

)

= P (E1 ∩ E2)
L−1∏
t=3

P

(
Et

∣∣∣∣∣
t−1⋂
i=1

Ei

)
P

(
EL

∣∣∣∣∣
L−1⋂
i=1

Ei

)
, (1.43)

where

Et =


{

max
(t−1)m1+1≤i1≤tm1+1

Yi1 ≤ n
}
, for 1 ≤ t ≤ L− 1{

max
(L−1)m1+1≤i1≤(L−1)m1+l+1

Yi1 ≤ n
}
, for t = L.

(1.44)

As in [Naus, 1982], we use the Markov like approximation for the conditional prob-

abilities of the form

P

(
Et

∣∣∣∣∣
t−1⋂
i=1

Ei

)
≈ P (Et|Et−1) , 3 ≤ t ≤ L− 1. (1.45)

Since for 3 ≤ t ≤ L− 1 the intersections Et ∩Et−1 are stationary, due to exchange-

ability, we conclude that

P (Sm1(T1) ≤ n) ≈ P(E1 ∩ E2)

[
P(E1 ∩ E2)

P(E1)

]L−3 P(EL−1 ∩ EL)

P(EL−1)

= Qm1(3m1)

[
Qm1(3m1)

Qm1(2m1)

]L−3 Qm1(2m1 + l)

Qm1(2m1)
. (1.46)

We observe that in order to use the product type approximations in Eqs.(1.41)

and (1.42) we need to evaluate Qm1(2m1 − 1), Qm1(2m1) and Qm1(3m1). For

the particular case when F0 is a Bernoulli distribution, [Naus, 1982] derived exact

formulas for Qm1(2m1) and Qm1(3m1) as we saw in Section 1.1.1.1 Eqs.(1.7)-(1.9).

For the case of binomial and Poisson distribution, [Karwe and Naus, 1997], based

on a generating function approach, gave recursive formulas for the computation of

Qm1(T ) up to T ≤ 3m1. For completeness, we include in Section A.1 of Appendix A

the algorithm of [Karwe and Naus, 1997] for the evaluation of Qm1(2m1 − 1) and

Qm1(2m1).
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Remark 1.1.3. Other approximations for the distribution of the one dimensional

discrete scan statistics have been developed by [Haiman, 2007]. These results are

presented in detail in Chapter 3.

1.1.3 Bounds

Several bounds have been proposed for the estimation of P (Sm1(T1) ≤ n). Basi-

cally these inequalities can be divided into two classes, depending on the method

employed in their derivation: product type bounds and Bonferroni type bounds. It

is important to note that the inequalities in the �rst category are tighter than the

ones provided by the Bonferroni approach, since the method of proof in this case

takes into account the dependence structure of the moving sums Yi1 . A detailed

comparison between the two methodologies was given in [Glaz, 1990].

[Glaz and Naus, 1991], in the case of discrete variables, and later

[Wang et al., 2012], for the continuous case, developed the following product

type bounds for the distribution of the one dimensional scan statistics (see also

[Glaz et al., 2001, Chapter 13]):

a) Lower bounds

P (Sm1(T1) ≤ n) ≥ Qm1(2m1)[
1 +

Qm1 (2m1−1)−Qm1 (2m1)

Qm1 (2m1−1)Qm1 (2m1)

]T1−2m1
, T1 ≥ 2m1 (1.47)

≥ Qm1(3m1)[
1 +

Qm1 (2m1−1)−Qm1 (2m1)

Qm1 (3m1−1)

]T1−3m1
, T1 ≥ 3m1. (1.48)

b) Upper bounds

P (Sm1(T1) ≤ n) ≤ Qm1(2m1) [1−Qm1(2m1 − 1) +Qm1(2m1)]T1−2m1 , T1 ≥ 2m1

(1.49)

≤ Qm1(3m1) [1−Qm1(2m1 − 1) +Qm1(2m1)]T1−3m1 , T1 ≥ 3m1.

(1.50)

The quantities that appear in the above lower and upper bounds can be eval-

uated, in the case of discrete random variables, via the recurrence relations of

[Karwe and Naus, 1997] (see Section A.1).

We now describe brie�y the Bonferroni type bounds for Qm1(T1). Since, in general,

Bonferroni inequalities deal with union of events, the �rst step is to express the

event of interest {Sm1(T1) ≤ n} as a union of events. Employing the notations used

in Section 1.1.2 we can write

P (Sm1(T1) ≤ n) = P

(
L⋂
i=1

Ei

)
= 1− P

(
L⋃
i=1

Eci

)
, (1.51)
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where T1 = Lm1 + l and Ei are given in Eq.(1.44). [Hunter, 1976] (see also

[Worsley, 1982]), using graph theory arguments (spanning tree structure), derived

the following upper bound for the union of events:

P

(
L⋃
i=1

Eci

)
≤

L∑
i=1

P (Eci )−
L−1∑
i=1

P
(
Eci ∩ Eci+1

)
= (L− 1) [1− P(E1)]− (L− 2) [1− 2P(E1) + P(E1 ∩ E2)]

+ P(EcL)− P
(
EcL−1 ∩ EcL

)
, (1.52)

which substituted into Eq.(1.51) gives the following lower bound for the distribution

of Sm1(T1):

P (Sm1(T1) ≤ n) ≤ 1− (L− 2) [Qm1(2m1)−Qm1(3m1)] +Qm1(2m1 + l). (1.53)

In Eq.(1.52) and Eq.(1.53), based on the stationarity of the events Ei, we used the

relations P(Ei) = P(E1) = Qm1(2m1), P(Ei ∩ Ei+1) = P(E1 ∩ E2) = Qm1(3m1) for

1 ≤ i ≤ L− 1 and P(EL−1 ∩ EL) = Qm1(2m1 + l).

For the upper bound, we employ the inequality in [Dawson and Sanko�, 1967] to

get

P (Sm1(T1) ≤ n) ≤ 1− 2S1

u
+

2S2

u(u− 1)
, (1.54)

where

S1 =

L∑
i=1

P(Eci ) = 1 + (L− 2) [1−Qm1(2m1)]−Qm1(m1 + l), (1.55)

S2 =
∑

1≤i<j≤L
P(Eci ∩ Ecj ) =

L∑
j=2

j−1∑
i=1

[1− P(Ei)− P(Ej) + P(Ei ∩ Ej)]

=

L∑
j=2

j−1∑
i=1

[1− 2P(E1) + P(Ei ∩ Ej)] +

L−1∑
i=1

[1− P(E1)− P(EL) + P(Ei ∩ EL)]

=
1

2
(L− 1)(L− 2) [1− 2Qm1(2m1)] + (L− 1) [1−Qm1(2m1)−Qm1(m1 + l)]

+
L−1∑
j=2

j−1∑
i=1

P(Ei ∩ Ej) +
L−1∑
i=1

P(Ei ∩ EL)

=
1

2
(L− 1)(L− 2) [1− 2Qm1(2m1)] + (L− 1) [1−Qm1(2m1)−Qm1(m1 + l)]

+
1

2
(L− 2)(L− 3) [Qm1(2m1)]2 + (L− 2) [Qm1(2m1)Qm1(m1 + l) +Qm1(3m1)]

+Qm1(2m1 + l) (1.56)

and where u is the integer part of 2 + 2S2
S1
. In the derivation of S1 and S2 we used

the one dependence and stationarity property of the events Ei.

In [Kwerel, 1975] (see also [Galambos and Simonelli, 1996, Inequality I7]) it is shown

that the bound in Eq.(1.54) is the best possible in the class of linear inequalities of
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the form a1S1 + a2S2. A slightly better result can be attained if one employs the

recent inequality of [Kuai et al., 2000]

P (Sm1 (T1) ≤ n) = 1− P
(

L⋃
i=1

Eci

)

≤ 1−
L∑
i=1


θiP(Eci )

2

L∑
j=1

P
(
Eci ∩ Ecj

)
+ (1− θi)P(Eci )

+
(1− θi)P(Eci )

2

L∑
j=1

P
(
Eci ∩ Ecj

)
− θiP(Eci )

 ,
(1.57)

where

θi =

∑
j 6=i
P
(
Eci ∩ Ecj

)
P(Eci )

−


∑
j 6=i
P
(
Eci ∩ Ecj

)
P(Eci )

 (1.58)

and bxc is the integer part of x.
[Kuai et al., 2000] showed that the bound in Eq.(1.57) is tighter than the one in

Eq.(1.54) of [Dawson and Sanko�, 1967] and involves basically the same computa-

tional complexity.

As before, we have

P(Eci ) =

{
1−Qm1(2m1), if i 6= L

1−Qm1(m1 + l), if i = L
(1.59)

and

L∑
j=1

P
(
Eci ∩ Ecj

)
=



(L− 3) [Qm1(2m1)]2 +Qm1(2m1) [1 +Qm1(m1 + l)]

+Qm1(3m1), for i = 1

(L− 4) [Qm1(2m1)]2 +Qm1(2m1) [1 +Qm1(m1 + l)]

+2Qm1(3m1), for 2 ≤ i ≤ L− 1

(L− 2)Qm1(2m1)Qm1(m1 + l) +Qm1(m1 + l)

+Qm1(2m1 + l), for i = L.
(1.60)

All the unknown quantities that appear in Eqs.(1.55), (1.56), (1.59) and (1.60) can

be evaluated via [Karwe and Naus, 1997] algorithm, for discrete variables, or by

simulation.

1.2 Two dimensional scan statistics

The two dimensional discrete scan statistics was introduced in

[Chen and Glaz, 1996] and extends, in a natural way, the one dimensional

case.
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Let T1, T2 be positive integers, R = [0, T1] × [0, T2] be a rectangular region

and {Xi,j | 1 ≤ i ≤ T1, 1 ≤ j ≤ T2} be a family of independent and identically dis-

tributed random variables. In many applications, the practitioners have at their

disposal only the counts of the observed events of interest in smaller subregions

within the studied region. In such situations, the random variables Xij take non-

negative integer values and one can interpret them as representing the number of

events observed in the elementary square sub-region [i− 1, i]× [j − 1, j].

Let m1, m2 be positive integers such that 2 ≤ m1 ≤ T1, 2 ≤ m2 ≤ T2. For

1 ≤ i1 ≤ T1 −m1 + 1, 1 ≤ i2 ≤ T2 −m2 + 1 de�ne

Yi1,i2 = Yi1,i2(m1,m2) =

i1+m1−1∑
i=i1

i2+m2−1∑
j=i2

Xi,j (1.61)

to be the random variables which counts the number of the observed events in the

rectangular region R(i1, i2) = [i1 − 1, i1 +m1 − 1]× [i2 − 1, i2 +m2 − 1], comprised

of m1m2 adjacent elementary sub-regions.

The two dimensional discrete scan statistic is de�ned as the largest number of events

in any rectangular scanning window R(i1, i2), within the rectangular region R, i.e.

Sm1,m2(T1, T2) = max
1≤i1≤T1−m1+1
1≤i2≤T2−m2+1

Yi1,i2 . (1.62)

We denote the distribution of two dimensional scan statistic over the region [0, T1]×
[0, T2] by

Qm1,m2(T1, T2) = P (Sm1,m2(T1, T2) ≤ n) .

When the parameters m1, m2 and n are clearly understood, we abbreviate the

notation to Q(T1, T2).

The aim of this section is to review some of the existing formulas used in the esti-

mation of Qm1,m2(T1, T2). We will consider the particular cases of i.i.d. Bernoulli,

binomial and Poisson observations. For an overview of the methods and the potential

application of the two dimensional scan statistics one can refer to the monographs

of [Glaz et al., 2001, Chapter 16] and more recently the one of [Glaz et al., 2009,

Chapter 6].

1.2.1 Approximations

In this section, we present a series of product-type approximations for the distri-

bution of two dimensional scan statistics. These approximations are accurate and

can be employed for all parameters T1, T2, m1, m2 and n. Although many of the

formulas that appear bellow were given in the particular situation when T1 = T2

and m1 = m2, we include them here in their general form.

Consider the case when Xi,j are i.i.d. 0 − 1 Bernoulli random variables of param-

eter p. In [Boutsikas and Koutras, 2000], the authors derived, using the Markov
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Chain Imbedding Technique, the following approximation for the distribution of two

dimensional scan statistics:

P (Sm1,m2(T1, T2) ≤ n) ≈ Q(m1,m2)(T1−m1−1)(T2−m2−1)

Q(m1,m2 + 1)(T1−m1−1)(T2−m2)

× Q(m1 + 1,m2 + 1)(T1−m1)(T2−m2)

Q(m1 + 1,m2)(T1−m1)(T2−m2−1)
. (1.63)

We employ the same notation as in Section 1.1.1 for the pmf and cdf of the binomial

with parameters k,m, p, namely

b(s;n, p) =

(
n

s

)
ps(1− p)n−s

F (s;n, p) =

s∑
i=0

b(i;n, p).

The quantities that appear in the approximation given by Eq.(1.63) can be computed

via

Q(m1,m2) = F (n;m1m2, p) , (1.64)

Q(m1 + 1,m2) =

n∑
s=0

F 2 (n− s;m2, p) b (s; (m1 − 1)m2, p), (1.65)

Q(m1 + 1,m2 + 1) =

n∑
s1,s2=0

n∑
t1,t2=0

1∑
i1,i2,i3,i4=0

b(s1;m1 − 1, p)b(s2;m1 − 1, p)

× b(t1;m2 − 1, p)b(t2;m2 − 1, p)p
∑
ij (1− p)4−

∑
ij

× F (u; (m1 − 1)(m2 − 1), p), (1.66)

where in the last relation u is given by

u = min {n− s1 − t1 − i1, n− s2 − t1 − i2, n− s1 − t2 − i3, n− s2 − t2 − i4}.

In the case of independent and identically distributed nonnegative integer val-

ued observations, based on [Boutsikas and Koutras, 2000] approach and a Markov

type approximation (see [Glaz et al., 2001, Section 16.1.6] for the Bernoulli case),

[Chen and Glaz, 2009] proposed the following product-type approximation:

P (Sm1,m2(T1, T2) ≤ n) ≈ Q(m1 + 1,m2 + 1)(T1−m1)(T2−m2)

Q(m1 + 1,m2)(T1−m1)(T2−m2−1)

× Q(m1, 2m2 − 1)(T1−m1−1)(T2−2m2)

Q(m1, 2m2)(T1−m1−1)(T2−2m2+1)
. (1.67)

In the framework of binomial and Poisson model for the underlying random �eld,

the probabilities Q(m1, 2m2− 1) and Q(m1, 2m2) can be evaluated by adapting the

algorithm developed by [Karwe and Naus, 1997] (see Section A.1). The other two
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unknown quantities, Q(m1 + 1,m2) and Q(m1 + 1,m2 + 1), can be computed via a

conditioning argument as the one presented in [Guerriero et al., 2009] for the Poisson

distribution. For completeness we have included in Section A.2.1 of Appendix A

these formulas.

Remark 1.2.1. In [Chen and Glaz, 1996] and [Glaz et al., 2001, Section 16.1.4],

the authors included two Poisson type approximations and a compound Poisson ap-

proximation. Their simulation study showed that the most accurate estimate, be-

tween the four compared, was the product type approximation.

We should mention that despite the fact that these approximations are accurate, none

of them give an order of this accuracy, that is there are no error bounds corresponding

to these formulas. Expressing the scan statistics Sm1,m2(T1, T2) as the maximum of

a 1-dependent sequence of random variables, [Haiman and Preda, 2006] derived an

accurate approximation formula as well as associated error bounds. We present these

results in a larger context in Chapter 3.

1.2.2 Bounds

Bounds for the distribution of the two dimensional discrete scan statistics can be

found only for particular situations. In [Boutsikas and Koutras, 2003], based on

speci�c techniques used in reliability theory, the authors developed a series of bounds

for the special case of Bernoulli observations. Their results are summarized in the

following. If Xi,j are i.i.d. Bernoulli random variables of parameter p, then

a) Lower bound

Q(T1, T2) ≥ (1−Q1)(T1−m1)(T2−m2) (1−Q2)T1−m1 (1−Q3)T2−m2 (1−Q4) (1.68)

b) Upper bound

Q(T1, T2) ≤ (1−A1)
[
1− q(m1−1)(3m2−2)+(2m1−1)(m2−1)A1

](T1−m1−1)(T2−m2−1)

×
[
1− qm1(m2−1)A1

]T2−m2−1 [
1− q(m1−1)(2m2−1)+(m1−1)(m2−1)A1

]T1−m1−1

×
[
1− q(m1−1)(2m2−1)+m1(m2−1)A2

]T1−m1
[
1− q(m1−1)(2m2−1)+m1(m2−1)A4

]
×
[
1− q(m1−1)(3m2−2)+m1(m2−1)+(m1−1)(m2−1)A3

]T2−m2

, (1.69)

where q = 1− p and
A1 = F ck+1,m1m2

− qm2F ck+1,(m1−1)m2
− qm1F ck+1,m1(m2−1) (1.70)

+ qm1+m2−1F ck+1,(m1−1)(m2−1), (1.71)

A2 = F ck+1,m1m2
− qm2F ck+1,(m1−1)m2

, (1.72)

A3 = F ck+1,m1m2
− qm1F ck+1,m1(m2−1), (1.73)

A4 = F ck+1,m1m2
, (1.74)

F ci,m = 1− F (i− 1;m, p).
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We should note that similar bounds were obtained by [Akiba and Yamamoto, 2005].

In the general case, [Chen and Glaz, 1996] proposed a Bonferroni type inequality

for the lower bound of the distribution of the scan statistics. As their simulations

showed, these bounds are not as sharp as one expect. Using [Hoover, 1990] Bonfer-

roni type inequality of order r ≥ 3

P

(
T1−m1+1⋃
i1=1

T2−m2+1⋃
i2=1

Ai1,i2

)
≤

T1−m1+1∑
i1=1

T2−m2+1∑
i2=1

P (Ai1,i2)

−
T1−m1+1∑
i1=1

T2−m2∑
i2=1

P (Ai1,i2 ∩Ai1,i2+1)−
T1−m1∑
i1=1

P (Ai1,1 ∩Ai1+1,1)

−
T1−m1+1∑
i1=1

r−1∑
l=2

T2−m2+1−l∑
i2=1

P
(
Ai1,i2 ∩Aci1,i2+1 . . . A

c
i1,i2+l−1 ∩Ai1,i2+l

)
(1.75)

with Ai1,i2 = {Yi1,i2 > n} and r = 4, we have

P (Sm1,m2(T1, T2) ≤ n) ≥ (T1 −m1) [Q(m1 + 1,m2)− 2Q(m1,m2)]

− (T1 −m1 + 1)(T2 −m2 − 3)Q(m1,m2 + 2)

+ (T1 −m1 + 1)(T2 −m2 − 2)Q(m1,m2 + 3). (1.76)

The unknown probabilities in Eq.(1.76): Q(m1,m2), Q(m1 +1,m2), Q(m1,m2 +2),

Q(m1,m2 + 3) are evaluated via a conditional argument (see Section A.2.1) or an

adaptation of the algorithm of [Karwe and Naus, 1997].

For the upper bound we propose to adapt the inequality of [Kuai et al., 2000] to the

two dimensional framework. Using the events Ai1,i2 , de�ned above, we can write

P (Sm1,m2(T1, T2) ≤ n) = 1− P
(
T1−m1+1⋃
i1=1

T2−m2+1⋃
i2=1

Ai1,i2

)

≤ 1−
T1−m1+1∑
i1=1

T2−m2+1∑
i2=1

[
θi1,i2P(Ai1,i2)2

Σ(i1, i2) + (1− θi1,i2)P(Ai1,i2)

+
(1− θi1,i2)P(Ai1,i2)2

Σ(i1, i2)− θi1,i2P(Ai1,i2)

]
, (1.77)

where

Σ(i1, i2) =

T1−m1+1∑
j1=1

T2−m2+1∑
j2=1

P (Ai1,i2 ∩Aj1,j2) (1.78)

and θi1,i2 can be computed from

θi1,i2 =
Σ(i1, i2)

P(Ai1,i2)
−
⌊

Σ(i1, i2)

P(Ai1,i2)

⌋
. (1.79)
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We observe that if |i1− j1| ≥ m1 or |i2− j2| ≥ m2, then the events Ai1,i2 and Aj1,j2
are independent, thus

P (Ai1,i2 ∩Aj1,j2) = [1−Q(m1,m2)]2 . (1.80)

On the other hand, if |i1 − j1| < m1 and |i2 − j2| < m2, then

P (Ai1,i2 ∩Aj1,j2) = 1− 2Q(m1,m2) + P (Yi1,i2 ≤ n, Yj1,j2 ≤ n) . (1.81)

The last term in Eq.(1.81) can be evaluated via a conditioning argument. For

example, in the case of a binomial model with parameters r and p, denoting with Z

the random variable

Z =

(i1+m1−1)∧(j1+m1−1)∑
s=i1∨j1

(i2+m2−1)∧(j2+m2−1)∑
t=i2∨j2

Xs,t, (1.82)

we have, due to the independence of Yi1,i2 − Z and Yj1,j2 − Z, that

P (Yi1,i2 ≤ n, Yj1,j2 ≤ n) =

n∑
k=0

P(Z = k)P(Yi1,i2 − Z ≤ n− k)2. (1.83)

In Eq.(1.83), the random variables Z, Yi1,i2 − Z are binomially distributed with

parameters r(m1−|i1−j1|)(m2−|i2−j2|), p and r|i1−j1||i2−j2| and p, respectively.
Hence, to calculate the upper bound in Eq.(1.77), it is enough to pre compute the

m1×m2 matrix with the entries given by the probabilities P (Ai1,i2 ∩Aj1,j2), found

above, for |i1 − j1| < m1 and |i2 − j2| < m2.

Remark 1.2.2. A di�erent upper bound can be obtained from Eq.(1.77) if one con-

sider the events Ei1,i2 given by

Ei1,i2 =

 max
(i1−1)m1+1≤s1≤i1m1+1
(i2−1)m2+1≤s2≤i2m2+1

Ys1,s2 ≤ n

 (1.84)

instead of the events Ai1,i2. This approach generalizes the upper bound in the one

dimensional case presented in Section 1.1.3. Details about this alternative margin

are given in Section A.2.2 of Appendix A.

1.3 Three dimensional scan statistics

In this section, we extend the notion of the two dimensional discrete scan statis-

tics de�ned in Section 1.2, to the three dimensional case. The three dimensional

discrete scan statistics was introduced in [Guerriero et al., 2010a], where the au-

thors derived a product-type approximation and three Poisson approximations for

the 0 − 1 Bernoulli model. As the authors mention in the cited article, the most

accurate estimate within the four is the product-type approximation. Based on
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this observation, we include bellow the formula for the product type estimate in a

somewhat general framework. Detailed expressions of the unknown quantities that

appear in this formula are presented in Section A.3 of Appendix A.

Let T1, T2, T3 be positive integers,R = [0, T1]×[0, T2]×[0, T3] be a rectangular region

and {Xi,j,k|1 ≤ i ≤ T1, 1 ≤ j ≤ T2, 1 ≤ k ≤ T3} be a family of independent and

identically distributed integer valued random variables from a speci�ed distribution.

For each l ∈ {1, 2, 3}, consider the positive integers ml such that 1 ≤ ml ≤ Tl, and

de�ne the random variables

Yi1,i2,i3 =

i1+m1−1∑
i=i1

i2+m2−1∑
j=i2

i3+m3−1∑
k=i3

Xi,j,k, 1 ≤ il ≤ Tl −ml + 1. (1.85)

If the random variables Xi,j,k are interpreted as the number of events observed in

the elementary square subregion [i− 1, i]× [j− 1, j]× [k− 1, k], then Yi1,i2,i3 counts

the events observed in the rectangular region

R(i1, i2, i3) = [i1 − 1, i1 +m1 − 1]× [i2 − 1, i2 +m2 − 1]× [i3 − 1, i3 +m3 − 1],

comprised of m1m2m3 adjacent elementary square subregions and with the south-

west corner at the point (i1 − 1, i2 − 1, i3 − 1).

The three dimensional discrete scan statistic is de�ned as the maximum number of

events in any rectangle R(i1, i2, i3) within the region R,
Sm1,m2,m3(T1, T2, T3) = max

1≤ij≤Tj−mj+1
j∈{1,2,3}

Yi1,i2,i3 . (1.86)

The distribution of the scan statistic,

Qm1,m2,m3(T1, T2, T3) = P (Sm1,m2,m3(T1, T2, T3) ≤ n) ,

was successfully used in astronomy ([Darling and Waterman, 1986]), image analysis

([Naiman and Priebe, 2001]), reliability theory ([Boutsikas and Koutras, 2000]) and

many other domains. An overview of the potential application of space-time scan

statistics can be found in the monograph [Glaz et al., 2009, Chapter 6].

From a statistical point of view, the scan statistic Sm1,m2,m3(T1, T2, T3) is used for

testing the null hypothesis of randomness that Xijk's are independent and iden-

tically distributed according to some speci�ed distribution. Under the alternative

hypothesis there exists one cluster location where the Xijk's have a larger mean than

outside the cluster. As an example, in the Poisson model, the null hypothesis, H0,

assumes that Xijk's are i.i.d. with Xijk ∼ Pois(λ) whereas the alternative hypoth-

esis of clustering, H1, assumes the existence of a rectangular subregion R(i0, j0, k0)

such that for any i0 ≤ i ≤ i0 +m1−1, j0 ≤ j ≤ j0 +m2−1 and k0 ≤ k ≤ k0 +m3−1,

Xijk are i.i.d. Poisson random variables with parameter λ′ > λ. Outside the region

R(i0, j0, k0), Xijk are i.i.d. distributed according to the distribution speci�ed by

the null hypothesis. The generalized likelihood ratio test rejects H0 in favor of the

local change alternative H1, whenever Sm1,m2,m3(T1, T2, T3) exceeds the threshold τ

determined from P (Sm1,m2,m3(T1, T2, T3) ≥ τ |H0) = α and where α represents the

signi�cance level of the testing procedure ([Glaz et al., 2001, Chapter 13]).
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1.3.1 Product-type approximation

Consider that Xi,j,k are independent and identically distributed nonnegative integer

valued random variables. When the parameters involved in the distribution of the

three dimensional scan statistics are clearly understood we abbreviate the notation

to Q(T1, T2, T3).

Following the approach proposed in [Guerriero et al., 2010a] for the i.i.d. 0 − 1

Bernoulli model, we obtain the following product-type estimate:

P (Sm1,m2,m3(T1, T2, T3) ≤ n) ≈ Q(m1 + 1,m2 + 1,m3 + 1)(T1−m1)(T2−m2)(T3−m3)

Q(m1,m2,m3)(T1−m1−1)(T2−m2−1)(T3−m3−1)

× Q(m1 + 1,m2,m3)(T1−m1−1)(T2−m2)(T3−m3)

Q(m1,m2 + 1,m3 + 1)(T1−m1)(T2−m2−1)(T3−m3−1)

× Q(m1,m2 + 1,m3)(T1−m1)(T2−m2−1)(T3−m3)

Q(m1 + 1,m2,m3 + 1)(T1−m1−1)(T2−m2)(T3−m3−1)

× Q(m1,m2,m3 + 1)(T1−m1)(T2−m2)(T3−m3−1)

Q(m1 + 1,m2 + 1,m3)(T1−m1−1)(T2−m2−1)(T3−m3)
.

(1.87)

Particularizing, for T1 = T2 = T3 = N and m1 = m2 = m3 = m we get the same

approximation formula as in [Guerriero et al., 2010a, Eq. 6]. Explicit expressions

for the unknown quantities in Eq.(1.87) are given in Section A.3 of Appendix A for

the binomial and Poisson model.

Remark 1.3.1. As far as we know, the only result on bounds for the distribution

of the three dimensional scan statistics is the one of [Akiba and Yamamoto, 2004].

The authors, using techniques from reliability theory, obtained closed form lower and

upper bounds for the Bernoulli model. Their formulas are complex and, even for

moderate scanning window sizes, requires excessive computational time. We should

mention that alternative bounds can be obtained extending the approach presented in

Section 1.2.2 to the three dimensional setting.



Chapter 2

Extremes of 1-dependent

stationary sequences of random

variables

In this chapter, we present some results concerning the approximation of the dis-

tribution of the maximum and minimum of the �rst n terms of a 1-dependent sta-

tionary sequence of random variables. These approximations extend the original

ones developed in [Haiman, 1999], both in terms of range of applicability and in

sharpness of the error bounds. We begin in Section 2.1 with some de�nitions and

remarks concerning the m-dependent sequences of random variables. Next, we give

the formulation of the problem and the intuition behind the proposed method. The

description of the main results and some numerical aspects are presented in Sec-

tion 2.2. We conclude the chapter with the proofs of the results in Section 2.3.

Parts of the work considered in this chapter appeared in [Am rioarei, 2012] and

make the object of an article submitted for publication.
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2.1 Introduction

We consider the problem of approximating the distribution of the extremes (maxima

and minima) of 1-dependent stationary sequences of random variables.

2.1.1 De�nitions and notations

We say that a sequence of random variables ism-dependent if observations separated

by m units are stochastically independent and is stationary (in the strong sense)

whenever its �nite dimensional distributions are invariant under time shifts. To be

more precise we have the following de�nitions:

De�nition 2.1.1. The sequence (Wk)k≥1 of random variables is m-dependent, m ≥
1, if for any h ≥ 1 the σ-�elds generated by {W1, . . . ,Wh} and {Wh+m+1, . . . } are
independent.

De�nition 2.1.2. The sequence (Wk)k≥1 of random variables is stationary (in the

strong sense) if for all n ≥ 1, for all h ≥ 0 and for all t1, . . . , tn the families

{Wt1 ,Wt2 , . . . ,Wtn} and {Wt1+h,Wt2+h, . . . ,Wtn+h}

have the same joint distribution.

A large class of m-dependent sequences is constructed based on the block-factor

terminology. The following de�nition describes the notion of l block-factor (see also

[Burton et al., 1993]):

De�nition 2.1.3. The sequence (Wk)k≥1 of random variables with state space SW
is said to be l block-factor of the sequence (Yk)k≥1 with state space SY if there is a

measurable function f : SlY → SW such that

Wk = f (Yk, Yk+1, . . . , Yk+l−1)

for all k.

2.1.2 Remarks about m-dependent sequences and block-factors

The study ofm-dependent sequences can be regarded as a di�erent model for depen-

dence besides the well known Markov model. Even if the later has been investigated

thoroughly for a long time, not so much can be said about the former model.

Maybe the most common examples of m-dependent sequences are obtained from

(m + 1) block-factors of independent and identically distributed sequences of ran-

dom variables. In [Ibragimov and Linnik, 1971], the authors conjectured that the

converse is not true; they a�rmed (without giving an example) that there are m-

dependent sequences which are not (m + 1) block-factor of any i.i.d. sequence.

Progress in this direction was made by [Aaronson et al., 1989], who showed that

there exist two valued 1-dependent processes which cannot be expressed as a 2

block-factor of an i.i.d. sequence. In [Aaronson and Gilat D., 1992] it is shown that
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a stationary 1-dependent Markov chain with no more than four states can be rep-

resented by a 2 block-factor. Their result is sharp in the sense that there is an

example of such a sequence with �ve states which is not a 2 block-factor. In par-

ticular, [de Valk, 1988] proved that a two valued Markov chain becomes an i.i.d.

sequence if in addition it is stationary and 1-dependent. This result was extended

by [Matus, 1998, Lemma2] who gave a characterization of binary sequences which

are Markov of order n and m-dependent. The author also presented a necessary and

su�cient condition for the existence of a m-dependent Markov chain with a �nite

state space (see [Matus, 1998, Proposition 1]). In [Burton et al., 1993], the authors

gave an example of a four state 1-dependent process which is not a l block-factor for

any l ≥ 2, thus con�rming the conjecture. More details about 1-dependent processes

can be found in [de Valk, 1988] and [Goulet, 1992].

To ask whether a sequence of m-dependent random variables is a (m + 1) block-

factor or not, seems to be a natural question. From the best of our knowledge there

is no general result concerning this problem. Nevertheless, some partial answers

can be found in the literature. In [de Valk and Ruschendorf, 1993] was obtained

a regression representation for a particular class of m-dependent sequences. In the

same paper, the authors presented a constructive method to check if such a sequence

can be viewed as a monotone (m+1) block-factor. In [Broman, 2005] it is shown that

1-dependent trigonometric determinantal processes are 2 block-factors. Another

class of processes that can be expressed as a (m + 1) block-factor is represented

by stationary m-dependent Gaussian sequences. The following proposition justi�es

this a�rmation:

Proposition 2.1.4. Let (Wk)k∈Z be a stationary m-dependent Gaussian sequence

of random variables such that EW0 = µ. Then there exists a sequence (ak)
m
k=0 such

that

(Wk)k∈Z
d
=

(
µ+

m∑
i=0

aiηk−i

)
k∈Z

, (2.1)

where (ηj)j∈Z are i.i.d. standard normal random variables.

Generalizations of the foregoing result, concerning m-dependent stationary in�nite

divisible sequences, can be found in [Harrelson and Houdre, 2003].

2.1.3 Formulation of the problem and discussion

The problem that we treat in this chapter can be formulated as follows. Let (Xn)n≥1

be a strictly stationary sequence of 1-dependent random variables with marginal

distribution function F (x) = P(X1 ≤ x) and take x such that

inf{u|F (u) > 0} < x < sup{u|F (u) < 1}.

For each n ≥ 1, we de�ne the sequences

pn = pn(x) = P(min{X1, X2, . . . , Xn} > x), (2.2)

qn = qn(x) = P(max{X1, X2, . . . , Xn} ≤ x). (2.3)
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Our aim in this work is to �nd good estimates for pn and qn together with the corre-

sponding error margins. Asymptotic results for extremes of m-dependent sequences

of random variables were obtained by many authors among which we can mention

[Watson, 1954], [Newell, 1964], [Galambos, 1972] and [Flak and Schmid, 1995].

The approach we are using to attain these estimates di�ers from the ones presented

in the cited papers and it has its origin in the paper of [Haiman, 1999]. To get the

intuition behind the method presented in this work, consider q−1 = q0 = 1 and take

D(z) = Dx(z) =
∞∑
k=0

qk−1z
k (2.4)

the generating function of the sequence (qk)k≥0. We observe that this generating

function depends on x, since the sequence (qk)k≥0 does. Suppose that, for example,

the function D(z) has the following expression:

D(z) = 1 +
Az

1− z
λ

, A 6= 0. (2.5)

Then it is easy to see that

∞∑
k=0

qkz
k+1 =

∞∑
k=0

A

λk
zk+1 (2.6)

and therefore qn = A
λn . The following example shows that there are situations where

the assumption made in Eq.(2.5) is valid.

Example 2.1.5. Let (Xn)n≥1 be a sequence of i.i.d. random variables. In particu-

lar, the sequence is 1-dependent. Then one can easily show that

D(z) = 1 +
z

1− (1− p1)z

which gives λ = 1
1−p1 and qn = (1− p1)n = 1

λn .

Of course that the situation presented in Example 2.1.5 is an extreme one and such

an assumption is not feasible in the general context. Perhaps, the next best thing

that we can hope for is to have an asymptotic relation in the neighborhood of the

singularity λ, namely

D(z) ∼ 1 +
Az

1− z
λ

. (2.7)

In which case, one can wish to obtain a relation of the form

qn ∼
A

λn
. (2.8)

The above observations lead to the problem of showing that the generating function

D(z) has a nice singularity. It is obvious that the problem of studying the singu-

larities of D is related to the analysis of the zeros of the function 1
D . Now, if we

consider the generating function associated to the sequence {(−1)kpk−1}k≥0,

C(z) = Cx(z) = 1 +

∞∑
k=1

(−1)kpk−1z
k (2.9)
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where p−1 = p0 = 1, one can prove that (see Lemma 2.3.5)

D(z) =
1

C(z)
. (2.10)

This last relation gives us the means to analyze the singularity of D by focusing our

attention on the zeros of the generating function C(z). As it turns out, to analyze

the zeros of the function C is much easier because of two aspects: an elementary

upper bound for the probabilities pn (given in Eq.(2.25)) and the fact that C is an

alternating series. We will �nish this section with an example that illustrates the

above ideas:

Example 2.1.6. Let (Un)n≥1 be a sequence of i.i.d. 0−1 Bernoulli random variables

with P(Un = 1) = p. We de�ne for each n ≥ 1 the random variables Xn = UnUn+1.

It is clear that the sequence (Xn)n≥1 is stationary and 1-dependent, since is de�ned

as a 2 block-factor of an i.i.d. sequence. Clearly

pn = P(X1 = 1, X2 = 1, . . . , Xn = 1)

= P(U1 = 1, U2 = 1, . . . , Un+1 = 1) = pn+1,

so the generating function in Eq.(2.9) becomes

C(z) = −z + pz +
1

1 + pz
.

Solving the equation C(z) = 0 we obtain the value of the zero

λ =
1

2p

(
−1 +

√
1 +

4p

1− p

)
.

Notice that λ belongs to an interval of the form (1, 1+u), which will be in accordance

with the result presented in Theorem 2.2.3. To get the value of qn, we �rst notice

that according to Lemma 2.3.5 we have

qn =

n∑
k=0

(−1)n−kpn−kqk−1, n ≥ 0, p0 = q−1 = q0 = 1.

By writing bn = qnp
−n and using the fact that pn = pn+1, we obtain the following

second order recurrence:

bn+1 =
1− p
p

(bn + bn−1) , b0 = 1, b1 =
1− p2

p

which, after solving for qn, leads to the solution

qn = c
1

λn
+ (1− c) 1

ηn
,

where

η =
−1

2p

(
1 +

√
1 +

4p

1− p

)
and c = η+1

λ+η . For p small enough, it can be seen that the value of η−1 decrease much

faster than of λ−1, so the main contribution to the value of qn is made by the �rst

term.
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In the next section we will see that there exists a zero λx of Cx in an interval of the

form (1, 1+u) and the result in Theorem 2.2.3 will give an estimate of this zero. We

will conclude the section with an approximation and the corresponding error bound

for the value of qn.

2.2 Main results

Starting from the results obtained by [Haiman, 1999] and presented in Section 2.2.1

bellow, we extend these results by enlarging their range of applicability and provid-

ing sharper error bounds. These new expressions will constitute the main tools in

�nding the approximation of the distribution of the scan statistics as it will be seen

in the next chapters.

2.2.1 Haiman results

In [Haiman, 1999], the author presented a series of results concerning the approx-

imation of the distribution of the maxima of a stationary 1-dependent sequence

of random variables. He started by showing that if the tail probability p1 is small

enough, then the series given in Eq.(2.9) has an unique zero in the interval (1, 1+2p1)

and gave explicit an estimate of its value. The next theorem illustrates this result:

Theorem 2.2.1. For x such that 0 < p1(x) ≤ 0.025, Cx(z) has a unique zero λ(x),

of order of multiplicity 1, inside the interval (1, 1 + 2p1), such that

|λ− (1 + p1 − p2 + p3 − p4 + 2p2
1 + 3p2

2 − 5p1p2)| ≤ 87p3
1. (2.11)

The relation between the zero λ found in the foregoing result and the probability

of the maximum of the �rst n elements of the sequence (Xn)n≥1 is given by the

following theorem:

Theorem 2.2.2. We have

q1 = 1− p1, q2 = 1− 2p1 + p2, q3 = 1− 3p1 + 2p2 + p2
1 − p3

and for n > 3 if p1 ≤ 0.025,

|qnλn − (1− p2 + 2p3 − 3p4 + p2
1 + 6p2

2 − 6p1p2)| ≤ 561p3
1. (2.12)

These theorems were successfully employed in a series of applications: the

distribution of the maximum of the increments of the Wiener process

([Haiman, 1999]), extremes of Markov sequences ([Haiman et al., 1995]), the distri-

bution of scan statistics, both in one dimensional (see [Haiman, 2000, Haiman, 2007,

Haiman and Preda, 2013]) and two dimensional case (see [Haiman and Preda, 2002,

Haiman and Preda, 2006]).
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2.2.2 New results

In this section, we extend the theorems presented in Section 2.2.1 but we keep their

initial form. The reason behind this approach is that we want to have a reference

for comparison. The results presented in subsequent will have parameterized error

coe�cients depending on the tail probability p1, which will prove to be much smaller

than the initial ones. The advantage of the parameterized error coe�cients over the

�xed ones presented above become clear when the value of p1 decreases toward zero

and lead to sharper bounds. The following statement gives a parametric form of the

Theorem 2.2.1, improving both the range of p1(x), from 0.025 to 0.1, and the error

coe�cient:

Theorem 2.2.3. For x such that 0 < p1(x) ≤ 0.1, Cx(z) has an unique zero

λ = λ(x), of order of multiplicity 1, inside an interval of the form (1, 1 + lp1), such

that

|λ− (1 + p1 − p2 + p3 − p4 + 2p2
1 + 3p2

2 − 5p1p2)| ≤ K(p1)p3
1, (2.13)

where l = l(p1) > t32(p1), t2(p1) is the second root in magnitude of the equation

p1t
3 − t+ 1 = 0 and K(p1) is given by

K(p1) =

11−3p1
(1−p1)2

+ 2l(1 + 3p1)2+3lp1−p1(2−lp1)(1+lp1)2

[1−p1(1+lp1)2]3

1− 2p1(1+lp1)

[1−p1(1+lp1)2]2

. (2.14)

Using the stationarity and the one dependence of the sequence (Xn)n≥1, we have

the following:

Corollary 2.2.4. Let λ be de�ned as in Theorem 2.2.3, then

|λ− (1 + p1 − p2 + 2(p1 − p2)2)| ≤ (1 + p1K(p1))p2
1. (2.15)

The choice between the estimate of λ given in Theorem 2.2.3 and in Corollary 2.2.4

is made according to the information available about the random sequence. If one

does not have enough information to compute (or simulate) the values of p3 and p4,

then the obvious estimate is the one given in Corollary 2.2.4.

To get a better grasp of the bounds in Theorem 2.2.3 and Corollary 2.2.4, we present

in Table 2.1, for selected values of p1, the values taken by the coe�cients in Eq.(2.13)

and Eq.(2.15):

Notice that for p1 = 0.0025 we are in the hypothesis of Theorem 2.2.2 and Theo-

rem 2.2.3. The corresponding value for K(0.0025) in Table 2.1 shows that the error

bound in Eq.(2.13) is almost �ve times smaller then the one in Eq.(2.11). Figure 2.1

presents the behaviour of the error coe�cient function K(p1) as p1 varies between

0 and 0.1. The �xed value of the coe�cient in Theorem 2.2.1 (= 87) is also plotted,

but only between 0 and 0.025.

Before presenting the parametric extension of Theorem 2.2.2, we should stop for a

little to illustrate the estimate of the zero λ in the context of Example 2.1.6.
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p1 l K(p1) 1 + p1K(p1)

0.100 1.5347 38.6302 4.8630

0.050 1.1893 21.2853 2.0642

0.025 1.0835 17.5663 1.4391

0.010 1.0313 15.9265 1.1592

Table 2.1: Selected values for the error coe�cients in Theorem 2.2.3 and Corol-

lary 2.2.4
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Figure 2.1: The behaviour of the function K(p1)

Example 2.2.5 (Continuation of Example 2.1.6). As we have shown previously, the

value of the zero λ is equal with

λ =
1

2p

(
−1 +

√
1 +

4p

1− p

)
and it belongs to an interval of the form (1, 1 + u). It is not hard to see that if one

takes u = tp with t > p
1−p2 , then λ ∈ (1, 1 + tp).

We will verify only the estimate in Corollary 2.2.4, as it involves less computations.

First, observe that the approximation of λ in Eq.(2.15) can be rewritten as

ν = 1 + p1 − p2 + 2(p1 − p2)2

= 1 + p2(1− p) + 2p4(1− p)2,

since pn = pn+1 for n ≥ 1.
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Using Taylor's formula with Lagrange form of the remainder for the function
√

1 + x,

we have

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
(1 + ξ)−9/2x5.

Substituting the above expansion in the expression of λ for x = 4p
1−p , we obtain

λ =
1

1− p −
p

(1− p)2
+

2p2

(1− p)3
− 5p3

(1− p)4
+

14p4

(1− p)5
(1 + ξ)−9/2,

where ξ ∈
(

0, 4p
1−p

)
. Elementary calculations give us that

λ− ν = p4

[
1

(1− p)5
(1 + ξ)−9/2 − 2(1− p)2 +

−11 + 10p− 5p2 + p3

(1− p)4

]
.

We can see that |λ − ν| is a multiple of p2
1 = p4, which is in accordance with our

result. Notice that the di�erence between the estimate in Theorem 2.2.3 and the one

in Corollary 2.2.4 is of the order p4(1− p)2, but the �rst result gives an accuracy of

order p6, while the second only of p4.

An analogue result to the one presented in Theorem 2.2.2 is given bellow:

Theorem 2.2.6. Assume that x is such that 0 < p1(x) ≤ 0.1 and de�ne η = 1+ lp1

with l = l(p1) > t32(p1) and t2(p1) the second root in magnitude of the equation

p1t
3 − t + 1 = 0. If λ = λ(x) is the zero obtained in Theorem 2.2.3, then the

following relation holds:

|qnλn − (1− p2 + 2p3 − 3p4 + p2
1 + 6p2

2 − 6p1p2)| ≤ Γ(p1)p3
1, (2.16)

where Γ(p1) = 36.1 + (1− p1)2P (p1) + E(p1), K(p1) is given by Eq.(2.14) and

P (p1) = 3K(p1)(1 + p1 + 3p2
1)[1 + p1 + 3p2

1 +K(p1)p3
1] + p6

1K
3(p1)

+ 9p1(4 + 3p1 + 3p2
1) + 19, (2.17)

E(p1) =
η5 [1 + (1− 2p1)η]4 [1 + p1(η − 2)]

[
1 + η + (1− 3p1)η2

]
2(1− p1η2)4 [(1− p1η2)2 − p1η2(1 + η − 2p1η)2]

. (2.18)

As an immediate consequence of Theorem 2.2.6 we have the following corollary

which involves only the values of p1 and p2:

Corollary 2.2.7. In the conditions of Theorem 2.2.6 we have

|qnλn − (1− p2)| ≤ (3 + p1Γ(p1))p2
1. (2.19)

From Table 2.2 we can see that for p1 = 0.0025, the coe�cient in the error bound

given by Eq.(2.16) is about three times smaller then the one from Eq.(2.12).

We continue the exposition with two theorems that answer the problem proposed

in Section 2.1.3, namely �nding an estimate for the maxima qn. The �rst result
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p1 Γ(p1) 3 + p1Γ(p1)

0.100 480.696 51.0696

0.050 180.532 12.0266

0.025 145.202 6.6300

0.010 131.438 4.3143

Table 2.2: Selected values for the error coe�cients in Theorem 2.2.6 and Corol-

lary 2.2.7

presents an estimate for qn in terms of q1, q2, q3 and q4, while for the second

only the expressions of q1 and q2 are involved. These two statements, especially

the second one, constitutes the cornerstone for the approximation developed in the

following chapter. As we will see, the estimates are very sharp for those values of x

for which the tail probability is small.

Combining the results obtained in Theorem 2.2.3 and Theorem 2.2.6, we get the

following approximation:

Theorem 2.2.8. Let x such that q1(x) ≥ 1− p1(x) ≥ 0.9. If Γ(·) and K(·) are the
same as in Theorem 2.2.6, then∣∣∣∣qn − 6(q1 − q2)2 + 4q3 − 3q4

(1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2)n

∣∣∣∣ ≤ n∆1(1− q1)3, (2.20)

with

∆1 = ∆1(q1, n) = K(1− q1) +
Γ(1− q1)

n
. (2.21)

In the same fashion, combining the results from Corollary 2.2.4 and Corollary 2.2.7,

we get

Theorem 2.2.9. If x is such that q1(x) ≥ 1− p1(x) ≥ 0.9, then∣∣∣∣qn − 2q1 − q2

[1 + q1 − q2 + 2(q1 − q2)2]n

∣∣∣∣ ≤ n∆2(1− q1)2, (2.22)

with

∆2 = ∆2(q1, n) = 1 +
3

n
+

[
K(1− q1) +

Γ(1− q1)

n

]
(1− q1) (2.23)

and Γ(·) and K(·) are as in Theorem 2.2.6.

We should mention that in [Haiman, 1999, Theorem 4], the author obtained a similar

formula for the error bound in Eq.(2.22), the only di�erence being that ∆2 is replaced

by ∆H
2 , where

∆H
2 =

9

n
+

561

n
(1− q1) + 3.3

[
1 + 4.7n(1− q1)2

]
. (2.24)
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Figure 2.2: The relation between ∆H
2 and ∆2 when 1− q1 = 0.025 and n varies

As can be seen from Figure 2.2, when 1− q1 is �xed and takes the value 0.025 (the

upper limit in Haiman's results) and the length of the sequence (n) increases, the

value of ∆H
2 increases with n, while the value of ∆2 decreases. Also, one can note

that the new error coe�cient is much smaller than the old one. In Figure 2.3 we

present the behaviour of the coe�cient function ∆2; in Figure 2.3(a) we illustrate the

three dimensional plot and in Figure 2.3(b) we include the level curves for di�erent

values of 1− q1.
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2.3 Proofs

In this section, we present the proofs for the results described in this chapter. The

proofs for the main results described in Section 2.2.2 rely on a series of technical

lemmas which will be stated in Section 2.3.1. We conclude the section by giving the

proof of Proposition 2.1.4 presented at the end of Section 2.1.2.

2.3.1 Technical lemmas

We consider the framework described in Section 2.1.3. We begin by giving the

following key upper bound for the probabilities of the minimum of the �rst n terms

of the sequence (Xn)n≥1. Using the stationarity and 1-dependence properties of the

sequence we have

pn = P(X1 > x,X2 > x, . . . ,Xn > x) ≤ P(X1 > x,X3 > x, . . . ,Xn > x)

= P(X1 > x)P(X3 > x, . . . ,Xn > x)

= p1pn−2,

which gives the basic inequality

pn ≤ p
[n+1

2
]

1 . (2.25)

This bound will be used over and over again in our results. Recall that in Eq.(2.9)

we have de�ned the generating function

C(z) = Cx(z) = 1 +

∞∑
k=1

(−1)kpk−1z
k. (2.26)

The following lemmas will provide various estimates on the function C(z).

Lemma 2.3.1. The function Cx(z) has a zero λ = λ(x) in the interval (1, 1 + lp1),

where l = l(p1) = t32(p1) + ε, ε > 0 arbitrarily small and t2(p1) is the second root in

magnitude of the equation p1t
3 − t+ 1 = 0.

Proof. To show that C(z) has a zero in the interval (1, 1+lp1) it is enough to verify

that C(1) > 0 and C(1 + lp1) < 0. It easy to see that C(1) > 0, since

C(1) = 1 +

∞∑
k=1

(−1)kpk−1 = (p1 − p2)︸ ︷︷ ︸
≥0

+ (p3 − p4)︸ ︷︷ ︸
≥0

+ · · · ≥ 0. (2.27)

For C(1 + lp1) we have:

C(1 + lp1) = 1 +
∞∑
k=1

(−1)kpk−1(1 + lp1)k

= −lp1 +
∞∑
k=1

(1 + lp1)2k [p2k−1 − p2k(1 + lp1)]︸ ︷︷ ︸
≤p2k−1≤pk1

≤ −lp1 +
∞∑
k=1

[(1 + lp1)2p1]k. (2.28)
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From the de�nition of l and the relation 1 < t2(p1) < t2(p1) + ε < 1√
3p1

, we obtain

(t2 = t2(p1))

t22 + t2
3

√
t32 + ε+

3

√(
t32 + ε

)2 ≤ t22 + t2(t2 + ε) + (t2 + ε)2

<
1

3p1
+

1

3p1
+

1

3p1
=

1

p1
,

which implies t2 − 3
√
t32 + ε + p1ε < 0. Combining this last relation with the fact

that t2 is a root of the equation p1t
3 − t+ 1 = 0, we conclude that

p1(t32 + ε)− 3

√
t32 + ε+ 1 < 0.

The foregoing relation can be rewritten as (1 + lp1)3 < l and since p1(1 + lp1)2 <
lp1

1+lp1
< 1, the series in Eq.(2.28) is convergent and we have C(1 + lp1) < 0.

Notice that the choice of l in the statement of the lemma was made such that the

inequality (1 + lp1)3 < l holds.

Lemma 2.3.2. Consider the series

R =
∞∑
k=2

2kp2k−1 −
∞∑
k=2

(2k + 1)p2k. (2.29)

The following inequality holds:

|R| ≤ 2p2
1

[
1

(1− p1)2
+

1

1− p1

]
. (2.30)

Proof. To approximate R, we observe that since p2k−1− p2k ≥ 0, the series can be

bounded by

−
∞∑
k=2

p2k ≤ R ≤
∞∑
k=2

2k (p2k−1 − p2k).

With the help of Eq.(2.25), we obtain

− p2
1

1− p1
= −

∞∑
k=2

pk1 ≤ R ≤ 2p1

∞∑
k=2

kpk−1
1 = 2p2

1

[
1

(1− p1)2
+

1

1− p1

]
, (2.31)

which implies the desired estimate for |R|.

Lemma 2.3.3. Take C ′′(z), the second derivative of the function C(z). Then for

all z ∈ (1, 1 + lp1), we have

− 2lp2
1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
− 4p1(1 + lp1)

[1− p1(1 + lp1)2]2
≤ C ′′(z) ≤ 2p1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
,

(2.32)

where l = l(p1) is de�ned in Lemma 2.3.1.
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Proof. After derivation we have

C ′′(z) = 2p1 − 2 · 3p2z + 3 · 4p3z
2 − 4 · 5p4z

3 + 5 · 6p5z
4 − . . .

=
∞∑
k=0

(2k + 1)(2k + 2)p2k+1z
2k −

∞∑
k=0

(2k + 2)(2k + 3)p2k+2z
2k+1. (2.33)

Based on the estimate in Eq.(2.25) and using the fact that z ∈ (1, 1 + lp1), we �nd

the upper bound

C ′′(z) ≤ p1

∞∑
k=0

(2k + 1)(2k + 2)(z
√
p1)2k

≤ 2p1
1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
. (2.34)

Similarly, we obtain the following lower bound:

C ′′(z) ≥ −lp1

∞∑
k=0

(2k + 1)(2k + 2)p2k+2z
2k − 4

∞∑
k=0

(k + 1)p2k+2z
2k+1

≥ −lp2
1

∞∑
k=0

(2k + 1)(2k + 2)(z
√
p1)2k − 4p1z

∞∑
k=0

(k + 1)(p1z
2)k

≥ −2lp2
1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
− 4p1(1 + lp1)

[1− p1(1 + lp1)2]2
. (2.35)

From the upper and lower bounds in Eq.(2.34) and Eq.(2.35), respectively, we have

the estimate

|C ′′(z)| ≤ 2lp2
1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
+

4p1(1 + lp1)

[1− p1(1 + lp1)2]2
. (2.36)

Lemma 2.3.4. Let C ′(z) be the �rst derivative of the function C(z). For all z ∈
(1, 1 + lp1), we have the bounds

C ′(z) ≤ −1 +
2p1

(1− p1)2
+ 2lp2

1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
, (2.37)

|C ′(z)|−1 ≤
[
1− 2p1(1 + lp1)

[1− p1(1 + lp1)2]2

]−1

, (2.38)

where l = l(p1) is de�ned in Lemma 2.3.1.

Proof. We will derive �rst the upper bound for C ′(z) given by (2.37). Using La-

grange theorem on the interval [1, 1 + a] with a ≤ lp1, we get for θ ∈ (0, 1):

C ′(1 + a) = C ′(1) + aC ′′(1 + θa). (2.39)

We observe that

C ′(1) = −1 + 2p1 − 3p2 + 4p3 − 5p4 + 6p5 − 7p6 + . . .

= −1 + 2p1 − 3p2 +R, (2.40)
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where R is de�ned in Lemma 2.3.2.

Applying the estimate in Lemma 2.3.2 for R and the upper bound for C ′′(z), derived

in Lemma 2.3.3, we deduce

C ′(z) ≤ −1 +
2p1

(1− p1)2
+ 2lp2

1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
. (2.41)

Notice that for the derivation of the foregoing expression we have also used the fact

that a ≤ lp1.

To derive the second estimate, observe that

|C ′(z)|−1 = |1− (2p1z − 3p2z
2 + 4p3z

3 − 5p4z
4 + . . . )|−1

≤
∣∣1− |2p1z − 3p2z

2 + 4p3z
3 − 5p4z

4 + . . . |
∣∣−1

, (2.42)

where we used the inequality |1 − x| ≥ |1 − |x||. Taking into account that z ∈
(1, 1 + lp1) and denoting the expression inside the second absolute value in the

denominator of Eq.(2.42) with T , we have the upper margin

T =
∞∑
k=1

2k(p2k−1 − p2kz)z
2k−1 −

∞∑
k=1

p2kz
2k

≤ 2(p1 − p2)z
∞∑
k=1

k(p1z
2)k−1 ≤ 2p1z

(1− p1z2)2
. (2.43)

In the same way,

T ≥ −
∞∑
k=1

p2kz
2k − 2lp1

∞∑
k=1

kp2kz
2k−1

≥ −
∞∑
k=1

pk1z
2k − 2lp2

1z
∞∑
k=1

k(p1z
2)k−1

≥ −p1z
2lp1 + z(1− p1z

2)

(1− p1z2)2 > − 2p1z

(1− p1z2)2
. (2.44)

Combining the bounds in Eq.(2.43) and Eq.(2.44) along with z ≤ 1 + lp1, leads to

|T | ≤ 2p1(1 + lp1)

[1− p1(1 + lp1)2]2
. (2.45)

Substitute the bound from Eq.(2.45) in Eq.(2.42) to obtain the estimate

|C ′(z)|−1 ≤ 1

1− 2p1(1+lp1)

[1−p1(1+lp1)2]2

. (2.46)

The following results will be used in the proof of Theorem 2.2.6. Recall, from

Section 2.1.3, that

D(z) = Dx(z) =

∞∑
k=0

qk−1z
k. (2.47)



42 Chapter 2. Extremes of 1-dependent stationary sequences

The next lemma presents the relation between the generating functions D(z) and

C(z). As we saw in Section 2.1.3, this formula will constitute the key idea behind

our approach.

Lemma 2.3.5. Let C(z) and D(z) be the generating functions de�ned by Eq.(2.26)

and Eq.(2.47), respectively. The following relation holds:

D(z) =
1

C(z)
. (2.48)

Proof. We de�ne the following series:

D̃(z) =
1

C(z)
=
∞∑
k=0

dkz
k, (2.49)

which exists since the free term in the series C is equal to 1. Based on the relation

C(z)D̃(z) = 1, we deduce that d0 = 1 and

n∑
j=0

(−1)n−jpn−j−1dj = 0, n ≥ 1. (2.50)

De�ne for each k = {0, 1, . . . , n} the events

Ak = {X1 ≤ x, . . . ,Xk ≤ x,Xk+1 > x, . . . ,Xn > x}.

We observe that P(A0) = pn, P(An) = qn and

P(Ak) + P(Ak−1) = pn−kqk−1, k ≥ 1. (2.51)

Multiplying Eq.(2.51) with (−1)k−1 and summing over k gives

qn =
n∑
k=0

(−1)n−kpn−kqk−1, n ≥ 0, q−1 = q0 = 1. (2.52)

Notice that from the above relation and Eq.(2.50), after using mathematical in-

duction, we obtain dn+1 = qn. From the de�nition of the series D̃ we conclude

that

D̃(z) =

∞∑
k=0

qk−1z
k, q−1 = q0 = 1, (2.53)

which is exactly the generating function D(z) and the proof is complete.

In the following lemma, we assume that the result in Theorem 2.2.3 is known.

Lemma 2.3.6. We have

q3λ
3 = 1− p2 + 2p3 − 3p4 + p2

1 + 6p2
2 − 6p1p2 +O(L(p1)p3

1), (2.54)

where O(x) is a function such that |O(x)| ≤ |x|, L(p1) = 36 + (1 − p1)2P (p1) and

P (p1) has the form

P (p1) = 3K(p1)(1 + p1 + 3p2
1)[1 + p1 + 3p2

1 +K(p1)p3
1] + p6

1K
3(p1)

+ 9p1(4 + 3p1 + 3p2
1) + 19. (2.55)
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Proof. From Eq.(2.13) of Theorem 2.2.3 we can write

λ = 1 + p1 − p2 + p3 − p4 + 2p2
1 + 3p2

2 − 5p1p2 +O(K(p1)p3
1) (2.56)

and raising to the third power we get

λ3 = (1 + ζ1 + ζ2)3 + 3(1 + ζ1 + ζ2)2O(K(p1)p3
1) +O(K3(p1)p6

1p
3
1)+

+ 3(1 + ζ1 + ζ2)O(K2(p1)p3
1p

3
1). (2.57)

In the above formulas we have used the notations

ζ1 = p1 − p2, (2.58)

ζ2 = p3 − p4 + 2p2
1 + 3p2

2 − 5p1p2. (2.59)

From the de�nitions of ζ1 and ζ2, it is not hard to see that ζ1 = O(p1) and

ζ2 ≤ p1(p1 − p2) + 2(p1 − p2)2 − p2(p1 − p2) = O(3p2
1).

From these observations we deduce that

λ3 − (1 + ζ1 + ζ2)3 = O(S(p1)p3
1), (2.60)

with S(p1) given bellow by

S(p1) = 3(1 + p1 + 3p2
1)2K(p1) + 3p3

1(1 + p1 + 3p2
1)K2(p1) + p6

1K
3(p1). (2.61)

Now observe that by expanding (1 + ζ1 + ζ2)3, we can write

(1 + ζ1 + ζ2)3 = 1 + 3(ζ1 + ζ2 + ζ2
1 ) + 6ζ1ζ2 + 3ζ2

2 + 3ζ1ζ
2
2 + 3ζ2

1ζ2

+ ζ3
1 + ζ3

2

= 1 + 3(ζ1 + ζ2 + ζ2
1 ) +O(18p3

1) +O(27p1p
3
1) +O(27p2

1p
3
1)

+O(9p1p
3
1) +O(p3

1) +O(27p3
1p

3
1), (2.62)

which along with Eq.(2.60) and Eq.(2.61) gives an expression for λ3,

λ3 = 1 + 3(ζ1 + ζ2 + ζ2
1 ) +O(P (p1)p3

1). (2.63)

The function P (p1), in Eq.2.63 above, is computed by the formula

P (p1) = 3K(p1)(1 + p1 + 3p2
1)[1 + p1 + 3p2

1 +K(p1)p3
1] + p6

1K
3(p1)

+ 9p1(4 + 3p1 + 3p2
1) + 19. (2.64)

Recall, from the previous lemma, that we have the recurrence

qn =

n∑
k=0

(−1)n−kpn−kqk−1, n ≥ 0, q−1 = q0 = 1,
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which for n = 3 implies that

q3 = 1− p1 − 2(p1 − p2) + p2
1 − p3 = O((1− p1)2). (2.65)

Now it is clear that from Eq.(2.63) and Eq.(2.65) we obtain

q3λ
3 = q3[1 + 3(ζ1 + ζ2 + ζ2

1 )] +O(P (p1)(1− p1)2p3
1). (2.66)

The last step in our proof is to �nd an approximation for the �rst term on the right

in Eq.(2.66). If we write

q3[1 + 3(ζ1 + ζ2 + ζ2
1 )] = 1− p2 + 2p3 − 3p4 + p2

1 + 6p2
2 − 6p1p2 +H, (2.67)

then H veri�es

H = 3(p1 − p2)
{

(p2
1 − p3)[3(p1 − p2) + 1− p2] + p2

2 − 9(p1 − p2)2
}

− 3(p3 − p4)[p1 + 2(p1 − p2)− (p2
1 − p3)]

= O(36p3
1). (2.68)

Finally, combining Eq.(2.66), Eq.(2.67) and Eq.(2.68) leads to

q3λ
3 = 1− p2 + 2p3 − 3p4 + p2

1 + 6p2
2 − 6p1p2 +O(L(p1)p3

1), (2.69)

where we used the notation

L(p1) = 36 + (1− p1)2P (p1). (2.70)

2.3.2 Proof of Theorem 2.2.3

We saw from Lemma 2.3.1 that the series C(z) has a zero λ = λ(x) in the interval

(1, 1 + lp1), where l = l(p1) = t32(p1) + ε, ε > 0 arbitrarily small and t2(p1) is the

second root in magnitude of the equation p1t
3 − t + 1 = 0. To show that this zero

is unique, we will prove that C(z) is strictly decreasing on the interval (1, 1 + lp1),

i.e. C ′(z) < 0. In Lemma 2.3.4, we found the following upper bound for C ′(z):

C ′(z) ≤ −1 +
2p1

(1− p1)2
+ 2lp2

1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
.

We observe that the expression of the bound in the above relation is increasing in

p1 and since for p1 = 0.1, l ≤ 1.1535, we get

C ′(z) < −0.7,

which proves that C is strictly decreasing.

Now we try to approximate the zero λ. From Lagrange theorem applied on the

interval [1, λ], we have C(λ) − C(1) = (λ − 1)C ′(u), with u ∈ (1, λ) ⊂ (1, 1 + lp1).

Since C(λ) = 0, we get

λ− 1 = − C(1)

C ′(u)
(2.71)
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and taking µ = p1−p2 +p3−p4 + 2p2
1 + 3p2

2−5p1p2 as in [Haiman, 1999], we obtain

λ− (1 + µ) = −C(1) + µC ′(u)

C ′(u)
. (2.72)

Applying Lagrange theorem one more time for C ′, as in the proof of Lemma 2.3.4,

on the interval [1, 1 + a] with a ≤ lp1, we get for θ ∈ (0, 1)

C ′(1 + a) = C ′(1) + aC ′′(1 + θa).

Recall that

C ′(1) = −1 + 2p1 − 3p2 +R,

with R de�ned by Lemma 2.3.2. After the proper substitutions, the relation in

Eq.(2.72) becomes

λ− (1 + µ) = −C(1) + µ(−1 + 2p1 − 3p2) + µ(R+ aC ′′(1 + θa))

C ′(u)
, (2.73)

where a = u− 1 and θ ∈ (0, 1).

If we denote A = C(1) + µ(−1 + 2p1 − 3p2), then

A = (p1 − p2 + p3 − p4 + p5 − p6 + . . . )− µ+ (2p1 − 3p2)µ

= (p5 − p6 + . . . ) + (p1 − p2)(2p1 − 3p2)2 + 2(p1 − p2)(p3 − p4)

− p2(p3 − p4). (2.74)

Applying the inequality from Eq.(2.25) in Eq.(2.74), we have

−p3
1 ≤ −p2(p3 − p4) ≤ A ≤

∞∑
k=2

pk+1
1 + 4p3

1 + 2p3
1,

which gives us the estimate

|C(1) + µ(−1 + 2p1 − 3p2)| ≤ p3
1

[
6 +

1

1− p1

]
. (2.75)

Notice that µ ≥ 0 and

µ = (1− p2)(p1 − p2) + p3 − p4 + 2(p1 − p2)2

≤ (1− p2)(p1 − p2) + p1(p1 − p2) + 2(p1 − p2)2

= 3(p1 − p2)2 + p1 − p2 ≤ p1(1 + 3p1). (2.76)

Recall that, from Lemma 2.3.4, we have the following bound for |C ′(z)|−1:

|C ′(z)|−1 ≤
[
1− 2p1(1 + lp1)

[1− p1(1 + lp1)2]2

]−1

.

Also, the bounds in Lemma 2.3.3 lead to the estimate

|C ′′(z)| ≤ 2lp2
1

1 + 3p1(1 + lp1)2

[1− p1(1 + lp1)2]3
+

4p1(1 + lp1)

[1− p1(1 + lp1)2]2
. (2.77)
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Substituting the estimate for |R| derived in Lemma 2.3.2, along with the bounds in

Eqs.(2.75), (2.76), (2.38) and (2.77) in Eq.(2.73) and using that a ≤ lp1, gives the

approximation

|λ− (1 + µ)| ≤ |C(1) + µ(−1 + 2p1 − 3p2)|+ |µ|(|R|+ |a||C ′′(1 + θa)|)
|C ′(u)|

≤ K(p1)p3
1 (2.78)

where

K(p1) =

11−3p1
(1−p1)2

+ 2l(1 + 3p1)2+3lp1−p1(2−lp1)(1+lp1)2

[1−p1(1+lp1)2]3

1− 2p1(1+lp1)

[1−p1(1+lp1)2]2

. (2.79)

2.3.3 Proof of Corollary 2.2.4

From Theorem 2.2.3 we have∣∣λ− (1 + p1 − p2 + p3 − p4 + 2p2
1 + 3p2

2 − 5p1p2)
∣∣ ≤ K(p1)p3

1.

To prove the statement in Corollary 2.2.4, we �rst observe that

1+p1−p2+p3−p4+2p2
1+3p2

2−5p1p2 = 1+p1−p2+2(p1−p2)2+[p3−p4−p2(p1−p2)].

Using the 1-dependence of the sequence Xn, we notice that

p3 − p4 = P(X1 > x,X2 > x,X3 > x,X4 ≤ x)

≤ p1P(X1 > x,X2 ≤ x) = p1(p1 − p2), (2.80)

which leads to the bound

|p3 − p4 − p2(p1 − p2)| ≤ p3 − p4 + p2(p1 − p2) ≤ p2
1.

Combining the above relations, we conclude that

|λ− (1 + p1 − p2 + 2(p1 − p2)2)| ≤ p2
1(1 +K(p1)p1) ≤ (1 + p1K(p1))p2

1.

2.3.4 Proof of Theorem 2.2.6

From Lemma 2.3.5 we know that

D(z) =
1

C(z)
.

Taking λ to be zero de�ned in Theorem 2.2.3, we can write C(z) = U(z)
(
1− z

λ

)
and observe that if we put U(z) =

n∑
k=0

ukz
k, then

(
n∑
k=0

ukz
k

)(
1− z

λ

)
= 1 +

∞∑
k=1

(−1)kpk−1z
k, (2.81)
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which shows that

un −
un−1

λ
= (−1)npn−1, u0 = 1, n ≥ 1. (2.82)

Multiplying Eq.(2.82) with λn and summing over n gives

un =

1 +

n∑
k=1

(−1)kpk−1λ
k

λn
, n ≥ 1. (2.83)

If we denote with T (z) = 1
U(z) =

∞∑
k=0

tkz
k, then

D(z)
(

1− z

λ

)
= T (z) (2.84)

and using the same arguments as in Lemma 2.3.5 we get t0 = 1 and

tn = qn−1 −
qn−2

λ
, n ≥ 1, (2.85)

so

qnλ
n+1 = t0 + t1λ+ · · ·+ tnλ

n + tn+1λ
n+1. (2.86)

To obtain the desired result, we begin by giving an approximation of un:

|un| =

∣∣∣∣∣1 +
n∑
k=1

(−1)kpk−1λ
k

∣∣∣∣∣
λn

C(λ)=0
=

∣∣∣∣∣
∞∑

k=n+1

(−1)kpk−1λ
k

∣∣∣∣∣
λn

≤ λn+1

λn
∣∣pn − pn+1λ+ pn+2λ

2 − pn+3λ
3 + . . .

∣∣
≤ λ(|pn − pn+1λ|+ |pn+2 − pn+3λ|λ2 + . . . ). (2.87)

Since λ ∈ (1, 1 + lp1), we have

pn − pn+1(1 + lp1) ≤ pn − pn+1λ ≤ pn − pn+1, (2.88)

which shows that

|pn − pn+1λ| ≤ pn − pn+1(1− lp1). (2.89)

Let h = 1− lp1. Using in Eq.(2.87) the fact that the sequence of probabilities (pn)n
is decreasing and the bound from Eq.(2.89), we obtain

|un|
λ
≤ pn − pn+1h+ (pn+2 − pn+3h)λ2 + . . .

= (pn + pn+2λ
2 + pn+4λ

4 + . . . )− h(pn+1 + pn+3λ
2 + pn+5λ

4 + . . . )

≤W − h(pn+2 + pn+4λ
2 + pn+6λ

4 + . . . )

= W − h

λ2
(W − pn) = W

(
1− h

λ2

)
+

h

λ2
pn, (2.90)
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where, based on the estimate from Eq.(2.25),

W = pn + pn+2λ
2 + pn+4λ

4 + . . .

≤ p
[n+1

2 ]
1 + p

[n+1
2 ]

1 p1λ
2 + p

[n+1
2 ]

1 p2
1λ

4 + . . .

= p
[n+1

2 ]
1 (1 + p1λ

2 + p2
1λ

4 + . . . ) =
p
[n+1

2 ]
1

1− p1λ2
. (2.91)

From Eq.(2.90) and Eq.(2.91), we conclude that

|un|
λ
≤ p[

n+1
2 ]

1

[
1

1− p1λ2
+

h

λ2

(
1− 1

1− p1λ2

)]
=

1− p1h

1− p1λ2
p
[n+1

2 ]
1 . (2.92)

Until now we have an approximation for un, but we still need one for tn and to solve

this aspect let us write

T (z) =
1

U(z)
=

1

1− (1− U(z))
=
∑
n≥0

(−1)n(U − 1)n, (2.93)

which is true since the convergence of C(z) implies |z| < 1√
p1

and in turn gives

|1− U | ≤ λ(1− p1h)

1− p1λ2

∑
n≥1

p
n
2
1 |z|n ≤

|z|λ√p1 [1− p1(1− lp1)]

(1− p1λ2)(1− |z|√p1)

≤
√
p1(1 + lp2

1)(1 + lp1)2

[1− p1(1 + lp1)2]
[
1−√p1(1 + lp1)

] < 0.8. (2.94)

Since u0 = 1, we have U − 1 =
∑
n≥1

unz
n and

(U − 1)k =
∑
l≥1

∑
i1+···+ik=l
ij≥1,j=1,k

ui1 . . . uikz
l. (2.95)

Combining Eq.(2.93) with Eq.(2.95), we obtain∑
n≥0

tnz
n =

∞∑
k=0

(−1)k
∞∑
l=1

bl,kz
l, (2.96)

where

bl,k =
∑

i1+···+ik=l
ij≥1,j=1,k

ui1 . . . uik . (2.97)

Identifying the coe�cients in Eq.(2.96) shows that t0 = 1 and

tn =

n∑
k=1

(−1)k
∑

i1+···+ik=n
ij≥1,j=1,k

ui1 . . . uik , k ≥ 1. (2.98)
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Notice that the coe�cients bn,k can be bounded by

|bn,k| ≤ δk
∑

i1+···+ik=n
ij≥1,j=1,k

p

[
i1+1

2

]
1 . . . p

[
ik+1

2

]
1 , (2.99)

where δ = λ(1−p1h)
1−p1λ2 .

By induction, one can easily check the validity of the identity[
i1 + 1

2

]
+ · · ·+

[
ik + 1

2

]
≥
[
i1 + · · ·+ ik + 1

2

]
=

[
n+ 1

2

]
. (2.100)

We observe that the number of terms in the sum of Eq.(2.99) is equal with the

number of di�erent positive integers solutions of the equation i1 + · · ·+ ik = n and

is given by
(
n−1
k−1

)
(see for example [Yaglom and Yaglom, 1987, Problem 31]). This

shows that

|bn,k| ≤ p[
n+1
2 ]

1

(
n− 1

k − 1

)
δk. (2.101)

Now, from Eq.(2.98) and Eq.(2.101), we have

− p[
n+1
2 ]

1 δ

[n−1
2 ]∑

k=0

(
n− 1

2k

)
δ2k ≤ tn ≤ p[

n+1
2 ]

1 δ

[n2 ]−1∑
k=0

(
n− 1

2k + 1

)
δ2k+1, (2.102)

which lead to the bound

|tn| ≤
δ

2
p
[n+1

2 ]
1

[
(1 + δ)n−1 + (1− δ)n−1

]
. (2.103)

We observe that from Eq.(2.86) and Eq.(2.103), the di�erence |qnλn − q3λ
3| can be

bounded by

|qnλn − q3λ
3| =

∣∣∣∣∣∣∣∣∣∣∣

n+1∑
s=0

tsλ
s −

4∑
s=0

tsλ
s

λ

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
n+1∑
s=5

tsλ
s−1

∣∣∣∣∣
≤ δ

2

∞∑
s=5

p
[ s+1

2 ]
1

[
(1 + δ)s−1 + (1− δ)s−1

]
λs−1. (2.104)

If we denote by σ1 = (1+δ)λ, σ2 = (1−δ)λ and by V the upper bound in Eq.(2.104),

it is not hard to see that

V =
δp3

1

2

[
σ4

1(1 + σ1)

1− p1σ2
1

+
σ4

2(1 + σ2)

1− p1σ2
2

]
. (2.105)

Recalling that h = 1 − lp1, λ ∈ (1, 1 + lp1) and p1 ≤ 0.1, we observe that σ2 is

bounded by

− lp1[1 + 2p1(1 + lp1)]

1− p1(1 + lp1)2
≤ σ2 ≤ −

lp2
1(1 + lp1)

1− p1
,



50 Chapter 2. Extremes of 1-dependent stationary sequences

which gives |σ2| < 0.5 and
δσ4

2(1+σ2)

2(1−p1σ2
2)
< 0.1.

Substituting the last relation in Eq.(2.105), we can rewrite the bound in Eq.(2.104)

as

|qnλn − q3λ
3| ≤ E(p1)p3

1 (2.106)

where, if we denote by η = 1 + lp1,

E(p1) = 0.1 +
η5 [1 + (1− 2p1)η]4 [1 + p1(η − 2)]

[
1 + η + (1− 3p1)η2

]
2(1− p1η2)4 [(1− p1η2)2 − p1η2(1 + η − 2p1η)2]

. (2.107)

We saw in Lemma 2.3.6 that

q3λ
3 = 1− p2 + 2p3 − 3p4 + p2

1 + 6p2
2 − 6p1p2 +O(L(p1)p3

1),

where L(p1) = 36+(1−p1)2P (p1) and P (p1) is given by Eq.(2.55). Using Eq.(2.106)

and the above estimate, we conclude that

|qnλn − (1− p2 + 2p3 − 3p4 + p2
1 + 6p2

2 − 6p1p2)| ≤ Γ(p1)p3
1, (2.108)

with Γ(p1) = 36 + (1− p1)2P (p1) + E(p1) and this ends the proof of the theorem.

Remark that in the statement of Theorem 2.2.6 we gave E(p1) without the 0.1 term,

but we have added it to the constant term 36.

2.3.5 Proof of Corollary 2.2.7

We know from Theorem 2.2.6 that the following relation holds:

|qnλn − (1− p2 + 2p3 − 3p4 + p2
1 + 6p2

2 − 6p1p2)| ≤ Γ(p1)p3
1.

Based on this bound, we can write

|qnλn − (1− p2)| ≤ Γ(p1)p3
1 + |2p3 − 3p4 + p2

1 + 6p2
2 − 6p1p2|. (2.109)

Observe that

0 ≤ p2
1 + 2p3 − 3p4 = p2

1 − p4︸ ︷︷ ︸
≤p21

+2(p3 − p4︸ ︷︷ ︸
≤p21

) ≤ 3p2
1

and that

−3p2
1 ≤ 6p2

2 − 6p1p2 ≤ 0.

By adding these two set of inequalities, we have the bound∣∣p2
1 + 2p3 − 3p4 + 6p2

2 − 6p1p2

∣∣ ≤ 3p2
1,

which substituted in Eq.(2.109) implies

|qnλn − (1− p2)| ≤ (3 + p1Γ(p1))p2
1. (2.110)
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2.3.6 Proof of Theorem 2.2.8

Denoting by

µ1 = 1− p2 + 2p3 − 3p4 + p2
1 + 6p2

2 − 6p1p2,

µ2 = 1 + p1 − p2 + p3 − p4 + 2p2
1 + 3p2

2 − 5p1p2

we observe that

0 ≤ µ1

µ2
< 1

and that

µ2 = 1 + (p1 − p2)(1− p2) + p3 − p4 + 2(p1 − p2)2︸ ︷︷ ︸
≥0

≥ 1. (2.111)

With the help of Eq.(2.13) and Eq.(2.16), we get∣∣∣∣qn − µ1

µn2

∣∣∣∣ ≤ ∣∣∣qn − µ1

λn

∣∣∣+

∣∣∣∣µ1

λn
− µ1

µn2

∣∣∣∣
≤ Γ(α)p3

1 + |µ1|
∣∣∣∣ 1λ − 1

µ2

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

1

λn−1
+ · · ·+ 1

λn−jµj2︸ ︷︷ ︸
≤1

+ · · ·+ 1

µn−1
2

∣∣∣∣∣∣∣∣∣∣
≤ [Γ(p1) + nK(p1)] p3

1. (2.112)

To express µ1 and µ2 in terms of q's, we have to observe �rst that

p1 = 1− q1

p2 = 1− 2q1 + q2

p3 = 1− 3q1 + 2q2 + q2
1 − q3

p4 = 1− 4q1 + 3q2 − 2q1q2 + 3q2
1 − 2q3 + q4

and after the proper substitutions, we get

µ1 = 1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2 (2.113)

µ2 = 6(q1 − q2)2 + 4q3 − 3q4. (2.114)

To conclude the proof of Theorem 2.2.8, it is enough to replace the above relations

in Eq.(2.112). We obtain∣∣∣∣qn − 6(q1 − q2)2 + 4q3 − 3q4

(1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2)n

∣∣∣∣ ≤ n∆1(1− q1)3, (2.115)

where ∆1 is given by

∆1 = ∆1(q1, n) = K(1− p1) +
Γ(1− q1)

n
.
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2.3.7 Proof of Theorem 2.2.9

For the proof of Theorem 2.2.9, we use the same approach as in Theorem 2.2.8.

From Eq.(2.15) and Eq.(2.19), we get∣∣∣∣qn − ν1

νn2

∣∣∣∣ ≤ ∣∣∣qn − ν1

λn

∣∣∣+

∣∣∣∣ ν1

λn
− ν1

νn2

∣∣∣∣
≤ (3 + p1Γ(p1))p2

1 + nν1
|λ− ν2|
λν2

≤ [3 + Γ(p1)p1 + n(1 + p1K(p1))] p2
1, (2.116)

where ν1 = 1− p2 and ν2 = 1 + p1− p2 + 2(p1− p2)2. We express ν1 and ν2 in terms

of q's using the relations for p1 to p4 from the proof of Theorem 2.2.8, so

ν1 = 2q1 − q2 (2.117)

ν2 = 1 + q1 − q2 + 2(q1 − q2)2. (2.118)

Substituting these formulas in Eq.(2.116), we obtain∣∣∣∣qn − 2q1 − q2

[1 + q1 − q2 + 2(q1 − q2)2]n

∣∣∣∣ ≤ n∆2(1− q1)2, (2.119)

where

∆2 = ∆2(q1, n) = 1 +
3

n
+

[
K(1− q1) +

Γ(1− q1)

n

]
(1− q1).

2.3.8 Proof of Proposition 2.1.4

From the stationarity of the sequence (Wk)k∈Z, we know that the autocovariance

function

c(j) = Cov(W0,Wj) (2.120)

is nonnegative de�nite. Using that E[W0] = 0 and the m-dependence property, we

obtain that c(j) = 0 for all |j| > m.

We associate to the sequence of autocovariances {c(j)}j=mj=−m the trigonometric poly-

nomial

t(θ) =
m∑

j=−m
c(j)eijθ. (2.121)

From the above observations we have that t(θ) takes only positive real values for all

θ. This remark will constitute the key behind the proof. The following lemma, due

to Fejér and Riesz (see [Riesz and Nagy, 1990, pag 117] for a proof), will elucidate

this statement:

Lemma 2.3.7 (Fejér-Riesz). Let the trigonometric polynomial

p(x) =

n∑
k=−n

cke
ikx.
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If p(x) ≥ 0 for all values of x, then there exists a sequence {bj}j=nj=0 such that

p(x) =

∣∣∣∣∣∣
n∑
j=0

bje
ijx

∣∣∣∣∣∣
2

.

Since the trigonometric polynomial t de�ned in Eq.(2.121) veri�es the hypothesis of

Fejér-Riesz lemma, there is a sequence {aj}j=mj=0 such that we can write

m∑
j=−m

c(j)eijθ =

∣∣∣∣∣
m∑
k=0

ake
ikθ

∣∣∣∣∣
2

. (2.122)

By expanding Eq.(2.122) and identifying the coe�cients of eijθ, we obtain for each

j ∈ {0, 1, . . . ,m}

c(j) =

m−j∑
k=0

akak+j . (2.123)

Now consider the sequence of moving averages of order m

Yj =

m∑
k=0

akηj−k, (2.124)

where ηj ∼ N (0, 1) are i.i.d. standard normal random variables. Clearly (Yj)j∈Z
is a stationary, m-dependent Gaussian sequence. Since (Wk)k∈Z is in addition a

Gaussian sequence, it remains to verify that

Cov(Y0, Yj) =

m−j∑
k=0

akak+j . (2.125)

But it is an exercise to observe that

Cov(Y0, Yj) = E

∑
k,l

akalη−kηj−l


=
∑
k,l

akalE[η−kηj−l]

=

m−j∑
k=0

akak+j (2.126)

and the proof is complete.





Chapter 3

Distribution of scan statistics

viewed as maximum of

1-dependent stationary sequences

In this chapter we consider the general case of the discrete scan statistics in d di-

mensions, d ≥ 1. After introducing the principal notions in Section 3.1, we present

in Section 3.2 the methodology used for �nding the approximation for the distribu-

tion of the d dimensional discrete scan statistics. The advantage of the described

method is that we can also establish sharp error bounds for the estimation. Sec-

tion 3.3 shows how to evaluate these errors. Since the simulation process plays

an important role in our approach, in Section 3.4 we present a general importance

sampling algorithm that increase the e�ciency of the proposed approximation. To

investigate the accuracy of our estimation, in Section 3.5 we explicit the formulas for

the approximation and the error bounds for the special cases of one, two and three

dimensional scan statistics and perform a series of numerical applications. We also

compare our approximation with some of the existing ones presented in Chapter 1.

The work presented in this chapter, for the particular case of three dimensional scan

statistics, makes the object of the article [Am rioarei and Preda, 2013a].
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3.1 De�nitions and notations

Let T1, T2, . . . , Td be positive integers with d ≥ 1 and consider the d-dimensional

rectangular region, Rd, de�ned by

Rd = [0, T1]× [0, T2]× · · · × [0, Td]. (3.1)

For 1 ≤ sj ≤ Tj , j ∈ {1, 2, . . . , d}, we can associate to each elementary rectangular

region

rd(s1, s2, . . . , sd) = [s1 − 1, s1]× [s2 − 1, s2]× · · · × [sd − 1, sd] (3.2)

a real valued random variable Xs1,s2,...,sd . Notice that one can imagine the region

Rd as a d-dimensional lattice (characterized by the centers of the elementary sub-

regions), such that to each point of the lattice it corresponds a random variable.

Let 2 ≤ mj ≤ Tj , 1 ≤ j ≤ d, be positive integers and de�ne the random variables

Yi1,i2,...,id =

i1+m1−1∑
s1=i1

i2+m2−1∑
s2=i2

· · ·
id+md−1∑
sd=id

Xs1,s2,...,sd , (3.3)

where 1 ≤ il ≤ Tl −ml + 1, 1 ≤ l ≤ d. The random variables Yi1,i2,...,id associate to

each rectangular region comprised of m1m2 . . .md adjacent elementary subregions,

R(i1, i2, . . . , id) = [i1 − 1, i1 +m1 − 1]× · · · × [id − 1, id +md − 1], (3.4)

a numerical value equal with the sum of all the attributes in that region.

For example, consider the case when the random variables Xs1,s2,...,sd are 0 − 1

Bernoulli of parameter p. The value 1 can correspond to the situation when in the

elementary rectangular region rd(s1, s2, . . . , sd), an event of interest has been ob-

served and the value 0, otherwise. In this framework, the random variables Yi1,i2,...,id
give the number of events observed in the rectangular region R(i1, i2, . . . , id).

We de�ne the d-dimensional discrete scan statistics as the maximum number of

events in any rectangular region R(i1, i2, . . . , id) within the region Rd,

Sm(T) = max
1≤ij≤Tj−mj+1
j∈{1,2,...,d}

Yi1,i2,...,id , (3.5)

where m = (m1,m2, . . . ,md) and T = (T1, T2, . . . , Td).

Remark 3.1.1. The random variable Sm(T) de�ned in Eq.(3.5) can be viewed as an

extension of the one dimensional scan statistics presented in [Glaz et al., 2001] (d =

1), the two dimensional scan statistics introduced in [Chen and Glaz, 1996] (d = 2)

and of the three dimensional scan statistics studied in [Guerriero et al., 2010a] and

[Am rioarei and Preda, 2013a] (d = 3).

The distribution of the scan statistics,

Qm(T) = P (Sm(T) ≤ n) , (3.6)
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has been used in [Chen and Glaz, 1996] and [Guerriero et al., 2009] for the two di-

mensional case and in [Guerriero et al., 2010a] and [Am rioarei and Preda, 2013a]

for the three dimensional one, to test the null hypothesis of randomness against

an alternative of clustering. Under the null hypotheses, H0, it is assumed that the

random variables Xs1,s2,...,sd are independent and identically distributed according

to some speci�ed distribution. For the alternative hypothesis of clustering, one

can specify a region R(i1, i2, . . . , id) where the random variables Xs1,s2,...,sd have

a larger mean than outside this region. As an example, consider d = 2 and the

binomial model. The null hypothesis, H0, assumes that Xs1,s2 's are i.i.d. with

Xs1,s2 ∼ Bin(r, p) whereas the alternative hypothesis of clustering, H1, assumes the

existence of a rectangular subregion R(i0, j0) such that for any i0 ≤ s1 ≤ i0 +m1−1

and j0 ≤ s2 ≤ j0 +m2− 1, Xs1,s2 are i.i.d. binomial random variables with parame-

ters r and p′ > p. Outside the region R(i0, j0), Xs1,s2 are i.i.d. distributed according

to the distribution speci�ed by the null hypothesis. The generalized likelihood ratio

test rejects H0 in favor of the local change alternative H1, whenever Sm(T) exceeds

the threshold τ , determined from P (Sm(T) ≥ τ |H0) = α and where α represents

the signi�cance level of the testing procedure ([Glaz et al., 2001, Chapter 13]).

3.2 Methodology

As noted in Chapter 1 (see also [Cressie, 1993, pag 313]), �nding the exact distribu-

tion of the d-dimensional scan statistics for d ≥ 2 has proved elusive. In this section,

we present an alternative method, based on the results derived in Chapter 2, for

�nding accurate approximations for the distribution Qm(T) of the d-dimensional

scan statistics generated by an i.i.d. sequence. One of the main features of this

approach is that, besides the approximation formula, it also provides sharp error

bounds. It is also important to mention that the method can be applied for any dis-

tribution, discrete or continuous, of the random variables Xs1,s2,...,sd . In Section 3.5,

we include numerical results to emphasize this remark.

This approach is not new and was successfully used to approximate the distribution

of scan statistics, both in discrete and continuous cases, in a series of articles: for

one-dimensional case in [Haiman, 2000] and [Haiman, 2007], for two-dimensional

case in [Haiman and Preda, 2002] and [Haiman and Preda, 2006] and for the three-

dimensional case in [Am rioarei and Preda, 2013a].

Consider the framework described in Section 3.1 and let the sequence of random

variables Xs1,s2,...,sd be independent and identically distributed according to a spec-

i�ed distribution. The key idea behind the approximation method is to express

the scan statistic random variable Sm(T) as maximum of a 1-dependent station-

ary sequence of random variables and to employ the estimate from Theorem 2.2.9,

Chapter 2. The approximation will be carried out in a series of steps.

Assume that Lj =
Tj

mj−1 , j ∈ {1, 2, . . . , d}, are positive integers and de�ne for each
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k1 ∈ {1, 2, . . . , L1 − 1} the random variables

Zk1 = max
(k1−1)(m1−1)+1≤i1≤k1(m1−1)

1≤ij≤(Lj−1)(mj−1)
j∈{2,...,d}

Yi1,i2,...,id . (3.7)

We observe that the random variable Zk1 de�ned in Eq.(3.7) corresponds, in fact,

to the d-dimensional discrete scan statistics over the multidimensional rectangular

strip

[(k1 − 1)(m1 − 1), (k1 + 1)(m1 − 1)]× [0, T2]× · · · × [0, Td].

We claim that the set of random variables {Z1, . . . , ZL1−1} forms a 1-dependent

stationary sequence according to De�nition 2.1.1 and De�nition 2.1.2. Indeed, from

Eq.(3.7) we notice that for k1 ≥ 1

σ(Z1, · · · , Zk1) ⊂ σ ({Xs1,s2,...,sd |1 ≤ s1 ≤ (k1 + 1)(m1 − 1), 1 ≤ sj ≤ Tj , j ≥ 2})

and

σ(Zk1+2, · · · ) ⊂ σ ({Xs1,s2,...,sd |(k1 + 1)(m1 − 1) + 1 ≤ s1, 1 ≤ sj ≤ Tj , j ≥ 2}) .

The independence of the sequence Xs1,s2,...,sd implies that the σ-�elds σ(· · · , Zk1)

and σ(Zk1+2, · · · ) are independent, so the 1-dependence of the set of random vari-

ables {Z1, . . . , ZL1−1} is veri�ed. The stationarity is immediate since the random

variables Xs1,s2,...,sd are also identically distributed.

For a better understanding, we consider the three dimensional setting (d = 3) to

exemplify our approach. In Figure 3.1 we illustrate the sequence (Zk1)L1−1
k1=1 , empha-

sizing its 1-dependent structure.

Notice that from Eq.(3.7) and the de�nition of the d-dimensional scan statistics in

Eq.(3.5) we have the following identity

Sm(T) = max
1≤ij≤Tj−mj+1
j∈{1,2,...,d}

Yi1,i2,...,id

= max
1≤k1≤L1−1

 max
(k1−1)(m1−1)+1≤i1≤k1(m1−1)

1≤ij≤(Lj−1)(mj−1)
j∈{2,...,d}

Yi1,i2,...,id


= max

1≤k1≤L1−1
Zk1 . (3.8)

The above relation shows that the scan statistic random variable can be expressed as

the maximum of a 1-dependent stationary sequence and gives us the proper setting

for applying the estimates developed in the previous chapter.

Recall from Chapter 2 that given a 1-dependent stationary sequence of random

variables (Wk)k≥1, if the tail distribution P(W1 > x) is small enough, then we have

the following estimate for the distribution of the maximum of the �rst m terms:∣∣∣∣qm − 2q1 − q2

[1 + q1 − q2 + 2(q1 − q2)2]m

∣∣∣∣ ≤ mF (q1,m)(1− q1)2, (3.9)
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Figure 3.1: Illustration of Zk1
in the case of d = 3, emphasizing the 1-dependence

where qm = P (max{W1, . . . ,Wm} ≤ x),

F (q1,m) = 1 +
3

m
+

[
K(1− q1) +

Γ(1− q1)

m

]
(1− q1), (3.10)

and Γ(·) and K(·) are as in Theorem 2.2.6 (see Theorem 2.2.9). Notice that F (x, n),

described above, corresponds to the error coe�cient ∆2(x, n), de�ned by Eq.(2.23).

De�ne for t1 ∈ {2, 3},

Qt1 = Qt1(n) = P

t1−1⋂
k1=1

{Zk1 ≤ n}

 = P

 max
1≤i1≤(t1−1)(m1−1)
1≤ij≤(Lj−1)(mj−1)

j∈{2,...,d}

Yi1,i2,...,id ≤ n

 .

(3.11)

It is clear that Qt1 coincides with Qm ((t1(m1 − 1), T2, . . . , Td)), the distribution of

the d-dimensional scan statistics over the rectangular region [0, t1(m1−1)]×[0, T2]×
· · · × [0, Td] (see also Figure 3.1 when d = 3).

For n such that Q2(n) ≥ 0.9, we can apply the result in Theorem 2.2.9 (enounced

above) to obtain the �rst step approximation∣∣∣∣∣Qm(T)− 2Q2 −Q3

[1 +Q2 −Q3 + 2(Q2 −Q3)2]L1−1

∣∣∣∣∣ ≤ (L1 − 1)F (Q2, L1 − 1)(1−Q2)2.

(3.12)
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In order to evaluate the approximation in Eq.(3.12), one has to �nd suitable esti-

mates for the quantities Q2 and Q3. To simplify the results of the presentation, in

what follows we abbreviate the approximation formula by

H(x, y,m) =
2x− y

[1 + x− y + 2(x− y)2]m−1
. (3.13)

The second step in our approximation consists in de�ning two new sequences of

1-dependent stationary random variables, such that each Qt1 can be expressed as

the distribution of the maximum of the variables in the corresponding sequence.

We de�ne, as in Eq.(3.7), for t1 ∈ {2, 3} and k2 ∈ {1, 2, . . . , L2 − 1} the random

variables

Z
(t1)
k2

= max
1≤i1≤(t1−1)(m1−1)

(k2−1)(m2−1)+1≤i2≤k2(m2−1)
1≤ij≤(Lj−1)(mj−1)

j∈{3,...,d}

Yi1,i2,...,id . (3.14)

Observe that the random variables Z
(t1)
k2

coincide with the d-dimensional scan statis-

tics across the overlapping strips of size t1(m1 − 1)× 2(m2 − 1)× T3 × · · · × Td

[0, t1(m1 − 1)]× [(k2 − 1)(m2 − 1), (k2 + 1)(m2 − 1)]× · · · × [0, Td].

Based on similar arguments as in the case of (Zk1)L1−1
k1=1 , the random variables in the

sets {Z(t1)
1 , Z

(t1)
1 , . . . , Z

(t1)
L2−1} are 1-dependent and stationary. Moreover, for each

t1 ∈ {2, 3} we have
Qt1 = P

(
max

1≤k2≤L2−1
Z

(t1)
k2
≤ n

)
. (3.15)

Set for t1, t2 ∈ {2, 3},

Qt1,t2 = Qt1,t2(n) = P

t2−1⋂
k2=1

{Z(t1)
k2
≤ n}

 = P

 max
1≤i1≤(t1−1)(m1−1)
1≤i2≤(t2−1)(m2−1)
1≤ij≤(Lj−1)(mj−1)

j∈{3,...,d}

Yi1,i2,...,id ≤ n


(3.16)

and observe that Qt1,t2 = Qm ((t1(m1 − 1), t2(m2 − 1), . . . , Td)).

Whenever n is such that Qt1,2(n) ≥ 0.9, we are in the hypothesis of Theorem 2.2.9

and for each t1 ∈ {2, 3}, we approximate Qt1 with

|Qt1 −H (Qt1,2, Qt1,3, L2)| ≤ (L2 − 1)F (Qt1,2, L2 − 1)(1−Qt1,2)2. (3.17)

Combining the estimate in Eq.(3.12) with the ones in Eq.(3.17), we obtain an expres-

sion for the approximation of Qm(T) depending on the four distribution functions

Q2,2, Q3,2, Q2,3 and Q3,3.

Depending on the dimension of the problem, the above procedure can be repeated for

a number of steps (at most d) to get simpler terms in the approximation formula. In
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general, at the s step, 1 ≤ s ≤ d, the problem is to approximate for each tj ∈ {2, 3},
j ∈ {1, . . . , s−1}, the distribution function of the d-dimensional scan statistics over

the rectangular region

[0, t1(m1 − 1)]× . . . [0, ts−1(ms−1 − 1)]× [0, Ts] · · · × [0, Td].

We adopt the following notation for these distribution functions:

Qt1,t2,...,ts−1 = Qt1,t2,...,ts−1(n) = P

 max
1≤il≤(tl−1)(ml−1)

l∈{1,...,s−1}
1≤ij≤(Lj−1)(mj−1)

j∈{s,...,d}

Yi1,i2,...,id ≤ n

 . (3.18)

As described in the �rst two steps, the idea is to de�ne for each point (t1, . . . , ts−1) ∈
{2, 3}s−1 a set of stationary and 1-dependent random variables such that Qt1,t2,...,ts−1

corresponds to the distribution of the maxima of these variables. We will focus on

reducing the size of the s-th dimension.

De�ne for tl ∈ {2, 3}, l ∈ {1, . . . , s − 1} and ks ∈ {1, 2, . . . , Ls − 1} the random

variables

Z
(t1,t2,...,ts−1)
ks

= max
1≤il≤(tl−1)(ml−1)
l∈{1,2,...,s−1}

(ks−1)(ms−1)+1≤is≤ks(ms−1)
1≤ij≤(Lj−1)(mj−1)

j∈{s+1,...,d}

Yi1,i2,...,id . (3.19)

Based on the same arguments as for the �rst and the second step, the random

variables
{
Z

(t1,t2,...,ts−1)
1 , . . . , Z

(t1,t2,...,ts−1)
Ls−1

}
form a 1-dependent stationary sequence

and verify the following relation

Qt1,t2,...,ts−1 = P
(

max
1≤ks≤Ls−1

Z
(t1,t2,...,ts−1)
ks

≤ n
)
. (3.20)

Clearly, from Eq.(3.18) and Eq.(3.19) we have

Qt1,t2,...,ts = Qt1,t2,...,ts(n) = P

ts−1⋂
ks=1

{Z(t1,t2,...,ts−1)
ks

≤ n}

 . (3.21)

If we take n such that Qt1,t2,...,ts−1,2(n) ≥ 0.9, that is we can apply Theorem 2.2.9,

then the s step approximation is given by∣∣Qt1,...,ts−1 −H
(
Qt1,...,ts−1,2, Qt1,...,ts−1,3, Ls

)∣∣ ≤ (Ls − 1)F (Qt1,...,ts−1,2, Ls − 1)

× (1−Qt1,...,ts−1,2)2. (3.22)

Substituting for each s ∈ {2, . . . , d}, the Eqs. (3.21) in Eq. (3.12), we get an approx-
imation formula for the distribution of the d-dimensional scan statistics depending

on the 2d quantities Qt1,...,td , that we propose to be evaluated by simulation. To get

a better �lling of the approximation process described above, we include in Fig. 3.2

a diagram that illustrates the steps involved in the approximation of Q2 for the

three dimensional scan statistics.
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Figure 3.2: Illustration of the approximation of Q2 in three dimensions

Remark 3.2.1. If there are indices j ∈ {1, 2, . . . , d} such that Tj are not multiples

of mj − 1, then we take Lj =
⌊

Tj
mj−1

⌋
. Based on the inequalities

P(Sm(M1) ≤ n) ≤ Qm(T) ≤ P(Sm(M2) ≤ n), (3.23)

with

M1 = ((L1 + 1)(m1 − 1), . . . , (Ld + 1)(md − 1)) ,

M2 = (L1(m1 − 1), . . . , Ld(md − 1)) ,

we can approximate the distribution of the scan statistics Qm(T) by the following

multi-linear interpolation procedure:

Suppose that we have a function y = f(x1, . . . , xd) and we are given 2d points x1,s ≤
x2,s, s ∈ {1, . . . , d}, that are the vertices of a right rectangular polytope. We also

assume that the values of the function in the vertices,

vi1,...,id = f(xi1,1, . . . , xid,d), ij ∈ {1, 2}, j ∈ {1, . . . , d},

are known. Given a point (x̄1, . . . , x̄d) in the interior of the polytope, we can ap-

proximate the value of v̄ = f(x̄1, . . . , x̄d) based on the following formula:

v̄ =
∑

i1,...,id∈{1,2}

vi1,...,idVi1,...,id ,

where the normalized volume Vi1,...,id is given by

Vi1,...,id =
α(i1, 1) · · ·α(id, d)

(x2,1 − x1,1) · · · (x2,d − x1,d)
,
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and

α(is, s) =

{
x2,s − x̄s , if is = 1

x̄s − x1,s , if is = 2.

Observe that in the particular case of one dimension (d = 1), if we are given x1 ≤
x̄ ≤ x2, y1 = f(x1) and y2 = f(x2) then, for ȳ = f(x̄), the foregoing relations

reduces to

ȳ = y1
x2 − x̄
x2 − x1

+ y2
x̄− x1

x2 − x1
,

which is exactly the linear interpolation formula.

3.3 Computation of the approximation and simulation

errors

In this section, we present the derivation of the errors resulted from the approxi-

mation process described in Section 3.2. To see from where the errors appear, it is

convenient to introduce some notations.

Let γt1,...,td = Qt1,...,td , with tj ∈ {2, 3}, j ∈ {1, . . . , d}, and de�ne for 2 ≤ s ≤ d

γt1,...,ts−1 = H
(
γt1,...,ts−1,2, γt1,...,ts−1,3, Ls

)
. (3.24)

Since there are no exact formulas available for the computation of Qt1,...,td for d ≥ 2,

these quantities will be estimated by Monte Carlo simulation. Denote with Q̂t1,...,td
the estimated value of Qt1,...,td and de�ne for 2 ≤ s ≤ d

Q̂t1,...,ts−1 = H
(
Q̂t1,...,ts−1,2, Q̂t1,...,ts−1,3, Ls

)
, (3.25)

the estimated value of Qt1,...,ts−1 .

Our goal is to approximate Qm(T) with H
(
Q̂2, Q̂3, L1

)
and to �nd the correspond-

ing error bounds. We observe that∣∣∣Qm(T)−H
(
Q̂2, Q̂3, L1

)∣∣∣ ≤ |Qm(T)−H (γ2, γ3, L1)|

+
∣∣∣H (γ2, γ3, L1)−H

(
Q̂2, Q̂3, L1

)∣∣∣ , (3.26)

which shows that the error bound has two components: an approximation error

resulted from the �rst term in the right hand side of Eq.(3.26) and a simulation

error associated with the second term (the simulation error corresponding to the

approximation formula). Notice also that the approximation error is of a theoretical

interest since it involves only the true values of the quantities Qt1,...,td . Due to the

simulation nature of the problem, this error is also bounded by what we call: the

simulation error corresponding to the approximation error.
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3.3.1 Computation of the approximation error

To simplify the presentation and the derivation of the approximation error formula,

we de�ne for 2 ≤ s ≤ d,
Ft1,...,ts−1 = F

(
Qt1,...,ts−1,2, Ls − 1

)
(3.27)

and F = F (Q2, L1 − 1).

In practice, since the function F (q,m) de�ned by Eq.(3.10) is slowly decreasing in

q, the values Ft1,...,ts−1 will be computed by F
(
Q̂t1,...,ts−1,2, Ls − 1

)
, and we treat

them as known values in the derivation process. Rigorously, these quantities can

be bounded above by F
(
Q̂t1,...,ts−1,2 − εsim, Ls − 1

)
, where εsim is the simulation

error that corresponds to Q̂t1,...,ts−1,2.

The goal of this section is to �nd an error bound for the �rst term in the right hand

side of Eq.(3.26), namely for the di�erence

|Qm(T)−H (γ2, γ3, L1)| .
We have the following lemma (a proof is given in Appendix B):

Lemma 3.3.1. Let H(x, y,m) = 2x−y
[1+x−y+2(x−y)2]m−1 . If yi ≤ xi, i ∈ {1, 2}, then:

|H(x1, y1,m)−H(x2, y2,m)| ≤
{

(m− 1) [|x1 − x2|+ |y1 − y2|] , 3 ≤ m ≤ 5

(m− 2) [|x1 − x2|+ |y1 − y2|] , m ≥ 6.
(3.28)

Hereinafter, we employ the result from Lemma 3.3.1 (�rst branch) without restric-

tions whenever is necessary. This is in agreement with the numerical values consid-

ered in Section 3.5. We begin by observing that

|Qm(T)−H (γ2, γ3, L1)| ≤ |Qm(T)−H (Q2, Q3, L1)|
+ |H (Q2, Q3, L1)−H (γ2, γ3, L1)|
≤ (L1 − 1)F (1−Q2)2 + (L1 − 1)

∑
t1∈{2,3}

|Qt1 − γt1 |.

(3.29)

Similarly, |Qt1 − γt1 | for t1 ∈ {2, 3} is bounded by

|Qt1 − γt1 | ≤ |Qt1 −H (Qt1,2, Qt1,3, L2)|+ |H (Qt1,2, Qt1,3, L2)−H (γt1,2, γt1,3, L2)|
≤ (L2 − 1)Ft1 (1−Qt1,2)2 + (L2 − 1)

∑
t2∈{2,3}

|Qt1,t2 − γt1,t2 |. (3.30)

Continuing this process, at the s step, with 2 ≤ s ≤ d, we have∣∣Qt1,...,ts−1 −γt1,...,ts−1

∣∣ ≤ ∣∣Qt1,...,ts−1 −H
(
Qt1,...,ts−1,2, Qt1,...,ts−1,3, Ls

)∣∣
+
∣∣H (Qt1,...,ts−1,2, Qt1,...,ts−1,3, Ls

)
−H

(
γt1,...,ts−1,2, γt1,...,ts−1,3, Ls

)∣∣
≤ (Ls − 1)

Ft1,...,ts−1

(
1−Qt1,...,ts−1,2

)2
+

∑
ts∈{2,3}

|Qt1,...,ts − γt1,...,ts |

 .
(3.31)
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Substituting at each step s ∈ {2, . . . , d}, the corresponding Eq.(3.31) into Eq.(3.29),
we obtain

|Qm(T)−H (γ2, γ3, L1)| ≤
d∑
s=1

(L1 − 1) · · · (Ls − 1)

×
∑

t1,...,ts−1∈{2,3}

Ft1,...,ts−1

(
1−Qt1,...,ts−1,2

)2
, (3.32)

where we adopt the convention that
∑

t1,t0∈{2,3}

x = x, Ft1,t0 = F and Qt1,t0,2 = Q2,

which implies that the �rst term in the sum is (L1 − 1)F (1−Q2)2.

To express the bound in Eq.(3.32) only in terms of γt1,...,ts , with 1 ≤ s ≤ d, we

introduce the following variables.

Let Bt1...,td = 0,

Bt1...,td−1
= (Ld − 1)Ft1,...,td−1

(
1−Qt1,...,td−1,2

)2
= (Ld − 1)Ft1,...,td−1

(
1− γt1,...,td−1,2 +Bt1...,td−1,2

)2
(3.33)

and for 2 ≤ s ≤ d− 1 de�ne

Bt1...,ts−1 = (Ls − 1)

Ft1,...,ts−1

(
1− γt1,...,ts−1,2 +Bt1...,ts−1,2

)2
+

∑
ts∈{2,3}

Bt1...,ts

 .
(3.34)

It can be easily veri�ed that

|Qt1,...,td − γt1,...,td | = 0 ≤ Bt1...,td (3.35)

and ∣∣Qt1,...,td−1
− γt1,...,td−1

∣∣ ≤ Bt1...,td−1
, (3.36)

from the de�nition of Bt1...,td and Bt1...,td−1
.

Since

1−Qt1,...,td−1
≤ 1− γt1,...,td−1

+
∣∣Qt1,...,td−1

− γt1,...,td−1

∣∣ , (3.37)

we deduce, by substituting Eq.(3.36) and Eq.(3.37) into Eq.(3.31) and from the

recurrence given in Eq.(3.34), that∣∣Qt1,...,td−2
− γt1,...,td−2

∣∣ ≤ (Ld−1 − 1)
[
Ft1,...,td−2

(
1− γt1,...,td−2,2 +Bt1...,td−2,2

)2
+

∑
td−1∈{2,3}

Bt1,...,td−1

 = Bt1,...,td−2
. (3.38)

Using mathematical induction and noticing that the relation in Eq.(3.37) remains

valid for 2 ≤ s ≤ d, we can verify that

|Qt1,...,ts − γt1,...,ts | ≤ Bt1,...,ts , s ∈ {1, . . . , d}. (3.39)
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A simple computation, similar with the one used to obtain Eq.(3.32), lead us to

Bt1,...,ts−1 =
d∑
h=s

(Ls − 1) · · · (Lh − 1)

×
∑

ts,...,th−1∈{2,3}

Ft1,...,th−1

(
1− γt1,...,th−1,2 +Bt1,...,th−1,2

)2
, (3.40)

for 2 ≤ s ≤ d and with the convention:
∑

ts,ts−1∈{2,3}

x = x.

Substituting Eqs.(3.37) and (3.39) in Eqs.(3.32), we derive the formula for the the-

oretical approximation error

Eapp(d) =

d∑
s=1

(L1 − 1)· · · (Ls − 1)

×
∑

t1,...,ts−1∈{2,3}

Ft1,...,ts−1

(
1− γt1,...,ts−1,2 +Bt1,...,ts−1,2

)2
,

(3.41)

where for s = 1:
∑

t1,t0∈{2,3}

x = x, Ft1,t0 = F , γt1,t0,2 = γ2 and Bt1,t0,2 = B2.

3.3.2 Computation of the simulation errors

In this section, we deal with the computation of the simulation errors that appear

in our approximation. We employ the notations introduced in Eq.(3.25) for the

simulated values corresponding to Qt1,...,ts for s ∈ {1, . . . , d} and tj ∈ {2, 3}, j ∈
{1, . . . , d}. As we remarked before, there are two simulation errors resulting from

the approximation process: the simulation error associated with the approximation

formula (bounding the second term of the right hand side of Eq.(3.24)) and the

simulation error due to the theoretical approximation error (Eapp(d)). We treat

these errors separately.

Suppose that we have a simulation method to estimate the values of Qt1,...,td . Then,

between the true and the estimated values, one can always �nd a relation of the

form ∣∣∣Qt1,...,td − Q̂t1,...,td∣∣∣ ≤ βt1,...,td , tj ∈ {2, 3}, j ∈ {1, . . . , d}. (3.42)

If, for example, ITER is the number of iterations used in the Monte Carlo sim-

ulation algorithm for the estimation of Qt1,...,td , then one can consider the naive

bound provided by the Central Limit Theorem with a 95% con�dence level (see

[Fishman, 1996])

βt1,...,td = 1.96

√
Q̂t1,...,td(1− Q̂t1,...,td)

ITER
. (3.43)

We assume in subsequent that these values are known. To �nd the simulation

error that corresponds to the approximation formula, we observe that, by applying
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successively Lemma 3.3.1 to the second term of Eq. (3.30), we get

|H (γ2, γ3, L1) − H
(
Q̂2, Q̂3, L1

)∣∣∣ ≤ (L1 − 1)
∑

t1∈{2,3}

∣∣∣γt1 − Q̂t1∣∣∣
= (L1 − 1)

∑
t1∈{2,3}

∣∣∣H (γt1,2, γt1,3, L2)−H
(
Q̂t1,2, Q̂t1,3, L2

)∣∣∣
≤ (L1 − 1)(L2 − 1)

∑
t1,t2∈{2,3}

∣∣∣γt1,t2 − Q̂t1,t2∣∣∣
...

≤ (L1 − 1) . . . (Ld−1 − 1)
∑

t1,...,td−1∈{2,3}

∣∣∣γt1,...,td−1
− Q̂t1,...,td−1

∣∣∣
≤ (L1 − 1) . . . (Ld − 1)

∑
t1,...,td∈{2,3}

∣∣∣Qt1,...,td − Q̂t1,...,td∣∣∣. (3.44)

Combining Eq.(3.42) and Eq.(3.44), we obtain the simulation error associated with

the approximation formula

Esf (d) = (L1 − 1) . . . (Ld − 1)
∑

t1,...,td∈{2,3}

βt1,...,td . (3.45)

As we will see in the numerical section, this simulation error has the largest contri-

bution to the total error.

In order to �nd the simulation error corresponding to the approximation error bound

given by Eq.(3.41), we need to introduce some notations. Set At1,...,td = βt1,...,td and

take for 2 ≤ s ≤ d

At1,...,ts−1 = (Ls − 1) . . . (Ld − 1)
∑

ts,...,td∈{2,3}

βt1,...,td . (3.46)

Based on similar arguments as for obtaining Eq.(3.44), we deduce that∣∣∣Q̂t1,...,ts − γt1,...,ts∣∣∣ ≤ At1,...,ts , s ∈ {1, . . . , d}. (3.47)

Let Ct1...,td = 0 and for 2 ≤ s ≤ d, de�ne

Ct1...,ts−1 = (Ls − 1)
[
Ft1,...,ts−1

(
1− Q̂t1,...,ts−1,2 +At1...,ts−1,2 +Ct1...,ts−1,2

)2
+

∑
ts∈{2,3}

Ct1...,ts

 .
(3.48)

We observe that replacing s = d in Eq.(3.48)

Ct1...,td−1
= (Ld − 1)Ft1,...,td−1

(
1− Q̂t1,...,td−1,2 + βt1...,td−1,2

)2
, (3.49)
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since Ct1...,td = 0 and At1...,td−1,2 = βt1...,ts−1,2.

As in Eq.(3.37),

1− γt1,...,td−1
≤ 1− Q̂t1,...,td−1

+
∣∣∣Q̂t1,...,td−1

− γt1,...,td−1

∣∣∣ , (3.50)

so one can deduce from Eqs.(3.33) and (3.49), that

Bt1...,td−1
≤ Ct1...,td−1

. (3.51)

From the de�nition of Bt1...,ts−1 and Ct1...,ts−1 in Eq.(3.34) and Eq.(3.48) respectively,

we conclude, using mathematical induction, that

Bt1...,ts−1 ≤ Ct1...,ts−1 , s ∈ {2, . . . , d}. (3.52)

Clearly, from Eqs.(3.50), (3.47) and (3.52), we have

1− γt1,...,ts−1 +Bt1,...,ts−1 ≤ 1− Q̂t1,...,ts−1 +At1,...,ts−1 + Ct1,...,ts−1 (3.53)

and the simulation error corresponding to the approximation error follows from

Eq.(3.51) and the foregoing equation

Esapp(d) =
d∑
s=1

(L1 − 1) · · · (Ls − 1)
∑

t1,...,ts−1∈{2,3}

Ft1,...,ts−1

(
1− Q̂t1,...,ts−1,2

+At1,...,ts−1,2 + Ct1,...,ts−1,2

)2
,

(3.54)

where for s = 1:
∑

t1,t0∈{2,3}

x = x, Ft1,t0 = F , Q̂t1,t0,2 = Q̂2, At1,t0,2 = A2 and

Ct1,t0,2 = C2.

The total error is obtained by adding the two simulation error terms from Eq.(3.45)

and Eq.(3.54)

Etotal(d) = Esf (d) + Esapp(d). (3.55)

To e�ciently evaluate Eq.(3.55), one needs to �nd suitable values for the error

bounds βt1,...,td . The bounds from Eq.(3.43), provided by the Central Limit Theo-

rem, have been used in [Haiman and Preda, 2006] for the two dimensional case. As

the authors pointed out, the main contribution to the total error is due to the simu-

lation error Esf (d), especially for small sizes of the window scan with respect to the

scanning region. Our numerical study shows that these error bounds are not feasible

for the scan problem in more than three dimensions, the simulation error associated

with the approximation formula Esf (d) being too large with respect to the other

error Esapp(d). Thus, for the simulation of Q̂t1,...,td , we use an importance sampling

technique introduced in [Naiman and Wynn, 1997]. Next section illustrates how to

adapt this simulation method to our problem.
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3.4 Simulation using Importance Sampling

Usually, the scan statistic-based tests are employed when dealing with the detec-

tion of an unusually large cluster of events (for example detection of a bioterrorist

attack, brain tumor, mine�eld reconnaissance etc.). Normally, in such problems,

the practitioner wants to �nd p values that involve small tail probabilities (smaller

than 0.1). Therefore, the problem is to estimate the high order quantiles of the

d-dimensional scan statistics. To solve this problem, we propose the approximation

developed in Section 3.2. To check the accuracy of our proposed approximation, we

need to �nd a suitable method to estimate the quantities involved in our formula,

namely to estimate Qt1,...,td , tj ∈ {2, 3} and j ∈ {1, . . . , d}. For comparison reasons,

we also want to �nd an alternative method to evaluate the scan statistics over the

whole region.

A direct approach to this problem is to use the naive hit-or-miss Monte Carlo,

as described bellow. Let X(i) =
{
X

(i)
s1,s2,...,sd , sj ∈ {1, . . . , Tj}, j ∈ {1, . . . , d}

}
, with

1 ≤ i ≤ ITER, be ITER independent realizations of the underlying random �eld

(under the null hypothesis). For each realization, we compute the d-dimensional

scan statistics S
(i)
m (T) and we de�ne

p̂MC =
1

ITER

ITER∑
i=1

1{
S
(i)
m (T)≥τ

} (3.56)

and

ŝ.e.MC =

√
p̂MC(1− p̂MC)

ITER
, (3.57)

the unbiased direct Monte Carlo estimate of p = P (Sm(T) ≥ τ) and its consistent

standard error estimate. As we will see from the numerical results, this approach

is computationally intensive since just a fraction of the generated observations will

cause a rejection and thus many replications are necessary in order to reduce the

standard error estimate to an acceptable level (especially for d ≥ 2).

In general, there are many variance reduction techniques (see for example

[Ross, 2012, Chapters 9 and 10]) that can be used to improve the e�ciency of

the naive Monte Carlo approach. In the following, we present a variance reduction

method based on importance sampling that will provide more accurate estimates.

3.4.1 Generalities on importance sampling

In this subsection, we introduce some basic theoretical aspects of the importance

sampling technique. This simulation method is usually employed when dealing

with rare event probabilities and often lead to substantial variance reduction (see

[Rubino and Tu�n, 2009]). Expositions on importance sampling can be found in

[Ross, 2012], [Rubinstein and Kroese, 2008] or [Fishman, 1996].

Suppose that we want to estimate, by Monte Carlo methods, the expectation of a
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function G(W ) of a random vector W having a joint density function f . Let

θ = Ef [G(W )] =

∫
G(x)f(x)dx (3.58)

be the expectation to be determined. Observe that in Eq.(3.58) we used the notation

Ef with the subscript f to emphasizes that the expectation is taken with respect to

the density f .

The naive Monte Carlo approach suggests to draw N independent samples W (1),

W (2), . . . , W (N) from the density f(x) and to take

θ̂MC =
1

N

N∑
i=1

G
(
W (i)

)
, (3.59)

as an estimate for θ. This approach may prove to be ine�ective in many situations.

One possible cause can be that we cannot simulate random vectors from the distri-

bution of W , another is that the variance of G(W ) is too large (see [Ross, 2012] for

further discussion).

To overcome such problems, it may be useful to introduce another probability den-

sity function g such thatGf is dominated by g, that is if g(x) = 0 thenG(x)f(x) = 0

(to keep the estimator unbiased) and to give the following alternative expression for

θ:

θ =

∫ [
G(x)f(x)

g(x)

]
g(x)dx = Eg

[
G(W )f(W )

g(W )

]
. (3.60)

Consequently, if now we draw N i.i.d. samples W (1), W (2), . . . , W (N) from the

density g(x), then

θ̂IS =
1

N

N∑
i=1

G
(
W (i)

)
f
(
W (i)

)
g
(
W (i)

) (3.61)

is an unbiased estimator for θ. If the density function g can be chosen such that

the random variable G(W )f(W )
g(W ) has a small variance (the likelihood ratio f/g � 1),

then θ̂ is an e�cient estimator. In the particular case when one wants to estimate

the probability θ = P (W ∈ A), that is G(W ) = 1{W∈A}, a good choice of g is such

that g � f on the set A. To see this, we consider the comparison between the exact

variances of the estimators in the direct (θ̂MC) and IS approach (θ̂IS):

V ar
[
θ̂IS

]
=

1

N
V arg

[
1{W∈A}

f(W )

g(W )

]
=

1

N

[
Eg
[
1{W∈A}

f2(W )

g2(W )

]
− θ2

]
� 1

N

[
Eg
[
1{W∈A}

f(W )

g(W )

]
− θ2

]
=

1

N

[∫
1{W∈A}f(x)dx− θ2

]
=

1

N
V arf

[
1{W∈A}

]
= V ar

[
θ̂MC

]
.

In general, �nding a good change of measure g that leads to an e�cient sampling

process can be di�cult (see [Rubino and Tu�n, 2009]). Fortunately, for our problem

at hand, there are e�cient change of measures and we discuss one of them in the

next subsection.
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3.4.2 Importance sampling for scan statistics

As we saw in the foregoing section, the general idea behind the importance sam-

pling technique is to change the distribution to be sampled from in such a way

that the new estimator to remain unbiased. In this subsection, we present an

importance sampling approach for the estimation of the signi�cance level of hy-

pothesis tests based on d-dimensional scan statistics. This method was introduced

by [Naiman and Priebe, 2001] and was successfully used to solve the problem of

exceeding probabilities, that is, the probability that one or more tests statistics

exceeds some given threshold. Their methodology builds upon a procedure intro-

duced by [Frigessi and Vercellis, 1984] to solve the union count problem (see also

[Fishman, 1996, pag 261]).

Assume that we are in the framework of the d-dimensional scan statistics described

in Section 3.1. As we previously saw, the scan statistics Sm(T) random variable

is usually employed for testing the null hypothesis of randomness (H0) against a

clustering alternative (H1). By the generalized likelihood ratio test, the null hy-

pothesis H0 is rejected in favor of the local change alternative H1 whenever Sm(T)

is su�ciently large (see [Glaz and Naus, 1991, Section 3] for an outline of the proof

for d = 1 or [Glaz et al., 2001, Chapter 13]). If τ denotes the observed value of the

test statistic from the actual data, then we want to �nd the p-value

p = PH0 (Sm(T) ≥ τ) . (3.62)

The main idea behind the importance sampling approach in the scan statistics set-

ting is to sample only data such that the rejection of H0 occurs, and then to de-

termine the collection of all the locality statistics that generate a rejection. We

describe this method in what follows.

Let Ei1,...,id , for 1 ≤ ij ≤ Tj −mj + 1, j ∈ {1, . . . , d}, denote the event that Yi1,...,id
exceeds the threshold τ . We are interested in evaluating the probability

PH0 (Sm(T) ≥ τ) = P

T1−m1+1⋃
i1=1

· · ·
Td−md+1⋃
id=1

Ei1,...,id

 . (3.63)

Under the notations made in the preceding section, the above equation can be

rewritten as

θ =

∫
G(x)f(x)dx, (3.64)

where θ = PH0 (Sm(T) ≥ τ), G(x) = 1E(x), E =

T1−m1+1⋃
i1=1

· · ·
Td−md+1⋃
id=1

Ei1,...,id and

f is the joint density of Yi1,...,id under the null hypothesis.

Let

B(d) =

T1−m1+1∑
i1=1

· · ·
Td−md+1∑
id=1

P (Ei1,...,id) (3.65)
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denote the usual Bonferroni upper bound for P(E). Under the null hypothesis, due

to stationarity, this bound becomes

B(d) = (T1 −m1 + 1) · · · (Td −md + 1)P (E1,...,1) . (3.66)

The probability in Eq.(3.63) can be expressed as

PH0 (Sm (T) ≥ τ) = P

T1−m1+1⋃
i1=1

· · ·
Td−md+1⋃
id=1

Ei1,...,id

 =

∫
1EdPH0

=

∫
1E

T1−m1+1∑
i1=1

· · ·
Td−md+1∑
id=1

1Ei1,...,id

T1−m1+1∑
i1=1

· · ·
Td−md+1∑
id=1

1Ei1,...,iddPH0

=

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

∫
1E

T1−m1+1∑
i1=1

· · ·
Td−md+1∑
id=1

1Ei1,...,id

1Ej1,...,jddPH0

=

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

∫
1

C(Y)
1E∩Ej1,...,jddPH0

=

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

P (Ej1,...,jd)

∫
1

C(Y)

1Ej1,...,jd
P (Ej1,...,jd)

dPH0

= B(d)

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

P (Ej1,...,jd)

B(d)

∫
1

C(Y)
dPH0(·|Ej1,...,jd)

= B(d)

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

pj1,...,jd

∫
1

C(Y)
dPH0(·|Ej1,...,jd), (3.67)

where, by stationarity, pj1,...,jd de�nes an uniform probability distribution over

{1, . . . , T1 −m1 + 1} × · · · × {1, . . . , Td −md + 1},

pj1,...,jd =
P (Ej1,...,jd)

T1−m1+1∑
i1=1

· · ·
Td−md+1∑
id=1

P (Ei1,...,id)

=
1

(T1 −m1 + 1) · · · (Td −md + 1)
(3.68)

and where C(Y) represents the number of d-tuples (i1, . . . , id) for which exceedance

(Yi1,...,id ≥ τ) occurs, that is

C(Y) =

T1−m1+1∑
i1=1

· · ·
Td−md+1∑
id=1

1Ei1,...,id . (3.69)
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Remark that from the above identity in Eq.(3.67), the importance sampling change

of measure g is a mixture of conditional distributions and is given by

g(x) =

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

{
P (Ej1,...,jd)

B(d)

}{
1Ej1,...,jdf(x)

P (Ej1,...,jd)

}
. (3.70)

From Eq.(3.62) and Eq.(3.67), we observe that our p-value can be expressed as the

Bon�eroni conservative bound B(d) times a correction factor ρ(d) between 0 and 1,

with

ρ(d) =

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

pj1,...,jd

∫
1

C(Y)
dPH0(·|Ej1,...,jd). (3.71)

Notice that one can de�ne a larger class of importance sampling algorithms based

on higher order inclusion-exclusion identities, generalizing the foregoing procedure,

as provided in [Naiman and Wynn, 1997, Section 4].

The correction factor that appears Eq.(3.71) can be estimated from the following

algorithm:

Algorithm 1 Importance Sampling Algorithm for Scan Statistics

Begin

Repeat for each k from 1 to ITER (iterations number)

1: Generate uniformly the d-tuple (i
(k)
1 , . . . , i

(k)
d ) from the set {1, . . . , T1 − m1 +

1} × · · · × {1, . . . , Td −md + 1}.
2: Given the d-tuple (i

(k)
1 , . . . , i

(k)
d ), generate a sample of the random �eld X̃(k) ={

X̃
(k)
s1,s2,...,sd

}
, with sj ∈ {1, . . . , Tj} and j ∈ {1, . . . , d}, from the conditional

distribution of X given
{
Y
i
(k)
1 ,...,i

(k)
d

≥ τ
}
.

3: Take ck = C(X̃(k)) the number of all d-tuple (i1, . . . , id) for which Ỹi1,...,id ≥ τ

and put ρ̂k(d) = 1
ck
.

End Repeat

Return ρ̂(d) =
1

ITER

ITER∑
k=1

ρ̂k(d).

End

Clearly, ρ̂(d) is an unbiased estimator for ρ(d) with estimated variance

V ar [ρ̂(d)] ≈ 1

ITER− 1

ITER∑
i=1

(
ρ̂i(d)− 1

ITER

ITER∑
k=1

ρ̂k(d)

)2

. (3.72)

For ITER su�ciently large, as a consequence of Central Limit Theorem, the error

between the true and the estimated value of the tail P (Sm(T) ≥ τ), corresponding



74 Chapter 3. Scan statistics and 1-dependent sequences

to a 95% con�dence level, is given by

β = 1.96B(d)

√
V ar [ρ̂(d)]

ITER
. (3.73)

Notice that for the simulation of Qt1,...,td , we substitute T1, . . . , Td in the above

algorithm with t1(m1 − 1), . . . , td(md − 1), respectively. Therefore, we obtain the

corresponding values for βt1,...,td as described by Eq.(3.73).

In Figure 3.3, we present the di�erence between the naive Monte Carlo and the Im-

portance Sampling method in the particular case of a three dimensional scan statis-

tics. We evaluate the simulation error corresponding to P (S5,5,5(60, 60, 60) ≤ 2) in

the Bernoulli model with p = 0.0001. For the Monte Carlo approach, we used repli-

cations in the range {106, . . . , 107}, while for the Importance Sampling algorithm

the range was {105, . . . , 106}. We observe that in the case of hit and miss Monte

Carlo approach the simulation error is rather large, even for 107 iterations.
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≤
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Importance Sampling (IS)

Naive Monte Carlo (MC)

Figure 3.3: The evolution of simulation error in MC and IS methods

3.4.3 Computational aspects

The algorithm discussed in the previous section presents two implementation dif-

�culties: �rst, it assumes that one is able to e�ciently generate the underlying

random �eld X̃ from the required conditional distribution (see Step 2) and sec-

ond, the number of locality statistics that exceed the predetermined threshold is

supposed to be found in a reasonable time. We address these problems separately.

The problem of sampling from the conditional distribution in Step 2 of the algo-

rithm depends on the initial distribution of the i.i.d. random variables Xs1,s2,...,sd ,

sj ∈ {1, . . . , Tj} and j ∈ {1, . . . , d}. To illustrate the procedure we consider two
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examples for the random �eld distribution: binomial of parameters ν and p and

Gaussian with known mean µ and variance σ2.

Example 3.4.1 (Binomial model). In this example we consider that Xs1,s2,...,sd are

i.i.d. binomial B(ν, p) random variables. Clearly, the random variables Yi1,...,id are

also binomially distributed with parameters w = νm1 · · ·md and p.

The main idea is to generate a sample not from the conditional distribution given{
Y
i
(k)
1 ,...,i

(k)
d

≥ τ
}
as described in Step 2 of the algorithm, but from the conditional

distribution given
{
Y
i
(k)
1 ,...,i

(k)
d

= t
}
, for some value t ≥ τ . This can be achieved

since, if we de�ne the events Gj1,...,jd(t) = {Yj1,...,jd = t}, for t ∈ {τ, . . . , w} and

1 ≤ ji ≤ Ti −mi + 1, i ∈ {1, . . . , d}, then we observe that the events Ej1,...,jd can be

expressed as

Ej1,...,jd =
w⋃
t=τ

Gj1,...,jd(t)

and the Eq.(3.67) can be rewritten as

PH0 ( Sm(T) ≥ τ) = B(d)

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

pj1,...,jd

∫
1

C(Y)
dPH0(·|Ej1,...,jd)

= B(d)

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

pj1,...,jd

w∑
t=τ

rj1,...,jd(t)

∫
1

C(Y)

1Gj1,...,jd (t)

P (Gj1,...,jd(t))
dPH0

= B(d)

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

pj1,...,jd

w∑
t=τ

rj1,...,jd(t)

∫
1

C(Y)
dPH0(·|Gj1,...,jd(t)).

(3.74)

The weights rj1,...,jd(t) do not depend on the indices (j1, . . . , jd), due to the station-

arity of the random �eld and are computed from the relation

rj1,...,jd(t) =
P (Yj1,...,jd = t)

P (Yj1,...,jd ≥ τ)
=
P (Y1,...,1 = t)

P (Y1,...,1 ≥ τ)
. (3.75)

To generate a sample from the conditional distribution that appears in Eq.(3.74),

reduces to show how one can sample uniformly a vector u = (u1, . . . , ul) of size

l = m1 · · ·md satisfying u1 + · · · + ul = t and 0 ≤ ui ≤ ν, from the set of all

such vectors denoted by Γ(l, t, ν). This later aspect can be achieved by the use of

urn models. Assume that we have l urns with ν balls each and a null vector u of

length l and we take t (an integer) draws without replacement. At the i-th step

(i ≤ t), we choose uniformly an urn (from the remaining ones, that is the ones that

are not empty at this step) and draw a ball without replacement. We add one to

the component of the vector u that corresponds to the index of the chosen urn. We

repeat the procedure t steps and we obtain a vector u whose components take values

between 0 and ν and have the sum equal with t.

According to the above observations, the second step in Algorithm 1 can be rewritten

in the following way
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Step 2a Generate a threshold value t ≥ τ from the distribution

r1,...,1(t) =
P (Y1,...,1 = t)

P (Y1,...,1 ≥ τ)
.

Step 2b Conditionally, given t and the d-tuple (i
(k)
1 , . . . , i

(k)
d ), generate X̃

(k)
s1,s2,...,sd for

i
(k)
j ≤ sj ≤ i(k)j +mj−1, j ∈ {1, . . . , d}, uniformly from the set Γ(m1 · · ·md, t, ν)

and take the remaining X̃s1,s2,...,sd distributed according to the null distribution

PH0
.

It is interesting to remark that the foregoing procedure can be applied, with small

modi�cations, to a larger class of discrete integer valued random variables: Poisson,

geometric, negative binomial etc..

Example 3.4.2 (Gaussian model). In this example we consider that the underlying

random �eld is generated by independent and identically distributed normal random

variables with known mean µ and variance σ2 (Xs1,...,sd ∼ N (µ, σ2)). Since the

random variables Yi1,...,id are sums of i.i.d. normals, clearly they follow a multivari-

ate normal distribution with mean and covariance matrix, given by the next lemma

(whose proof can be found in Appendix B):

Lemma 3.4.3. Let Xs1,...,sd ∼ N (µ, σ2) be i.i.d. random variables for all 1 ≤
sj ≤ Tj, j ∈ {1, . . . , d}. The random variables Yi1,...,id de�ned by Eq.(3.3) follow a

multivariate normal distribution with mean µ̄ = m1 · · ·mdµ and covariance matrix

Σ = (Cov [Yi1,...,id , Yj1,...,jd ]), given by

Cov [Yi1,...,id , Yj1,...,jd ] =


(m1 − |i1 − j1|) · · · (md − |id − jd|)σ2 , |is − js| < ms

s ∈ {1, . . . , d},
0 , otherwise.

(3.76)

Notice that Step 2 of Algorithm 1 requires one to sample Y
i
(k)
1 ,...,i

(k)
d

from the tail

distribution P
(
Y
i
(k)
1 ,...,i

(k)
d

≥ τ
)
and, for the other indices, from the conditional dis-

tribution given
{
Y
i
(k)
1 ,...,i

(k)
d

≥ τ
}
.

For generating a sample from the tail of a normal variable, we use the acceptance-

rejection algorithm proposed in the classical paper of [Marsaglia, 1963] (see also

[Devroye, 1986, pag. 380] for a faster alternative based on exponential random vari-

ables). For the second part, we propose two alternative methods (only the second

one can be successfully applied for d ≥ 2).

The �rst variant, which can be viewed as a direct approach, is to use the stan-

dard method of sampling from the posterior normal distribution of the unobserved

components given the observed ones, of a multivariate Gaussian vector partitioned

in observed and unobserved elements. To apply this method in our context, we

need �rst to rewrite all the random variables Yi1,...,id in an ordered sequence,

that is to give a bijection between the set of all d-tuples (i1, . . . , id) and the set
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{1, . . . , (T1−m1 +1) · · · (Td−md+1)}.1 For such a bijection, we denote the formed

sequence by Z = (Z1, . . . , ZN ), where N = (T1 −m1 + 1) · · · (Td −md + 1). If we

consider that
(
i
(k)
1 , . . . , i

(k)
d

)
→ l, then to generate Z given Zl ≥ τ , we partition it

into Z = (W1, Zl,W2), where the observed component is Zl and the unobserved are

W1 = (Z1, . . . , Zl−1) and W2 = (Zl+1, . . . , ZN ).

It is easy to establish (see for example [Tong, 1990, Chapter 3]) that given Zl = t,

for some t ≥ τ (obtained by sampling from the tail distribution of Zl), we have

W1 = W1|(Zl = t) ∼ N
(
µw1|t,Σw1|t

)
and W2 = W2|(Zl = t) ∼ N

(
µw2|t,Σw2|t

)
(3.77)

where for i ∈ {1, 2},

µwi|t = E[Wi] +
1

V ar[Zl]
Cov[Wi, Zl](t− E[Zl]), (3.78)

Σwi|t = Cov(Wi)−
1

V ar[Zl]
Cov[Wi, Zl]Cov

T [Wi, Zl]. (3.79)

The covariance matrices that appear in the above equations can be computed using

the result in Lemma 3.4.3. Notice that, in order to sample from N
(
µwi|t,Σwi|t

)
,

one has to consider the Cholesky decomposition of Σwi|t and take

Wi = µwi|t + Chol(Σwi|t)Ui, (3.80)

with Ui ∼ N (0, I) vectors of independent standard normal random variables.

Since computing the Cholesky decomposition at each iteration step can be time con-

suming, we propose an alternative method for sampling from the posterior of the

Gaussian vector Z. This method was introduced by [Ho�man and Ribak, 1991] (see

also the note of [Doucet, 2010]) and requires only to be able to simulate a random

vector from the prior distribution. The algorithm can be summarized as follows

• Generate Z ∼ N (µ̄,Σ)

• Take Wi = Wi + 1
V ar[Zl]

Cov[Wi, Zl](t− Zl)

The validity of the foregoing algorithm is presented in Appendix B. We remark that

in the above procedure we need to compute the Cholesky decomposition of Σ only

once, thus reducing the execution time of Algorithm 1.

The foregoing approach can be successfully applied in the case of one dimensional

discrete scan statistics. Nevertheless, for higher dimensions (d ≥ 2), the covariance

matrix is very large and to store it will require a large memory space. Take, for

example, the two dimensional setting with T1 = T2 = 200 and m1 = m2 = 10.

Clearly, the covariance matrix will be of size 36481×36481 and to store it in Matlab,

for example, would be necessary almost 10 Gb of (RAM) space. Increasing the

1Such a bijection is given by f(i1, . . . , id) =

d−1∑
s=1

(is − 1)Ls+1 · · ·Ld + id, L0 = 1.
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dimensions of the problem and/or the sizes of the region Rd to be scanned, shows

that this approach is unfeasible for d ≥ 2.

To overcome the above di�culties, we present a second method for generating the

random �eld X̃(k) =
{
X̃

(k)
s1,s2,...,sd

}
, with sj ∈ {1, . . . , Tj} and j ∈ {1, . . . , d}, from

the conditional distribution given the d-tuple (i
(k)
1 , . . . , i

(k)
d ) and

{
Y
i
(k)
1 ,...,i

(k)
d

≥ τ
}
.

The idea behind this method is to directly generate the underlying random �eld and

not the random variables Yi1,...,id, as in the previous approach and is based on the

following result:

Lemma 3.4.4. In the usual d dimensional setting, let Xs1,s2,...,sd , for all sj ∈
{1, . . . , Tj} and j ∈ {1, . . . , d}, be i.i.d. N (µ, σ2) random variables. If w =

m1 · · ·md, then conditionally given the d-tuple (i
(k)
1 , . . . , i

(k)
d ) and

{
Y
i
(k)
1 ,...,i

(k)
d

= t
}
,

the random variables Xs1,s2,...,sd , (s1, . . . , sd) 6=
(
i
(k)
1 , . . . , i

(k)
d

)
, are jointly dis-

tributed as the random variables X̃s1,s2,...,sd , (s1, . . . , sd) 6=
(
i
(k)
1 , . . . , i

(k)
d

)
, where

X̃s1,s2,...,sd =
t− µ√w

w
− 1

w − 1

(
1− 1

w

)(
Y
i
(k)
1 ,...,i

(k)
d

−X
i
(k)
1 ,...,i

(k)
d

)
+Xs1,s2,...,sd

(3.81)

for (s1, . . . , sd) ∈ Γ
i
(k)
1 ,...,i

(k)
d

,

X̃s1,s2,...,sd = Xs1,s2,...,sd , for (s1, . . . , sd) /∈ Γ
i
(k)
1 ,...,i

(k)
d

(3.82)

and

X̃
i
(k)
1 ,...,i

(k)
d

= t−
∑

(s1,...,sd)∈Γ
i
(k)
1 ,...,i

(k)
d

X̃s1,s2,...,sd (3.83)

and where

Γ
i
(k)
1 ,...,i

(k)
d

=
{

(r1, . . . , rd) 6= (i
(k)
1 , . . . , i

(k)
d ) | i(k)

j ≤ rj ≤ i
(k)
j +mj − 1, 1 ≤ j ≤ d

}
.

The result in Lemma 3.4.4 leads to the following modi�cation of the second step in

Algorithm 1:

Step 2a Given the d-tuple (i
(k)
1 , . . . , i

(k)
d ), generate a value Y

i
(k)
1 ,...,i

(k)
d

= t from the tail

distribution P
(
Y
i
(k)
1 ,...,i

(k)
d

≥ τ
)
.

Step 2b Conditionally, given the d-tuple (i
(k)
1 , . . . , i

(k)
d ) and Y

i
(k)
1 ,...,i

(k)
d

= t, generate the

random �eld X̃ =
{
X̃s1,s2,...,sd

}
, with sj ∈ {1, . . . , Tj} and j ∈ {1, . . . , d}, based

on the Eqs.(3.81)-(3.83) from Lemma 3.4.4

The advantage of this method is that we don't need to compute any covariance matrix,

the memory problem being solved. It is also important to notice the scalability of

these formulas to higher dimensions.
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We conclude by mentioning that there are other methods to sample from the dis-

cussed conditional distribution: for example in [Malley et al., 2002], the authors use

a discrete fast Fourier transforms approach to solve this problem. However, their

methodology make use of the covariance matrix, so it cannot be scaled to higher

dimensions due to the memory problem described above.

Concerning the problem of e�ciently searching for the locality statistics that ex-

ceed a given threshold τ , we adopt a technique based on cumulative counts (see

[Neil, 2006]). This method searches the d-dimensional region Rd in constant time

(see Figure 3.4(a)). We illustrate this method in the two dimensional setting, taking

a square region and scanning the region with a square window (d = 2, T1 = T2 = T

and m1 = m2 = m). The idea is to precompute a matrix of cumulative counts using

dynamic programming, step that takes about O(T 2) operations (such a function is

implemented in almost all computational softwares: Matlab, R, Maple, Mathemat-

ica etc.). If we denote by M this matrix, then the element from the i-th line and

j-th column is given by

M(i, j) =
i∑

k=1

j∑
l=1

Xk,l,

so the locality statistic, Yi1,i2 can be found by the relation

Yi1,i2 = M(i1 +m− 1, i2 +m− 1)−M(i1 +m− 1, i2 − 1)

−M(i1 − 1, i2 +m− 1) +M(i1 − 1, i2 − 1).

The last computation can be done in O(1), which shows that if ITER is the number

of replicas made by our algorithm, then the required time for �nding the number of

locality statistics superior to a given τ is about O(ITER× T 2).

In Figure 3.4, we considered two scenarios: on the left (see Figure 3.4(a)), we �xed

the region and the scanning window sizes at T1 = T2 = 2500 and m1 = m2 = 50,

respectively and for 103 replicas we plotted the run time necessary to �nd the number

of locality statistics exceeding τ = 23; on the right side (see Figure 3.4(b)), for the

same values of m1 = m2 and τ , we illustrate the run time of the algorithm given

that the size of the region increases from T1 = T2 = 300 to T1 = T2 = 10000.

One advantage of this method is that can be easily scaled to d-dimensions2. In

this situation, the computational time is about O(ITER × T d) for d-dimensional

hypercubes. We should also mention that there are other methods, some of them

faster (see for example [Neill et al., 2005] and [Neil, 2012]), that can be used to solve

our problem. Nevertheless, their implementations are more di�cult and involve

advanced programming skills.

2In general, if M(y1, . . . , yd) =

y1∑
s1=1

· · ·
yd∑
sd=1

Xs1,...,sd and W
y1,...,yd
x1,...,xd =

y1∑
s1=x1

· · ·
yd∑

sd=xd

Xs1,...,sd

then W
y1,...,yd
x1,...,xd = M(y1, . . . , yd) +

d∑
k=1

∑
1≤j1<···<jk≤d

(−1)kM(y1, . . . , xj1 − 1, . . . , xjk − 1, . . . , yd).

To compute Yi1,...,id it is enough to take xr = ir and yr = ir +mr − 1, r ∈ {1, . . . , d} in the above

formula.
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Figure 3.4: Illustration of the run time using the cumulative counts technique

3.4.4 Related algorithms: comparison for normal data

In this subsection, we present another importance sampling algorithm for the es-

timation of the signi�cance level of hypothesis tests based on d-dimensional scan

statistics. The algorithm was introduced by [Shi et al., 2007] and applied in the

context of genetic linkage analysis. The idea behind the algorithm is to imbed the

probability measure under the null hypothesis into an exponential family. We de-

scribe the algorithm in the context of an underlying random �eld generated by i.i.d.

N (µ, σ2) random variables, but we should mention that it can be extended to any

exponential families of distributions.

Consider the usual d-dimensional setting in which Xs1,...,s2 ∼ N (µ, σ2), 1 ≤ sj ≤ Tj ,
j ∈ {1, . . . , d}. As we saw in the Example 3.4.2, the random variables Yi1,...,id ,

1 ≤ ij ≤ Tj −mj + 1, j ∈ {1, . . . , d}, follow a multivariate normal distribution with

mean and covariance matrix given by Lemma 3.4.3.

We de�ne the new probability measure

dPξ,(r1,...,rd) =
eξYr1,...,rd

EH0

[
eξYr1,...,rd

]dPH0 (3.84)

for a given ξ and d-tuple (r1, . . . , rd). We observe that under the de�ned measure,

the random �eld remains Gaussian and has the mean and the covariance matrix

given by

Eξ,(r1,...,rd) [Yi1,...,id ] = ξCovH0 [Yi1,...,id , Yr1,...,rd ] +m1 · · ·mdµ, (3.85)

Covξ,(r1,...,rd) [Yi1,...,id , Yj1,...,jd ] = CovH0 [Yi1,...,id , Yj1,...,jd ] . (3.86)
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The importance sampling algorithm is build based on the following identity:

PH0 (Sm(T) ≥ τ) =
1

N

∑
k1,...,kd

Eξ,(k1,...,kd)

 N1{Sm(T)≥τ}∑
j1,...,jd

e
ξYj1,...,jd−logEH0

[
e
ξYj1,...,jd

]
 ,
(3.87)

with N = (T1 −m1 + 1) · · · (Td −md + 1).

This relation can be deduced from the following argument:

PH0 (Sm(T) ≥ τ) =

∫
1 max

1≤ij≤Tj−mj+1
j∈{1,2,...,d}

Yi1,i2,...,id ≥ τ


dPH0

=

∫ T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

eξYj1,...,jd

T1−m1+1∑
j1=1

· · ·
Td−md+1∑
jd=1

eξYj1,...,jd

1{Sm(T)≥τ}dPH0

=
∑

k1,...,kd

∫
eξYk1,...,kd∑

j1,...,jd

eξYj1,...,jd
1{Sm(T)≥τ}dPH0

=
∑

k1,...,kd

∫
1{Sm(T)≥τ}∑

j1,...,jd

e
ξYj1,...,jd−logEH0

[
e
ξYj1,...,jd

]dPξ,(k1,...,kd)

=
1

N

∑
k1,...,kd

∫
N∑

j1,...,jd

e
ξYj1,...,jd−logEH0

[
e
ξYj1,...,jd

]1{Sm(T)≥τ}dPξ,(k1,...,kd),

(3.88)

where the log moment generating function is equal with

logEH0

[
eξYj1,...,jd

]
= m1 · · ·md

(
µξ +

σ2ξ2

2

)
, (3.89)

and where we have adopted the shorthand notation
∑

k1,...,kd

=

T1−m1+1∑
k1=1

· · ·
Td−md+1∑
kd=1

.

The choice of the parameter ξ in the above relation should satisfy the following
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equation (see [Shi et al., 2007, Appendix B] for an heuristic argument):

Eξ,(r1,...,rd) [Yr1,...,rd ] ≈ τ, (3.90)

which leads to the solution ξ ≈ τ
m1···mdσ2 − µ

σ2 .

Based on the identity in Eq.(3.87), we have the following importance sampling

algorithm:

Algorithm 2 Second Importance Sampling Algorithm for Scan Statistics

Begin

Repeat for each k from 1 to ITER (iterations number)

1: Generate uniformly the d-tuple (i
(k)
1 , . . . , i

(k)
d ) from the set {1, . . . , T1 − m1 +

1} × · · · × {1, . . . , Td −md + 1}.
2: Given the d-tuple (i

(k)
1 , . . . , i

(k)
d ), generate a sample of the Gaussian process

Yi1,...,id according to the new measure dP
ξ,(i

(k)
1 ,...,i

(k)
d )

.

3: Compute ρ̂k(d) based on

ρ̂k(d) =
N∑

j1,...,jd

e
ξYj1,...,jd−logEH0

[
e
ξYj1,...,jd

]1{Sm(T)≥τ}.

End Repeat

Return ρ̂(d) =
1

ITER

ITER∑
k=1

ρ̂k(d).

End

In order to illustrate the e�ciency of the foregoing algorithm and Algorithm 1 de-

scribed in Section 3.4.23, we consider the problem of estimating the distribution of

one dimensional scan statistics over a standard Gaussian random �eld. In our simu-

lation study we include, for comparison, another two approaches for estimating the

desired p value: the direct Monte Carlo method given at the beginning of Section 3.4

and a method based on the quasi Monte Carlo algorithm of [Genz and Bretz, 2009]

for numerically approximate the distribution of a multivariate normal.

To evaluate the e�ciency of the algorithms, we de�ne the measure of relative e�-

ciency between two algorithms, to be equal with the ratio between the computation

time that is required by each algorithm to achieve a given error variance. This mea-

sure of e�ciency has been used, in a slightly general form, in [Wu and Naiman, 2005]

and [Priebe et al., 2001], where the authors considered the ratio between the com-

putation time times the variance of the estimator.

In Tables 3.1-3.3, we present a comparison study between the four methods. We took

as the reference point the importance sampling algorithm presented in Section 3.4.2.

3Actually, in the second step of the algorithm, we take the �rst approach presented in Exam-

ple 3.4.2 for fair comparison, since both methods use the covariance matrix of the process.
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We have evaluated the distribution of the one dimensional discrete scan statistics

for selected values of the length of the sequence T1 ∈ {200, 500, 750, 800} and of

the scanning window m1 ∈ {15, 25, 30, 40}. The last column gives the value of the

relative e�ciency measure for each compared method (Genz, direct Monte Carlo

and the new importance sampling algorithm) with respect to Algorithm 1. It can

be observed that Algorithm 1 is the most e�cient between the four, in some cases

the di�erences being huge, especially in comparison with the direct Monte Carlo

method and the algorithm proposed by [Genz and Bretz, 2009] (in some cases the

importance sampling method is 600 times faster).

T1 m1 n Genz Err Genz IS Algo 1 Err Algo 1 Rel E�

200 15 12 0.932483 0.000732 0.933215 0.000743 7
500 25 18 0.976117 0.000460 0.975797 0.000425 518
750 30 24 0.998454 0.000125 0.998493 0.000024 688
800 40 30 0.999752 0.000029 0.999742 0.000004 617

Table 3.1: A comparison of the p values as evaluated by simulation using
[Genz and Bretz, 2009] algorithm (Genz), importance sampling (Algo 1) and the relative
e�ciency between the methods (Rel E�)

T1 m1 n MC Err MC IS Algo 1 Err Algo 1 Rel E�

200 15 12 0.932624 0.000694 0.933215 0.000743 15
500 25 18 0.975880 0.000425 0.975797 0.000425 33
750 30 24 0.998515 0.000061 0.998493 0.000024 101
800 40 30 0.999741 0.000009 0.999742 0.000004 602

Table 3.2: A comparison of the p values as evaluated by naive Monte Carlo (MC), impor-
tance sampling (Algo 1) and the relative e�ciency between the methods (Rel E�)

T1 m1 n IS Algo 2 Err Algo 2 IS Algo 1 Err Algo 1 Rel E�

200 15 12 0.932744 0.000839 0.933215 0.000743 3
500 25 18 0.976105 0.000448 0.975797 0.000425 3.5
750 30 24 0.998508 0.000032 0.998493 0.000024 3.5
800 40 30 0.999740 0.000006 0.999742 0.000004 3.6

Table 3.3: A comparison of the p values as evaluated by the two importance sampling
algorithms (Algo 2 and Algo 1) and the relative e�ciency between the methods (Rel E�)

3.5 Examples and numerical results

To illustrate the accuracy of our approximations, we consider in this section the

particular cases of one, two and three dimensional discrete scan statistics. We

compare our results with the existing ones presented in Chapter 1.
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Figure 3.5: The evolution of simulation error in IS Algorithm 1 and IS Algorithm 2

3.5.1 One dimensional scan statistics

Based on the methodology presented in Section 3.2 and Section 3.3, we have the

following approximation for the one dimensional scan statistics:

P (Sm1(T1) ≤ n) ≈ 2Q2 −Q3

[1 +Q2 −Q3 + 2(Q2 −Q3)2]L1−1
. (3.91)

From Eq.(3.41), the theoretical error bound is

Eapp(1) = (L1 − 1)F (Q2, L1 − 1) (1−Q2)2 , (3.92)

while the simulation errors, according to Eq.(3.45) and Eq.(3.54), are given by

Esapp(1) = (L1 − 1)F
(
Q̂2, L1 − 1

)(
1− Q̂2 + β2

)2
, (3.93)

Esf (1) = (L1 − 1)(β2 + β3). (3.94)

For selected values of m1, T1 and n and selected values of the parameters of the

binomial, Poisson and normal distributions, we evaluate the accuracy of the ap-

proximation in Eq. (3.91), as well as the sharpness of the error bounds given above.

In Table 3.4, we compare our approximation with the exact value (column Exact

Value), the product type approximation and the lower and upper margins of the

distribution of the scan statistics presented in Chapter 1. The exact values were ob-

tained using the Markov chain imbedding methodology described in Section 1.1.1.2.

Numerical values for the distribution of Sm1(T1) in the case of binomial and Pois-

son models are illustrated in Table 3.5. To evaluate the two models, we considered

a sequence of length T1 = 5000, distributed according to a binomial distribution

with parameters r = 5 and p = 0.01 and a Poisson of mean λ = rp, respectively

and scanned with a window of size m1 = 50. We have also included the simulated

value, the product type approximation (Eq.(1.46)) and the lower and upper bounds
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n Exact AppH Eapp(1) AppPT LowB UppB
Value Eq.(3.91) Eq.(3.92) Eq.(1.46) Eq.(1.47) Eq.(1.49)

4 0.853857 0.853949 0.000673 0.853861 0.853583 0.853982
5 0.983090 0.983092 0.000007 0.983091 0.983087 0.983092
6 0.998628 0.998628 0.000000 0.998628 0.998628 0.998628
7 0.999916 0.999916 0.000000 0.999916 0.999916 0.999916

Table 3.4: Approximations for P(Sm1(T1) ≤ n) in the Bernoulli B(0.05) case: m1 = 15,
T1 = 1000, ITER = 105

(Eqs.(1.47) and (1.49)) for comparison reasons. For the simulated value (Sim) and

our approximation (AppH), we used the importance sampling algorithm 1, as ex-

plained in Example 3.4.1, with ITERsim = 104 and ITERapp = 105, respectively.

The Gaussian model with mean µ = 0 and variance σ2 = 1 is presented in Ta-

n AppH Esapp(1) Esf (1) Total Sim AppPT LowB UppB
Eq.(3.91) Eq.(3.93) Eq.(3.94) Error Eq.(1.46) Eq.(1.47) Eq.(1.49)

Bin(5, 0.01)
8 0.612778 0.004227 0.014486 0.018712 0.612987 0.605202 0.602589 0.605584
9 0.872277 0.000284 0.003811 0.004095 0.875072 0.870080 0.869625 0.870115
10 0.966629 0.000016 0.000904 0.000920 0.967064 0.966169 0.966095 0.966171
11 0.992442 0.000001 0.000193 0.000193 0.992507 0.992359 0.992346 0.992359
12 0.998485 0.000000 0.000037 0.000037 0.998465 0.998447 0.998445 0.998447
13 0.999716 0.000000 0.000007 0.000007 0.999718 0.999711 0.999711 0.999711

Poiss(0.05)
8 0.587242 0.004974 0.015845 0.020819 0.585250 0.587028 0.584203 0.587451
9 0.859921 0.000350 0.004239 0.004589 0.860858 0.859601 0.859087 0.859643
10 0.962599 0.000021 0.001029 0.001050 0.961894 0.962222 0.962137 0.962225
11 0.991108 0.000001 0.000228 0.000229 0.991120 0.991167 0.991152 0.991167
12 0.998140 0.000000 0.000046 0.000046 0.998126 0.998135 0.998132 0.998135
13 0.999642 0.000000 0.000008 0.000008 0.999635 0.999639 0.999638 0.999639

Table 3.5: Approximations for P(Sm1(T1) ≤ n) for binomial and Poisson cases: m1 = 50,
T1 = 5000, ITERapp = 105, ITERsim = 104

ble 3.6. For the evaluation of our approximation and of the simulation, we applied

the method described in Example 3.4.2, where we used 105 replicas of the algorithm

for the approximation and 104 replicas for the simulation.

We observe from the numerical results that our proposed approximation is quite

accurate. Moreover, we see that the main contribution to the overall error is given by

the simulation error associated with the approximation formula (Esf (1)). Increasing

the number of iterations of our algorithm can solve this aspect.
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n AppH Esapp(1) Esf (1) Total Sim AppPT LowB UppB
Eq.(3.91) Eq.(3.93) Eq.(3.93) Error Eq.(1.46) Eq.(1.47) Eq.(1.49)

17 0.657701 0.022872 0.011252 0.034124 0.665150 0.655664 0.630177 0.638129
18 0.759762 0.008325 0.007202 0.015527 0.754713 0.756074 0.755434 0.759405
19 0.838230 0.003112 0.004488 0.007600 0.836921 0.836993 0.846807 0.848582
20 0.893662 0.001119 0.002751 0.003871 0.893977 0.892007 0.882018 0.882768
21 0.933325 0.000390 0.001632 0.002022 0.933530 0.934386 0.929999 0.930284
22 0.959535 0.000132 0.000948 0.001080 0.959285 0.960504 0.962083 0.962185
23 0.976400 0.000044 0.000538 0.000582 0.976006 0.976686 0.976825 0.976860
24 0.986511 0.000014 0.000297 0.000311 0.986695 0.986749 0.985801 0.985812
25 0.992579 0.000004 0.000159 0.000163 0.992463 0.992358 0.992754 0.992757
26 0.996014 0.000001 0.000083 0.000084 0.995919 0.995792 0.996078 0.996079
27 0.997884 0.000000 0.000042 0.000043 0.997879 0.998012 0.997835 0.997835
28 0.998927 0.000000 0.000021 0.000021 0.998905 0.999349 0.998962 0.998962
29 0.999467 0.000000 0.000010 0.000010 0.999456 0.999428 0.999480 0.999480
30 0.999741 0.000000 0.000005 0.000005 0.999740 1.000017 0.999754 0.999754

Table 3.6: Approximations for P(Sm1
(T1) ≤ n) in the Gaussian N (0, 1) case: m1 = 40,

T1 = 800, ITERapp = 105, ITERsim = 104

3.5.2 Two dimensional scan statistics

The distribution of the two dimensional discrete scan statistics can be approximated

via Eq.(3.26) by

P (Sm(T) ≤ n) ≈ 2Q̂2 − Q̂3[
1 + Q̂2 − Q̂3 + 2(Q̂2 − Q̂3)2

]L1−1
, (3.95)

where

Q̂2 = H
(
Q̂2,2, Q̂2,3, L2

)
Q̂3 = H

(
Q̂3,2, Q̂3,3, L2

)
.

The simulation errors follow from Eq.(3.45) and Eq.(3.54) and can be expresses as

Esf (2) = (L1 − 1)(L2 − 1) (β2,2 + β2,3 + β3,2 + β3,3) , (3.96)

Esapp(2) = (L1 − 1)

[
F
(

1− Q̂2 +A2 + C2

)2
+ (L2 − 1)F2

(
1− Q̂2,2 + β2,2

)2

+(L2 − 1)F3

(
1− Q̂3,2 + β3,2

)2
]
, (3.97)

where F = F
(
Q̂2, L1 − 1

)
, F2 = F

(
Q̂2,2, L2 − 1

)
and F3 = F

(
Q̂3,2, L2 − 1

)
,

based on Eq.(3.27). The value of A2 and C2 can be computed, according to

Eqs.(3.46) and (3.48), by the following formulas:

A2 = (L2 − 1) (β2,2 + β2,3) ,

C2 = (L2 − 1)F2

(
1− Q̂2,2 + β2,2

)2
.
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Notice that, from Eq.(3.41), the theoretical error becomes

Eapp(2) = (L1 − 1)F (1− γ2 +B2)2 + (L1 − 1)(L2 − 1)
[
F2 (1−Q2,2)2

+F3 (1−Q3,2)2
]
, (3.98)

where γ2 = H (Q2,2, Q2,3, L2) and B2 = (L2 − 1)F2 (1−Q2,2)2.

To investigate the accuracy of the approximation and of the error bounds, described

by Eqs.(3.95), (3.96) and (3.97), for the two dimensional discrete scan statistics,

we present a series of numerical results. We evaluate the distribution of the scan

statistics for selected values of the parameters of the binomial, Poisson and Gaussian

models.

In Table 3.7, we include numerical values for two models: the binomial model with

parameters r = 10 and p = 0.001 and the Poisson model with mean λ = rp =

0.01. To compare our results, we have included the product type approximation

(AppPT) developed by [Chen and Glaz, 1996] (Eq.(1.67)) and the lower (LowB)

and upper (UppB) bounds discussed in Section 1.2.2. The second column (AppH),

that corresponds to our proposed approximation given by Eq.(3.95) and the sixth

column (Sim), which corresponds to the simulated value, are evaluated via the

importance sampling Algorithm 1 developed in Section 3.4, with ITERapp = 104

and ITERsim = 103 replications, respectively. We observe that our approximation

is quite accurate (see also Figure 3.6).

n AppH Esapp(2) Esf (2) Total Sim AppPT LowB UppB
Eq.(3.95) Eq.(3.96) Eq.(3.97) Error Eq.(1.67) Eq.(1.76) Eq.(1.77)

Bin(10, 0.001)
19 0.875746 0.002681 0.049130 0.051811 0.870224 0.751860 0.582136 0.963836
20 0.958078 0.000281 0.015167 0.015448 0.952038 0.918137 0.875687 0.987744
21 0.987112 0.000022 0.004277 0.004299 0.984329 0.975919 0.964797 0.996133
22 0.996120 0.000002 0.001158 0.001159 0.996326 0.993379 0.990489 0.998849
23 0.998895 0.000000 0.000311 0.000311 0.998958 0.998269 0.997543 0.999675
24 0.999715 0.000000 0.000076 0.000076 0.999721 0.999567 0.999392 0.999912

Poiss(0.01)
19 0.870181 0.002964 0.051728 0.054692 0.871521 0.748912 0.576146 0.963406
20 0.956632 0.000290 0.016027 0.016317 0.956656 0.916879 0.873615 0.987569
21 0.986116 0.000024 0.004496 0.004520 0.986791 0.975478 0.964122 0.996069
22 0.995983 0.000002 0.001207 0.001209 0.995806 0.993239 0.990281 0.998827
23 0.998936 0.000000 0.000317 0.000317 0.998850 0.998228 0.997483 0.999668
24 0.999707 0.000000 0.000078 0.000078 0.999707 0.999556 0.999375 0.999910

Table 3.7: Approximations for P(Sm(T) ≤ n) for binomial and Poisson models: m1 = 20,
m2 = 30, T1 = 500, T2 = 600, ITERapp = 104, ITERsim = 103

Numerical values for the Gaussian model of mean µ = 1 and variance σ2 = 0.5 are

illustrated in Table 3.8. An extension to the two dimensional case of the importance

sampling procedure presented in Example 3.4.2 was used to obtain the simulated

values (Sim) and our approximation (AppH). We used ITERapp = 104 replications

of the algorithm for approximation and ITERsim = 103 for simulation.
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Figure 3.6: The empirical cumulative distribution function for the binomial and Poisson
models in Table 3.7

n AppH Esapp(2) Esf (2) Total Sim AppPT LowB UppB
Eq.(3.95) Eq.(3.96) Eq.(3.97) Error Eq.(1.67) Eq.(1.76) Eq.(1.77)

244 0.791513 0.011671 0.052791 0.064462 0.794643 0.777919 0.599404 0.918219
245 0.856678 0.004354 0.033828 0.038181 0.858459 0.847748 0.743415 0.943556
246 0.904917 0.001847 0.021621 0.023469 0.902215 0.895243 0.837316 0.961718
247 0.936329 0.000742 0.013350 0.014092 0.936598 0.932676 0.897894 0.974514
248 0.957904 0.000277 0.008174 0.008451 0.959433 0.957042 0.936562 0.983322
249 0.975042 0.000113 0.004976 0.005090 0.974738 0.972970 0.960985 0.989204
250 0.983983 0.000042 0.003014 0.003056 0.982867 0.982776 0.976247 0.993119
251 0.989632 0.000017 0.001805 0.001821 0.990106 0.989496 0.985685 0.995678
252 0.993801 0.000006 0.001067 0.001073 0.993643 0.993734 0.991460 0.997298
253 0.996329 0.000002 0.000631 0.000633 0.996193 0.996150 0.994956 0.998341
254 0.997863 0.000001 0.000359 0.000360 0.997922 0.997716 0.997051 0.998998
255 0.998689 0.000000 0.000205 0.000205 0.998708 0.998720 0.998294 0.999393
256 0.999264 0.000000 0.000118 0.000118 0.999259 0.999222 0.999022 0.999638

Table 3.8: Approximations for P(Sm(T) ≤ n) in the Gaussian N (1, 0.5) model: m1 = 10,
m2 = 20, T1 = 400, T2 = 400, ITERapp = 104, ITERsim = 103

3.5.3 Three dimensional scan statistics

Following the methodology presented in Section 3.2 and the notations introduced

in Section 3.3, we observe that in the three dimensional setting, the approximation

formula for the distribution of the three dimensional discrete scan statistics is given

by

P (Sm(T) ≤ n) ≈ 2Q̂2 − Q̂3[
1 + Q̂2 − Q̂3 + 2(Q̂2 − Q̂3)2

]L1−1
, (3.99)

where for t1, t2 ∈ {2, 3} we have

Q̂t1 = H
(
Q̂t1,2, Q̂t1,3, L2

)
Q̂t1,t2 = H

(
Q̂t1,t2,2, Q̂t1,t2,3, L3

)
with H given in Eq.(3.13).
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It follows from Eq.(3.54) that the simulation error corresponding to the approxima-

tion formula is given by

Esf (3) = (L1 − 1)(L2 − 1)(L3 − 1)

 ∑
t1,t2,t3∈{2,3}

βt1,t2,t3

 . (3.100)

The second simulation error, which is associated with the approximation error, re-

sults from Eq.(3.45) and is expressed as

Esapp(3) = (L1 − 1)F
(

1− Q̂2 +A2 + C2

)2
+ (L1 − 1)(L2 − 1)

[
F2

(
1− Q̂2,2+

+A2,2 + C2,2)2 + F3

(
1− Q̂3,2 +A3,2 + C3,2

)2
]

+ (L1 − 1)(L2 − 1)

× (L3 − 1)

[
F2,2

(
1− Q̂2,2,2 + β2,2,2

)2
+ F2,3

(
1− Q̂2,3,2 + β2,3,2

)2

+F3,2

(
1− Q̂3,2,2 + β3,2,2

)2
+ F3,3

(
1− Q̂3,3,2 + β3,3,2

)2
]
. (3.101)

Notice that, based on Eq.(3.27), for all t1, t2 ∈ {2, 3}, the coe�cients F , Ft1 and

Ft1,t2 are computed as F
(
Q̂2, L1 − 1

)
, F

(
Q̂t1,2, L2 − 1

)
and F

(
Q̂t1,t2,2, L3 − 1

)
,

respectively.

From Eq.(3.46), we have

A2,2 = (L3 − 1) (β2,2,2 + β2,2,3) ,

A3,2 = (L3 − 1) (β3,2,2 + β3,2,3) ,

A2 = (L2 − 1)(L3 − 1) (β2,2,2 + β2,2,3 + β2,3,2 + β2,3,3) ,

while from Eq.(3.48)

C2,2 = (L3 − 1)F2,2

(
1− Q̂2,2,2 + β2,2,2

)2
,

C2,3 = (L3 − 1)F2,3

(
1− Q̂2,3,2 + β2,3,2

)2
,

C3,2 = (L3 − 1)F3,2

(
1− Q̂3,2,2 + β3,2,2

)2
,

C2 = (L2 − 1)

[
F2

(
1− Q̂2,2 +A2,2 + C2,2

)2
+ C2,2 + C2,3

]
.

For selected values of the parameters of the binomial, Poisson and normal distri-

butions, we evaluate the approximation introduced in Section 3.2 and provide the

corresponding error bounds. We show the contributions of the simulation errors

(Esapp(3) and Esf (3)) in the overall error.

For all our simulations we used the importance sampling algorithm with ITER =

105 replications. We compare our results with those existing in literature, see

[Guerriero et al., 2010a] for the Bernoulli model and with the simulated value of

the scan statistics obtained by scanning the whole region R3, denoted by P̂(S ≤ n).



90 Chapter 3. Scan statistics and 1-dependent sequences

The scanning of R3 being more time consuming than the scanning of the subregions

corresponding to Qt1,t2,t3 , we used 103 repetitions of the algorithm.

In Table 3.9, we compare the results obtained by our approximation with the prod-

uct type approximation presented by [Guerriero et al., 2010a] (see also Chapter 1,

Eq.(1.87)). We observe that our approximation is very sharp. Table 3.10 presents

n P̂(S ≤ n) AppPT AppH Esapp Esf Total
Eq.(1.87) Eq.(3.99) Eq.(3.101) Eq.(3.100) Error

p = 0.00005

1 0.841806 0.841424 0.851076 0.011849 0.064889 0.076738
2 0.999119 0.999142 0.999192 0.000000 0.000170 0.000170
3 0.999997 0.999998 0.999997 0.000000 3× 10−7 3× 10−7

p = 0.0001

2 0.993294 0.993241 0.993192 0.000010 0.001367 0.001377
3 0.999963 0.999964 0.999963 0.000000 0.000005 0.000005
4 0.999999 0.999999 0.999999 0.000000 2× 10−9 2× 10−9

Table 3.9: Approximations for P(Sm(T) ≤ n) in the Bernoulli model: m1 = m2 = m3 = 5,
T1 = T2 = T3 = 60, ITERapp = 105, ITERsim = 103

the numerical results obtained by scanning the regionR3 of size 60×60×60, with two

windows of the same volume but di�erent sizes, �rst a cubic window of size 4×4×4

and second a rectangular region of size 8 × 4 × 2. We observe that the results are

closely related, but signi�cantly di�erent. In Table 3.11, we have included numer-

n P̂(S ≤ n) AppH Esapp(3) Esf (3) Total
Eq.(3.99) Eq.(3.101) Eq.(3.100) Error

m1 = m2 = m3 = 4

5 0.961691 0.963506 0.000038 0.003622 0.003660
6 0.999006 0.999023 0.000000 0.000071 0.000071
7 0.999980 0.999980 0.000000 0.000001 0.000001
8 0.999999 0.999999 0.000000 2× 10−9 2× 10−9

m1 = 8,m2 = 4,m3 = 2

5 0.969189 0.969110 0.000007 0.003387 0.003395
6 0.999297 0.999228 0.000000 0.000071 0.000071
7 0.999984 0.999984 0.000000 0.000001 0.000001
8 0.999999 0.999999 0.000000 2× 10−9 2× 10−9

Table 3.10: Approximation for P(Sm(T) ≤ n) over the regionR3 with windows of the same
volume by di�erent sizes: T1 = T2 = T3 = 60, p = 0.0025, ITERapp = 105, ITERsim = 103

ical values emphasizing the situation described by Remark 3.2.1. We consider the

Bernoulli model of parameter p = 0.0001 over the region R3 of size 185× 185× 185

and scan it with a cubic window of length 10. The second and forth columns gives

the values corresponding to the bounds described in Eq.(3.23), while in the third

column we presented the simulated values for P (S10,10,10(185, 185, 185) ≤ n).
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n P (S(L1 + 1, L2 + 1, L3 + 1) ≤ n) P̂(S ≤ n) P (S(L1, L2, L3) ≤ n)

4 0.97524633 0.97465263 0.97491935
(±0.00754004) (±0.00618987) (±0.00643099)

5 0.99931055 0.99935163 0.99938629
(±0.00015833) (±0.00014759) (±0.00013490)

6 0.99998641 0.99998632 0.99998784
(±0.00000272) (±0.00000326) (±0.00000230)

Table 3.11: Approximation for P(Sm(T) ≤ n) based on Remark 3.2.1: m1 = m2 = m3 =

10, T1 = T2 = T3 = 185, L1 = L2 = L3 = 20, ITERapp = 105, ITERsim = 103

In order to compare the binomial and Poisson models, in Table 3.12 we have evalu-

ated the distribution of the scan statistics over a region of size 84×84×84, scanned

with a 4 × 4 × 4 cubic window, in the two situations. In the �rst case, we have a

binomial random �eld with parametersm and p, that is Xs1,s2,s3 ∼ B(m, p), while in

the second we considered that Xs1,s2,s3 ∼ P (λ), with λ = mp. We observe that the

n P̂(S ≤ n) AppH Esapp(3) Esf (3) Total
Eq.(3.99) Eq.(3.101) Eq.(3.100) Error

Bin(10, 0.0025)

10 0.726386 0.723224 0.007763 0.032197 0.039960
11 0.954605 0.955417 0.000123 0.003079 0.003202
12 0.993938 0.993906 0.000001 0.000331 0.000333
13 0.999289 0.999284 0.000000 0.000033 0.000033
14 0.999923 0.999921 0.000000 0.000003 0.000003
15 0.999992 0.999992 0.000000 3× 10−7 3× 10−7

Poiss(0.025)

10 0.713184 0.708481 0.009211 0.035294 0.044506
11 0.950947 0.950197 0.000143 0.003345 0.003488
12 0.993624 0.993452 0.000002 0.000365 0.000367
13 0.999218 0.999210 0.000000 0.000038 0.000038
14 0.999912 0.999911 0.000000 0.000003 0.000003
15 0.999990 0.999990 0.000000 3× 10−7 3× 10−7

Table 3.12: Approximation for P(Sm(T) ≤ n) in the binomial and Poisson models: m1 =

m2 = m3 = 4, T1 = T2 = T3 = 84, ITERapp = 105, ITERsim = 103

cumulative function, in the two models, are close to each other (see also Figure 3.7).

Lastly, we have consider a numerical example for the Gaussian model. In Table 3.13,

we present numerical values for the distribution of the three dimensional discrete

scan statistics over a region of size 256 × 256 × 256, scanned with a cubic window

of size 10 × 10 × 10. The underlying random �eld is taken here to be formed

of i.i.d. random variables distributed according to a N (0, 1) law. We compare

our results with the simulated value (ITERSim = 102) and with the product type
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(a) Binomial model
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(b) Poisson model

Figure 3.7: The empirical cumulative distribution function for the binomial and Poisson
models in Table 3.12

approximation introduced in [Guerriero et al., 2010a] for the Bernoulli case (see also

Chapter 1, Eq.(1.87)).

n P̂(S ≤ n) AppPT. AppH Esapp(3) Esf (3) Total
Eq.(1.87) Eq.(3.99) Eq.(3.101) Eq.(3.100) Error

175 0.894045 0.886580 0.893375 0.000775 0.017527 0.018302
176 0.901135 0.903979 0.909782 0.000528 0.014624 0.015152
177 0.922387 0.917918 0.923584 0.000368 0.012175 0.012543
178 0.930162 0.930604 0.935843 0.000257 0.010126 0.010383
179 0.950977 0.941291 0.945966 0.000183 0.008422 0.008605
180 0.947742 0.950626 0.954560 0.000122 0.006977 0.007099
181 0.958603 0.958162 0.962098 0.000086 0.005797 0.005883
182 0.968953 0.965074 0.968498 0.000059 0.004815 0.004874
183 0.968504 0.970581 0.973523 0.000041 0.003974 0.004015
184 0.973949 0.975465 0.977604 0.000029 0.003282 0.003311
185 0.981032 0.979428 0.981513 0.000019 0.002716 0.002736
186 0.984730 0.982610 0.984792 0.000013 0.002244 0.002258
187 0.986089 0.985640 0.987422 0.000009 0.001846 0.001855
188 0.987624 0.987935 0.989483 0.000006 0.001522 0.001529
189 0.989902 0.989956 0.991301 0.000004 0.001251 0.001255
190 0.992026 0.991744 0.992910 0.000003 0.001031 0.001034
191 0.993535 0.993126 0.994085 0.000002 0.000848 0.000850
192 0.994097 0.994416 0.995122 0.000001 0.000696 0.000697
193 0.995560 0.995346 0.995966 0.000001 0.000569 0.000570
194 0.996642 0.996142 0.996707 0.000001 0.000467 0.000468
195 0.997113 0.996809 0.997288 0.000000 0.000382 0.000382

Table 3.13: Approximations for P(Sm(T) ≤ n) in the Gaussian N (0, 1) model: m1 =

m2 = m3 = 10, T1 = T2 = T3 = 256, ITERapp = 105, ITERsim = 103
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Figure 3.8: The empirical cumulative distribution functions (AppH = Our Approximation,
AppPT = Product Type Approximation) for the Gaussian model in Table 3.13

Notice that the contribution of the approximation error (Esapp) to the total error

is almost negligible in most of the cases with respect to the simulation error (Esf ).

Thus, the precision of the method will depend mostly on the number of iterations

(ITER) used to estimate Qt1,t2,t3 .





Chapter 4

Scan statistics over some

block-factor type dependent

models

In this chapter, we present an estimate for the distribution of the multidimensional

discrete scan statistics over a random �eld generated by a block-factor type model.

This dependent model generalizes the i.i.d. model studied in Chapter 3 and is

introduced in Section 4.1. The approximation process, as well as the associated error

bounds, are described in Section 4.2. Section 4.3 includes examples and numerical

applications for particular block-factor models in one and two dimensions. Some of

the results presented in this chapter appeared in [Am rioarei and Preda, 2014], for

the special case of two dimensions (see also [Am rioarei and Preda, 2013b]).
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4.1 Block-factor type model

Most of the research devoted to the one, two or three dimensional discrete scan

statistic considers the independent and identically distributed (i.i.d.) model for the

random variables that generate the random �eld which is to be scanned. In this

section, we de�ne a dependence structure for the underlying random �eld based on

a block-factor type model. Throughout this chapter, we adopt the de�nitions and

the notations introduced in Section 3.1 for the d dimensional setting.
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Recall from De�nition 2.1.3 (see also [Burton et al., 1993]), that a sequence (Wl)l≥1

of random variables with state space SW is said to be a k block-factor of the sequence

(W̃l)l≥1 with state space SW̃ , if there is a measurable function f : Sk
W̃
→ SW such

that

Wl = f
(
W̃l, W̃l+1, . . . , W̃l+k−1

)
for all l.

Our block-factor type model is de�ned in the following way. Let T̃1, T̃2, . . . , T̃d

be positive integers, d ≥ 1 and
{
X̃s1,...,sd | 1 ≤ sj ≤ T̃j , 1 ≤ j ≤ d

}
be a family of

independent and identically distributed real valued random variables over the d

dimensional rectangular region R̃d = [0, T̃1]×· · ·× [0, T̃d] in such a way that to each

rectangular elementary subregion r̃d(s1, s2, . . . , sd) = [s1−1, s1]×· · ·× [sd−1, sd] it

corresponds a variable X̃s1,...,sd . As we saw in Chapter 3, it is customary to interpret

these random variables as the number of some events (of interest) that occurred in

the subregion r̃d(s1, s2, . . . , sd).

For j ∈ {1, 2, . . . , d}, let x(j)
1 , x

(j)
2 be nonnegative integers such that x

(j)
1 +x

(j)
2 +1 ≤

T̃j . De�ne cj = x
(j)
1 +x

(j)
2 +1 and take Tj = T̃j−cj+1. To each d-tuple (s1, . . . , sd),

with sj ∈
{
x

(j)
1 + 1, . . . , T̃j − x(j)

2

}
, j ∈ {1, . . . , d}, we associate a d-way (or of order

d) tensor (see [Kolda and Bader, 2009]) Xs1,...,sd ∈ Rc1×···×cd whose elements are

given by

Xs1,...,sd(j1, . . . , jd) = X̃
s1−x(1)1 −1+j1,...,sd−x

(d)
1 −1+jd

, (4.1)

where (j1, . . . , jd) ∈ {1, . . . , c1}×· · ·×{1, . . . , cd}. We observe that for the particular

cases of one and two dimensions, the d-way tensor Xs1,...,sd reduces to a vector (a

tensor of order one) and a matrix (a tensor of order two), respectively.

If Π : Rc1×···×cd → R is a measurable real valued function de�ned on the set of the

tensors Xs1,...,sd (measurable with respect to the usual Borel σ-�elds of Rc1×···×cd
and R), then we de�ne the block-factor type model by

Xs1,...,sd = Π
(
X
s1+x

(1)
1 ,...,sd+x

(d)
1

)
, (4.2)

for all 1 ≤ sj ≤ Tj , 1 ≤ j ≤ d.
To illustrate the intuition behind the above de�nition, we consider the special case

of two dimensional block-factor model (d = 2). In this setting, the underlying

random �eld is de�ned as Xs1,s2 = Π
(
X
s1+x

(1)
1 ,s2+x

(2)
1

)
, where the tensor Xs1,s2 ,

which encapsulates the dependence structure, takes the matrix form

Xs1,s2 =


X̃
s1−x(1)1 ,s2−x(2)1

· · · X̃
s1+x

(1)
2 ,s2−x(2)1

...
. . .

...

X̃
s1−x(1)1 ,s2+x

(2)
2

· · · X̃
s1+x

(1)
2 ,s2+x

(2)
2

 . (4.3)

Figure 4.1 illustrates the construction of the block-factor model: on the left (see

Figure 4.1(a)) is presented the con�guration matrix de�ned by Eq.(4.3) and the

resulted random variable after applying the transformation Π; on the right (see
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Figure 4.1(b)) is exempli�ed how the i.i.d. model X̃s1,s2 is transformed into the

block-factor model Xs1,s2 .
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. . .

. . .

.

.

.
.
.
.

X̃
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2
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2

Π

X
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1
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1 . . . x
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Π

1 T1

1

T2

X̃s1,s2

X
s1−x

(1)
1 ,s2−x

(2)
1

(b)

Figure 4.1: Illustration of the block-factor type model in two dimensions (d = 2)

It is clear, due to the overlapping structure, that {Xs1,s2 | 1 ≤ s1 ≤ T1, 1 ≤ s2 ≤ T2}
forms a dependent family of random variables (see Figure 4.2) and the same is true

for the general case.

Recall from De�nition 2.1.1 that a sequence (Wl)l≥1 is m-dependent with m ≥ 1

(see [Burton et al., 1993]), if for any h ≥ 1 the σ-�elds generated by {W1, . . . ,Wh}
and {Wh+m+1, . . . } are independent. Thus, from the de�nition of the block-factor

model in Eq.(4.2), we observe that the sequence
(
Xs1,...,sh−1,sh,sh+1,...,sd

)
1≤sh≤Th

is

(ch − 1)-dependent, for each 1 ≤ h ≤ d. In Figure 4.2 we illustrate, for the two

dimensional case, the dependence structure of the �eldXs1,s2 emphasizing its (c1−1)

and (c2 − 1)-dependent character.

Remark 4.1.1. Notice that if c1 = · · · = cd = 1 (that is x
(j)
1 = x

(j)
2 = 0 for

j ∈ {1, . . . , d}) and Π is the identity function, then Xs1,...,sd = X̃s1,...,sd and we are

in the i.i.d. situation. In this case, an approximation method for the distribution of

the d-dimensional discrete scan statistics was studied in Chapter 3.

Remark 4.1.2. If we take d = 1, we �nd ourselves in the particular situation of one

dimensional discrete scan statistics over a (c1 − 1)-dependent sequence. The distri-

bution of one dimensional scan statistics over this type of dependence was studied by
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Xs1,s2

Xs1−c1+1,s2−c2+1

Xs1−c1+1,s2+c2−1

Xs1+c1−1,s2−c2+1

Xs1+c1−1,s2+c2−1

c2 − 1

c2 − 1

c1 − 1 c1 − 1

Figure 4.2: The dependence structure of Xs1,s2 in two dimensions

[Haiman and Preda, 2013] in the particular case of Gaussian stationary 1-dependent

sequences Wi ∼ N (0, 1) of random variables generated by a two block-factor of the

form

Wi = aUi + bUi+1, i ≥ 1,

where a2 + b2 = 1 and (Ui)i≥1 is an i.i.d. sequence of N (0, 1) random variables.

Clearly, their model can be obtained from the one described in this section by putting

x
(1)
1 = 0, x

(1)
2 = 1, which implies c1 = 2, and choosing Π(α1, α2) = aα1 + bα2.

Applications of the one dimensional discrete scan statistics over a sequence of moving

average of order q (c1 = q + 1) was recently given by [Wang and Glaz, 2013] (see

also [Wang, 2013, Chapter 4]). We include in Section 4.3, a numerical example in

which we compare their results with the ones obtained by our method.

Based on the dependent model introduced in this section, in Section 4.2 we give an

approximation for the distribution of the d-dimensional discrete scan statistic over

the random �eld generated by the random variables Xs1,...,sd and the corresponding

error bounds.

4.2 Approximation and error bounds

In this section, we give an estimate for the distribution function, Qm(T), of the d-

dimensional discrete scan statistics evaluated over a random �eld generated by the

block-factor model introduced in the foregoing section. The methodology used for

the derivation of the approximation formula follows closely the approach adopted

in Chapter 3 for the i.i.d. model.
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4.2.1 The approximation process

Let us consider that we are in the framework of the block-factor model introduced in

Section 4.1 and we scan the generated random �eld with a window of size m1×· · ·×
md, 2 ≤ mj ≤ Tj , j ∈ {1, . . . , d}. As in the case of the i.i.d. model (see Section 3.2),

the main idea behind the estimation process is to express the scan statistics random

variable, Sm(T), m = (m1, . . . ,md), T = (T1, . . . , Td), as the maximum of a 1-

dependent stationary sequence of properly selected random variables.

Assume that for each j ∈ {1, . . . , d}, T̃j = Lj(mj + cj − 2), where L1, . . . , Ld
are positive integers and observe that the generated region Rd, after applying the

transformation Π, has the sides of length

Tj = (Lj − 1)(mj + cj − 2) +mj − 1. (4.4)

We de�ne for each k1 ∈ {1, 2, . . . , L1 − 1} the random variables

Zk1 = max
(k1−1)(m1+c1−2)+1≤i1≤k1(m1+c1−2)

1≤ij≤(Lj−1)(mj+cj−2)
j∈{2,...,d}

Yi1,i2,...,id , (4.5)

and we claim that {Z1, . . . , ZL1−1} forms a 1-dependent and stationary sequence of

random variables in the view of De�nition 2.1.1 and De�nition 2.1.2. To see this, we

�rst remark that Zk1 's represent the d-dimensional scan statistics on the overlapping

rectangular strips

[(k1 − 1)(m1 + c1 − 2), k1(m1 + c1 − 2) +m1 − 1]× [0, T2]× · · · × [0, Td], (4.6)

of size (2m1 + c1 − 3)× T2 × · · · × Td. In Figure 4.3 we illustrate, in the particular

situation of two dimensions (d = 2), the overlapping structure of Z1, Z2 and Z3

emphasizing the 1-dependent character of the sequence.
The one dependence structure of {Z1, . . . , ZL1−1} follows immediately from

Zk1−1 ∈ σ ({Xs1,...,sd |(k1 − 2)(m1 + c1 − 2) + 1 ≤ s1 ≤ (k1 − 1)(m1 + c1 − 2) +m1 − 1})
∈ σ

({
X̃s1,...,sd

∣∣∣(k1 − 2)(m1 + c1 − 2) + 1 ≤ s1 ≤ k1(m1 + c1 − 2)
})

and similarly

Zk1 ∈ σ
({
X̃s1,...,sd

∣∣∣(k1 − 1)(m1 + c1 − 2) + 1 ≤ s1 ≤ (k1 + 1)(m1 + c1 − 2)
})

,

Zk1+1 ∈ σ
({
X̃s1,...,sd

∣∣∣k1(m1 + c1 − 2) + 1 ≤ s1 ≤ (k1 + 2)(m1 + c1 − 2)
})

and the independence of the family
{
X̃s1,...,sd | 1 ≤ sj ≤ T̃j , 1 ≤ j ≤ d

}
of random

variables. Moreover, since X̃s1,...,sd are identically distributed, the stationarity of

the random variables Zk1 is veri�ed.

We observe that from the de�nition of the sequence (Zk1)1≤k1≤L1−1, the scan statis-

tics random variable can be written as

Sm(T) = max
1≤ij≤Tj−mj+1
j∈{1,2,...,d}

Yi1,i2,...,id = max
1≤k1≤L1−1

Zk1 . (4.7)
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m1

m2

Z1

Z2

Z3

c1

m1 + c1 − 2

2m1 + c1 − 3
2(m1 + c1 − 2)

3m1 + 2c1 − 5

4m1 + 3c1 − 7

T1

T20

Figure 4.3: Illustration of Zk1
emphasizing the 1-dependence

The foregoing relation is the key identity in the approximation process since it shows

that Sm(T) is the maximum of a 1-dependent stationary sequence. Tools for the

estimation of the distribution of this type of random variables were developed in

Chapter 2. Similar with the methodology used in the previous chapter for the i.i.d.

model, for the approximation process we employ the estimate from Theorem 2.2.9,

repeatedly.

If, for t1 ∈ {2, 3}, we take

Qt1 = Qt1(n) = P

t1−1⋂
k1=1

{Zk1 ≤ n}

 = P

 max
1≤i1≤(t1−1)(m1+c1−2)
1≤ij≤(Lj−1)(mj+cj−1)

j∈{2,...,d}

Yi1,i2,...,id ≤ n


(4.8)

and n is such that Q2(n) ≥ 0.9, then, based on Theorem 2.2.9, we get the �rst step

estimate

|Qm(T)−H (Q2, Q3, L1)| ≤ (L1 − 1)F (Q2, L1 − 1)(1−Q2)2, (4.9)

where H(x, y,m) and F (x,m) are evaluated via Eqs.(3.13) and (3.10), respectively.

Observe that, even if we employed the same notations as in Section 3.2, Q2, Q3 and

L1, L2 in the above equations di�ers from the corresponding ones in the i.i.d. case.

For example, here Qt1 's represents the distribution of the d-dimensional discrete

scan statistics over the strip

[0, (t1 − 1)(m1 + c1 − 2) +m1 − 1]× [0, T2] · · · × [0, Td],
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as opposed to the i.i.d. model where we scanned the smaller region

[0, t1(m1 − 1)]× [0, T2] · · · × [0, Td].

In order to derive an approximation expression for Qm(T), that involves simpler
quantities, we need to iterate the above procedure at most d steps. In the subse-
quent, we present the general s-step, 1 ≤ s ≤ d, routine. In this phase, the goal is
to �nd an estimate for the distribution of the d-dimensional discrete scan statistics
evaluated over the multidimensional rectangular regions

[0, (t1−1)(m1+c1−2)+m1−1]×. . . [0, (ts−1−1)(ms−1+cs−1−2)+ms−1−1]×[0, Ts] · · ·×[0, Td].

These distribution functions are denoted, for (t1, . . . , ts−1) ∈ {2, 3}s−1, by

Qt1,t2,...,ts−1 = Qt1,t2,...,ts−1(n) = P

 max
1≤il≤(tl−1)(ml+cl−2)

l∈{1,...,s−1}
1≤ij≤(Lj−1)(mj+cj−2)

j∈{s,...,d}

Yi1,i2,...,id ≤ n

 . (4.10)

To reduce the s dimension, we take for tl ∈ {2, 3}, l ∈ {1, . . . , s − 1} and ks ∈
{1, 2, . . . , Ls − 1} the random variables

Z
(t1,t2,...,ts−1)
ks

= max
1≤il≤(tl−1)(ml+cl−2)

l∈{1,2,...,s−1}
(ks−1)(ms+cs−2)+1≤is≤ks(ms+cs−2)

1≤ij≤(Lj−1)(mj+cj−2)
j∈{s+1,...,d}

Yi1,i2,...,id , (4.11)

which form, based on the same arguments as in step one, a 1-dependent stationary

sequence. Moreover, these random variables satisfy the relation

Qt1,t2,...,ts−1 = P
(

max
1≤ks≤Ls−1

Z
(t1,t2,...,ts−1)
ks

≤ n
)
. (4.12)

Notice that, from Eq.(4.10) and Eq.(4.11), we get the distribution function

Qt1,t2,...,ts = Qt1,t2,...,ts(n) = P

ts−1⋂
ks=1

{Z(t1,t2,...,ts−1)
ks

≤ n}

 . (4.13)

If we take n such that Qt1,t2,...,ts−1,2(n) ≥ 0.9 then, applying the estimate from

Theorem 2.2.9, we deduce the s step approximation∣∣Qt1,...,ts−1 −H
(
Qt1,...,ts−1,2, Qt1,...,ts−1,3, Ls

)∣∣ ≤ (Ls − 1)F (Qt1,...,ts−1,2, Ls − 1)

× (1−Qt1,...,ts−1,2)2. (4.14)

Depending on the problem dimension, by substituting repeatedly, for each s ∈
{2, . . . , d}, the estimate from Eq.(4.14) in Eq.(4.9), we obtain an approximation
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m2
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T1

R2

2m2 + c2 − 3

m1

T2

T1
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2m2 + c2 − 3
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Q33

Figure 4.4: Illustration of the approximation process for d = 2

formula for the distribution of the d-dimensional scan statistics depending on the

2d quantities Qt1,...,td , which will be evaluated by Monte Carlo simulation. To get a

better understanding of the approximation process described above, we consider the

particular case of two dimensional scan statistics. Figure 4.4 illustrates the diagram

that summarizes the steps involved in this process.

Remark 4.2.1. We should point out that if Xs1,...,s2 = X̃s1,...,sd , that is c1 = · · · =
cd = 1 and Π(x) = x, then all of the above formulas reduces to the ones given in

Section 3.2.

Remark 4.2.2. Notice that if there are indices j ∈ {1, 2, . . . , d} such that T̃j are

not multiples of mj+cj−2 then, by taking Lj =
⌊

T̃j
mj+cj−2

⌋
, we can approximate the

distribution of the scan statistics Qm(T) by the multi-linear interpolation procedure

described in Remark 3.2.1.

4.2.2 The associated error bounds

Since in the estimation process described in Section 4.2.1, by adopting the notations

introduced in Section 3.1, we have obtained exactly the same type of relations as

in the i.i.d. case, the resulted error bounds will also take the same expressions as

those from Section 3.3. Such being the case, in this section we include only their

formulas and not their derivation. As mentioned in Section 3.3, there are three
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errors involved: the theoretical approximation error (Eapp(d)), the simulation error

that corresponds to the approximation error (Esapp(d)) and the simulation error

associated to the approximation formula (Esf (d)). Their expressions are given in

the subsequent.

a) The theoretical approximation error

Following the methodology described in Section 3.3.1 for the i.i.d. model, we have

Eapp(d) =
d∑
s=1

(L1 − 1)· · · (Ls − 1)

×
∑

t1,...,ts−1∈{2,3}

Ft1,...,ts−1

(
1− γt1,...,ts−1,2 +Bt1,...,ts−1,2

)2
,

(4.15)

where

γt1,...,ts =

{
H (γt1,...,ts,2, γt1,...,ts,3, Ls+1) , for 1 ≤ s ≤ d− 1

Qt1,...,td , for s = d,
(4.16)

Q̂t1,...,ts =

{
H
(
Q̂t1,...,ts,2, Q̂t1,...,ts,3, Ls+1

)
, for 1 ≤ s ≤ d− 1

Q̂t1,...,td , for s = d
(4.17)

and where for 2 ≤ s ≤ d

Ft1,...,ts−1 = F
(
Q̂t1,...,ts−1,2, Ls − 1

)
, (4.18)

Bt1...,ts−1 = (Ls − 1)

Ft1,...,ts−1

(
1− γt1,...,ts−1,2 +Bt1...,ts−1,2

)2
+

∑
ts∈{2,3}

Bt1...,ts


(4.19)

with F = F
(
Q̂2, L1 − 1

)
and Bt1...,td = 0.

Observe that in Eq.(4.15) we adopted the following convention for s = 1:∑
t1,t0∈{2,3}

x = x, Ft1,t0 = F , γt1,t0,2 = γ2 and Bt1,t0,2 = B2.

b) The simulation error that corresponds to the approximation error

If the error between the true value of Qt1,...,td and the estimated value Q̂t1,...,td ,

resulted from a simulation methodology, is denoted by βt1,...,td then, the simula-

tion error that appears from the approximation error given by Eq.(4.15) has the

expression

Esapp(d) =

d∑
s=1

(L1 − 1) · · · (Ls − 1)
∑

t1,...,ts−1∈{2,3}

Ft1,...,ts−1

(
1− Q̂t1,...,ts−1,2

+At1,...,ts−1,2 + Ct1,...,ts−1,2

)2
,

(4.20)
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where for s = 1:
∑

t1,t0∈{2,3}

x = x, Ft1,t0 = F , Q̂t1,t0,2 = Q̂2, At1,t0,2 = A2 and

Ct1,t0,2 = C2. The quantities At1,...,ts and Ct1,...,ts , that appear in the above formula,

are computed via

At1,...,ts−1 = (Ls − 1) . . . (Ld − 1)
∑

ts,...,td∈{2,3}

βt1,...,td (4.21)

and

Ct1...,ts−1 = (Ls − 1)
[
Ft1,...,ts−1

(
1− Q̂t1,...,ts−1,2 +At1...,ts−1,2 +Ct1...,ts−1,2

)2
+

∑
ts∈{2,3}

Ct1...,ts

 ,
(4.22)

for 2 ≤ s ≤ d while for s = d we have At1,...,td = βt1,...,td and Ct1...,td = 0.

c) The simulation error associated to the approximation formula

This simulation error arise from the di�erence∣∣∣H (γ2, γ3, L1)−H
(
Q̂2, Q̂3, L1

)∣∣∣
and is given by the relation

Esf (d) = (L1 − 1) . . . (Ld − 1)
∑

t1,...,td∈{2,3}

βt1,...,td . (4.23)

The total error is obtained by adding the two simulation error terms from Eq.(4.20)

and Eq.(4.23)

Etotal(d) = Esf (d) + Esapp(d). (4.24)

4.3 Examples and numerical results

In order to illustrate the e�ciency of the approximation and the error bounds ob-

tained in Section 4.2, in this section we present several examples for the particular

cases of one and two dimensional discrete scan statistics.

4.3.1 Example 1: A one dimensional Bernoulli model

We start this section with an example of a one dimensional block-factor model,

for which we can compute exactly the distribution functions that appear in our

proposed approximation: Q2 and Q3. This model is based on the parametrization

introduced by [Haiman, 2012] (see also [Haiman and Preda, 2013]).

In the block-factor framework introduced in Section 4.1, we take d = 1, x
(1)
1 = 0,

x
(1)
2 = 1 and we have c1 = 2 and T1 = T̃1 − 1.
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Let, for 1 ≤ t ≤ T̃1, Wt,W
′
t ∼ B(p), with 0 ≤ p ≤ 1

2 and W ′′t ∼ B
(

1
2

)
be three

sequences of 0 − 1 Bernoulli random variables such that (Wt,W
′
t)1≤t≤T̃1 are in-

dependent random variables satisfying P (Wt = i,W ′t = j) = q(i, j) and W ′′t 's are

independent and independent of (Wt,W
′
t)1≤t≤T̃1 . The joint probabilities q(i, j) are

evaluated via the relation

q(i, j) =


1− 2p, if (i, j) = (0, 0)

p, if (i, j) = (0, 1) or (i, j) = (1, 0)

0, if (i, j) = (1, 1).

(4.25)

Let X̃s1 =
(
Ws1 ,W

′
s1 ,W

′′
s1

)
for 1 ≤ s1 ≤ T̃1, which forms an i.i.d. sequence of

random variables and observe that the 1-way tensor that encapsulates the block-

factor model is given by

Xs1 =
(
X̃s1 , X̃s1+1

)
. (4.26)

We de�ne, for 1 ≤ s1 ≤ T1, our dependent model by

Xs1 = Π
(
X̃s1 , X̃s1+1

)
=

{
Ws1+1, if W

′′
s1+1 = 0

W ′s1 , if W
′′
s1+1 = 1

(4.27)

and we notice that Xs1 's, being expressed as a 2 block-factor, form a 1-dependent,

stationary sequence of 0− 1 Bernoulli of parameter p random variables. This type

of 1-dependent sequence was studied in [Haiman, 2012]. The author showed (see

[Haiman, 2012, Lemma 3]) that the joint distribution of (X1, X2) satis�es the equa-

tion

P (X1 = i,X2 = j) = p(i, j), (4.28)

where

p(i, j) =


1− 2p+ 3

4p
2, if (i, j) = (0, 0)

p− 3
4p

2, if (i, j) = (0, 1) or (i, j) = (1, 0)
3
4p

2, if (i, j) = (1, 1).

(4.29)

Moreover, from [Haiman, 2012, Theorem 1], we have that the joint distribution of

the sequence (Xs1)1≤s1≤T1 veri�es the recurrence formula

P (X1 = a1, . . . , Xk+1 = ak+1) = P (X1 = a1, . . . , Xk = ak)P (Xk+1 = ak+1)

+ P (X1 = a1, . . . , Xk−1 = ak−1) [P (Xk = ak, Xk+1 = ak+1)

−P (Xk = ak)P (Xk = ak)] , (4.30)

for 2 ≤ k ≤ T1 − 1 and (a1, . . . , ak+1) ∈ {0, 1}k+1, which gives the proper

tools for �nding the exact values of Q2 and Q3. Following the approach from

[Haiman and Preda, 2013, Section 2], let K ≥ 2 be a positive integer and denote

with

VK(b) =

{
a = (a1, . . . , aK) ∈ {0, 1}K

∣∣∣∣∣ max
t=1,...,K−m1+1

t+m1−1∑
i=t

ai = b

}
, (4.31)
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the set of all binary sequences of length K for which the scan statistics with window

of sizem1 takes the value b. Therefore, the value of the distribution functionQm1(K)

is computed by

Qm1(K) = P (Sm1(K) ≤ n) =
n∑
b=0

∑
a∈VK(b)

P (X1 = a1, . . . , XK = aK), (4.32)

where the last quantity is evaluated via the recurrence formula from Eq.(4.30).

Particularizing for K = 2m1−1 and K = 3m1−1 in Eq.(4.32), we obtain the exact

values of Q2 and Q3, respectively.

To show the accuracy of the proposed approximation for the one dimensional scan

statistics distribution P(Sm1(T1) ≤ n) and the sharpness of the error bounds, we

present in Table 4.1, a numerical study for m1 = 8, T1 = 1000 and selected values of

the parameter p. The second and third column gives the exact values of Q2 and Q3,

while the next two columns show the approximation and the corresponding error

bound1.

n Q2 Q3 AppH Eapp(1) LowB UppB
Eq.(4.32) Eq.(4.32) Eq.(4.15) Eq.(4.35) Eq.(4.36)

p = 0.1

3 0.985914 0.974354 0.231796 0.031264 0.225598 0.236072
4 0.998911 0.997931 0.885221 0.000153 0.885081 0.885340
5 0.999958 0.999917 0.995014 0.000000 0.995014 0.995014
6 0.999999 0.999999 0.999914 0.000000 0.999914 0.999914
7 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000

p = 0.2

5 0.997750 0.995697 0.774337 0.000667 0.773801 0.774784
6 0.999915 0.999834 0.989987 0.000001 0.989986 0.989988
7 0.999999 0.999998 0.999890 0.000000 0.999890 0.999890
8 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000

p = 0.3

5 0.980187 0.963136 0.113912 0.067341 0.107535 0.118347
6 0.998801 0.997676 0.869460 0.000186 0.869288 0.869611
7 0.999981 0.999963 0.997748 0.000000 0.997748 0.997748
8 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000

Table 4.1: One dimensional Bernoulli block-factor model: m1 = 8, T1 = 1000

Notice that, for comparison reasons, we have also included a lower (LowB) and

an upper bound (UppB). These margins are derived from the following re-

sult, which extends the inequalities developed by [Glaz and Naus, 1991] (see also

[Wang et al., 2012]), presented in Section 1.1.3.

1Here we only have one error bound, namely the theoretical one, since the values of Q2 and Q3

are computed exactly
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Proposition 4.3.1. Let Ȳ1, Ȳ2, . . . be a sequence of associated2 (see

[Esary et al., 1967]) and l-dependent random variables generated by a (l + 1)

block-factor. If we denote the distribution of the maximum of the sequence with

Q(M) = P
(

max
1≤t≤M

Ȳt ≤ n
)
, then for M ≥ l + 2 we have

Q(M) ≥ Q(l + 2)[
1 + Q(l+1)−Q(l+2)

Q(l+1)Q(l+2)

]M−l−2
, (4.33)

Q(M) ≤ Q(l + 2) [1−Q(l + 1) +Q(l + 2)]M−l−2 . (4.34)

In the particular case of one dimensional discrete scan statistics over the block-

factor model from Section 4.1, we have, in accordance with Remark 4.1.2, thatXs1 is

(c1−1) dependent so the sequence of moving sums Y1, . . . , YT1−m1+1 is l = m1+c1−2

dependent. Thus, the distribution function Qm1(T1), for T1 ≥ 2m1 + c1 − 1, is

bounded by

Qm1(T1) ≥ Qm1(2m1 + c1 − 1)[
1 +

Qm1 (2m1+c1−2)−Qm1 (2m1+c1−1)

Qm1 (2m1+c1−2)Qm1 (2m1+c1−1)

]T1−(2m1+c1−1)
, (4.35)

Qm1(T1) ≤ Qm1(2m1 + c1 − 1) [1−Qm1(2m1 + c1 − 2)

+Qm1(2m1 + c1 − 1)]T1−(2m1+c1−1) . (4.36)

We observe that, if in the foregoing relations we take c1 = 1, that is we consider the

i.i.d. model, then we get exactly the bounds presented in Section 1.1.3. From the

numerical values in Table 4.1, we see that these bounds are very tight and also that

our estimate is very accurate.

Remark 4.3.2. Notice that in the text of Proposition 4.3.1 we assumed that the

random variables Ȳ1, Ȳ2, . . . are associated and generated by a (l + 1) block-factor.

To construct such sequences, it is enough to take the function that de�nes the

block-factor to be increasing (or decreasing) in each argument (see for example

[Oliveira, 2012, Chapter 1] or [Esary et al., 1967, Theorem 2.1 and property (P4)]).

Remark 4.3.3. The proof of Proposition 4.3.1, due to the additional hypothesis

of associated random variables, follows closely the proof steps of the corresponding

result in [Glaz and Naus, 1991] and will be omitted here.

2We say that the random variables Ȳ1, Ȳ2, . . . , Ȳn are associated if, given two coordinatewise

nondecreasing functions f, g : Rn → R then Cov
[
f
(
Ȳ1, Ȳ2, . . . , Ȳn

)
, g
(
Ȳ1, Ȳ2, . . . , Ȳn

)]
≥ 0, when-

ever the covariance exists.
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4.3.2 Example 2: Length of the longest increasing run

We continue our list of examples with one that belongs to the class of runs statistics.

In the subsequent we employ the notations introduced in Section 4.1.

Let X̃1, X̃2, . . . , X̃T̃1
be a sequence of independent and identically distributed

random variables with the common distribution F . We say that the subsequence(
X̃k, . . . , X̃k+l−1

)
forms an increasing run (or ascending run) of length l ≥ 1, start-

ing at position k ≥ 1, if it veri�es the following relation

X̃k−1 > X̃k < X̃k+1 < · · · < X̃k+l−1 > X̃k+l. (4.37)

We denote the length of the longest increasing run among the �rst T̃1 random vari-

ables by MT̃1
. This run statistics plays an important role in many applications

in �elds such computer science, reliability theory or quality control. The asymp-

totic behaviour of MT̃1
has been investigated by several authors depending on the

common distribution, F . In the case of a continuous distribution, [Pittel, 1981] (see

also [Frolov and Martikainen, 1999]) has shown that this behaviour does not depend

on the common law. For the particular setting of uniform U([0, 1]) random vari-

ables, this problem was addressed by [Révész, 1983], [Grill, 1987] and [Novak, 1992].

Under the assumption that the distribution F is discrete, the limit behaviour of

MT̃1
depends strongly on the common law F , as [Csaki and Foldes, 1996] (see also

[Grabner et al., 2003] and [Eryilmaz, 2006]) proved for the case of geometric and

Poisson distribution. In [Louchard, 2005], the case of discrete uniform distribution

is investigated, while in [Mitton et al., 2010], the authors study the asymptotic dis-

tribution of MT̃1
when the variables are uniformly distributed but not independent.

In this example, we evaluate the distribution of the length of the longest increasing

run using the methodology developed in this chapter. The idea is to express the

distribution of the random variable MT̃1
in terms of the distribution of the scan

statistics random variable. In the block-factor setting described in Section 4.1, we

take d = 1, x
(1)
1 = 0, x

(1)
2 = 1 and T1 = T̃1 − 1. It follows that, for 1 ≤ s1 ≤ T1, the

1-way tensor Xs1 is
(
X̃s1 , X̃s1+1

)
and if we de�ne the block-factor transformation

Π : R2 → R by

Π(x, y) =

{
1, if x < y

0, otherwise
(4.38)

then, our block-factor model becomes

Xs1 = 1X̃s1<X̃s1+1
. (4.39)

Clearly, the foregoing equation shows that X1, . . . , XT1 form a 1-dependent and

stationary sequence of random variables.

Notice that the distribution of MT̃1
and the distribution of the length of the longest

run of ones3, LT1 , among the �rst T1 binary random variables Xs1 , are related and

3This statistic is also known as the length of the longest success run or head run

and was extensively studied in the literature. One can consult the monographs of

[Balakrishnan and Koutras, 2002] and [Fu and Lou, 2003] for applications and further results con-

cerning this statistic.
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satisfy the following identity

P
(
MT̃1

≤ m1

)
= P (LT1 < m1) , for m1 ≥ 1. (4.40)

Moreover, the random variable LT1 can be interpreted as a particular case of the

scan statistics random variable and between the two we have the relation

P (LT1 ≥ m1) = P (Sm1(T1) ≥ m1) = P (Sm1(T1) = m1) . (4.41)

Hence, combining Eq.(4.40) and Eq.(4.41), we can express the distribution of the

length of the longest increasing run as

P
(
MT̃1

≤ m1

)
= P (Sm1(T1) < m1) . (4.42)

Thus, we can estimate the distribution of MT̃1
using the foregoing identity and the

approximations developed in this chapter for the discrete scan statistics random

variable.

We should also note that [Novak, 1992] studied the asymptotic behaviour of LT1
over a sequence of m-dependent binary random variables. The author showed that,

given a stationary m-dependent sequence of random variables with values 0 and 1,

(Wk)k≥1, if there exist positive constants t, C such that

P (Wk+1 = 1|W1 = · · · = Wk = 1) ≥ 1

Ckt
, for all k ≥ C, (4.43)

then, as N →∞

max
1≤k≤N

∣∣∣P (LN < k)− e−Nr(k)
∣∣∣ = O

(
(lnN)h

N

)
, (4.44)

where r(k) = P (W1 = · · · = Wk = 1)− P (W1 = · · · = Wk+1 = 1) and h = mt ∨ 1.

In order to illustrate the accuracy of the approximation ofMT̃1
based on scan statis-

tics, using the methodology developed in Section 4.2.1, we consider that the random

variables X̃s1 's have a common uniform U ([0, 1]) distribution. Simple calculations

show that P (X1 = · · · = Xk = 1) = 1
(k+1)! and

P (Xk+1 = 1|X1 = · · · = Xk = 1) =
1

k + 2
≥ 1

2k
, (4.45)

thus C = 2, t = 1 and h = 1. In the context of our particular situation, the result

of [Novak, 1992] in Eq.(4.44) becomes:

max
1≤m1≤T1

∣∣∣P (LT1 < m1)− e−T1r(m1)
∣∣∣ = O

(
lnT1

T1

)
, (4.46)

where r(m1) = P (X1 = · · · = Xm1 = 1)− P (X1 = · · · = Xm1+1 = 1) = m1+1
(m1+2)! .

In Table 4.2, we consider a numerical compared study between the simulated value

(column Sim), the approximation based on scan statistics (column AppH) and

the limit distribution (column LimApp) of the distribution of the length of the

longest increasing run, P
(
MT̃1

≤ m1

)
, in a sequence of T̃1 = 10001 random variables

distributed uniformly over [0, 1]. The results show that both our method and the

asymptotic approximation in Eq.(4.43) are very accurate.
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m1 Sim AppH Etotal(1) LimApp
Eq(4.24) Eq(4.43)

5 0.00000700 0.00000733 0.14860299 0.00000676
6 0.17567262 0.17937645 0.01089628 0.17620431
7 0.80257424 0.80362353 0.00110990 0.80215088
8 0.97548510 0.97566460 0.00011579 0.97550345
9 0.99749821 0.99751049 0.00001114 0.99749792
10 0.99977074 0.99977183 0.00000098 0.99977038
11 0.99998075 0.99998083 0.00000008 0.99998073
12 0.99999851 0.99999851 0.00000001 0.99999851
13 0.99999989 0.99999989 0.00000000 0.99999989
14 0.99999999 0.99999999 0.00000000 0.99999999
15 1.00000000 1.00000000 0.00000000 1.00000000

Table 4.2: The distribution of the length of the
longest increasing run: T̃1 = 10001, ITERsim =

104, ITERapp = 105
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Figure 4.5: Cumulative distribution func-
tion for approximation, simulation and limit
law

Remark 4.3.4. For the simulated values and the estimation of the distribution

functions Q2 and Q3 that appear in the scan approximation formula (see Eq.(3.91)),

we employed the importance sampling algorithm (Algorithm 1) presented in the

context of i.i.d. random variables in Section 3.4.2, with ITERsim = 104 and

ITERapp = 105 iterations of the algorithm, respectively. We see that in our set-

ting, the Bonferroni bound can be easily computed via B(1) = T1−m1+1
(m1+1)! . The second

step in the algorithm is similar to the one described in Example 3.4.1 and is im-

plemented using a simple sorting procedure of m1 + 1 independent U ([0, 1]) random

variables.

4.3.3 Example 3: Moving average of order q model

In this third example, we consider the particular situation of the one dimensional

discrete scan statistics over a MA(q) model. In the block-factor model introduced

in Section 4.1 we take d = 1, x
(1)
1 = 0, x

(1)
2 = q for q ≥ 1 a positive integer and

X̃1, X̃2, . . . , X̃T̃1
a sequence of independent and identically distributed Gaussian

random variables with known mean µ and variance σ2. We observe that, based on

the notations used in Section 4.1, c1 = q + 1, T1 = T̃1 − q and for s1 ∈ {1, . . . , T1},
the 1-way tensor Xs1 becomes

Xs1 =
(
X̃s1 , X̃s1+1, . . . , X̃s1+q

)
. (4.47)

Let a = (a1, . . . , aq+1) ∈ Rq+1 be a �xed non null vector and take Π : Rq+1 → R,
the (measurable) transformation that de�nes the block-factor model, to be equal

with

Π(x1, . . . , xq+1) = a1x1 + a2x2 + · · ·+ aq+1xq+1. (4.48)

Following Eq.(4.2), our dependent model is de�ned by the relation

Xs1 = Π (Xs1) = a1X̃s1 + a2X̃s1+1 + · · ·+ aq+1X̃s1+q, 1 ≤ s1 ≤ T1. (4.49)
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Clearly, from Eq.(4.49), the random variables X1, . . . , XT1 form a moving average

of order q. Notice that the moving sums Yi1 , 1 ≤ i1 ≤ T1−m1 + 1 can be expressed

as

Yi1 =

i1+m1−1∑
s1=i1

Xs1 = b1X̃i1 + b2X̃i1+1 + · · ·+ bm1+qX̃i1+m1−1+q, (4.50)

where the coe�cients b1, . . . , bm1+q are evaluated by

a) For m1 ≥ q,

bk =



k∑
j=1

aj , k ∈ {1, . . . , q}

q+1∑
j=1

aj , k ∈ {q + 1, . . . ,m1}

q+1∑
j=k−m1+1

aj , k ∈ {m1 + 1, . . . ,m1 + q}

(4.51)

b) For m1 < q,

bk =



k∑
j=1

aj , k ∈ {1, . . . ,m1}

k∑
j=k−m1+1

aj , k ∈ {m1 + 1, . . . , q}

q+1∑
j=k−m1+1

aj , k ∈ {q + 1, . . . ,m1 + q}.

(4.52)

Therefore, for each i1 ∈ {1, . . . , T1 − m1 + 1}, the random variable Yi1 follows a

normal distribution with mean E [Yi1 ] = (b1 + · · ·+ bm+q)µ and variance V ar [Yi1 ] =(
b21 + · · ·+ b2m+q

)
σ2. Moreover, it is not hard to see (one can use the same type of

arguments as in Lemma 3.4.3) that the covariance matrix Σ = {Cov [Yt, Ys]} has
the entries

Cov [Yt, Ys] =


m1+q−|t−s|∑

j=1

bjb|t−s|+j

σ2 , |t− s| ≤ m1 + q − 1

0 , otherwise.

(4.53)

Given the mean and the covariance matrix of the vector (Y1, . . . , YT1−m1+1), one

can use the importance sampling algorithm of [Naiman and Priebe, 2001] (see

also [Malley et al., 2002]) detailed in Section 3.4.2 (Example 3.4.2) or the one of

[Shi et al., 2007] presented in Section 3.4.4 to estimate the distribution of the one

dimensional discrete scan statistics Sm1(T1). Another way is to use the quasi-Monte
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Carlo algorithm developed by [Genz and Bretz, 2009] to approximate the multivari-

ate normal distribution. Following the comparison study presented in Section 3.4.4,

in this example we adopt the �rst importance sampling procedure.

In order to evaluate the accuracy of the approximation developed in Section 4.2.1,

we consider q = 2, T1 = 1000, m1 = 20, X̃i ∼ N (0, 1) and the coe�cients of the

moving average model to be (a1, a2, a3) = (0.3, 0.1, 0.5). We compare our approx-

imation with the one (column AppPT ) given in [Wang and Glaz, 2013] (see also

[Wang, 2013, Chapter 4]). In Table 4.3, we present numerical results for the set-

ting described above. In our algorithms we used ITERapp = 106 iterations for the

approximation and ITERsim = 105 replicas for the simulation.

n Sim AppPT AppH Esapp(1) Esf (1) Total
Eq.(1.46) Eq.(4.20) Eq.(4.23) Error

11 0.582252 0.589479 0.584355 0.011503 0.003653 0.015156
12 0.770971 0.773700 0.771446 0.002319 0.001691 0.004010
13 0.889986 0.890009 0.889431 0.000434 0.000733 0.001167
14 0.951529 0.954536 0.951723 0.000073 0.000297 0.000370
15 0.980653 0.982433 0.980675 0.000011 0.000113 0.000124
16 0.992827 0.993690 0.992791 0.000001 0.000040 0.000042
17 0.997486 0.995471 0.997499 0.000000 0.000013 0.000014
18 0.999186 0.999411 0.999188 0.000000 0.000004 0.000004
19 0.999754 0.999717 0.999754 0.000000 0.000001 0.000001
20 0.999930 1 0.999930 0.000000 0.000000 0.000000

Table 4.3: MA(2) model: m1 = 20, T1 = 1000, Xi = 0.3X̃i + 0.1X̃i+1 + 0.5X̃i+2,
ITERapp = 106, ITERsim = 105

In Figure 4.6, we illustrate the cumulative distribution functions obtained by ap-

proximation and simulation. For the approximation we present also the correspond-

ing lower and upper bounds (computed from the total error of the approximation

process, the last column in Table 4.3).

4.3.4 Example 4: A game of minesweeper

This example draws its motivation (and name) from the well known computer game

of Minesweeper, whose objective is to detect all the mines from a grided mine�eld in

such a way that no bomb is detonated. Our two dimensional model can be described

as follows.

Let d = 2, T̃1, T̃2 be positive integers and
{
X̃s1,s2 | 1 ≤ s1 ≤ T̃1, 1 ≤ s2 ≤ T̃2

}
be a

family of i.i.d. Bernoulli random variables of parameter p. We interpret the random

variable X̃s1,s2 as representing the presence (X̃s1,s2 = 1) or the absence (X̃s1,s2 = 0)

of a mine in the elementary square subregion r̃2(s1, s2) = [s1 − 1, s1] × [s2 − 1, s2],

within the region R̃2 = [0, T̃1]× [0, T̃2].

In this example, we consider x
(1)
1 = x

(1)
2 = 1 and x

(2)
1 = x

(2)
2 = 1. Based on the

notations introduced in Section 4.1, we observe that c1 = c2 = 3, T1 = T̃1 − 2 and
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Figure 4.6: Cumulative distribution function for approximation and simulation along with
the corresponding error under MA model

T2 = T̃2 − 2. For each pair (s1, s2) ∈ {2, . . . , T̃1 − 1} × {2, . . . , T̃2 − 1}, the 2-way

tensor Xs1,s2 is given by

Xs1,s2(j1, j2) = X̃s1+j1−2,s2+j2−2, where 1 ≤ ji ≤ ci, i ∈ {1, 2}. (4.54)

Since the elements of the tensor Xs1,s2 are arranged in a 3× 3 matrix, we de�ne the

block-factor real valued transformation Π on the set of matricesM3,3(R), such that

it veri�es the relation

Π

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
∑

1≤s,t≤3

ast − a22. (4.55)

From Eq.(4.2) and Eq.(4.55), our dependent model is de�ned as

Xs1,s2 = Π (Xs1+1,s2+1) =
∑

(i,j)∈{0,1,2}2
(i,j)6=(1,1)

X̃s1+i,s2+j . (4.56)

From the foregoing relation, we can interpret the random variable Xs1,s2 as the

number of neighboring mines associated with the location (s1, s2). In Figure 4.7, we

present a realization of the introduced model. On the left, we have the realization

of the initial set of random variables where a gray square represents the presence of

a mine, while the white square signi�es the absence of a mine. On the right side, we

have the realization of the Xs1,s2 according to the transformation Π from Eq.(4.55),

that is the corresponding number of neighboring mines associated to each site.

We present numerical results (Table 4.4-Table 4.11) for the described block-factor

model with T̃1 = T̃2 = 44 (that is T1 = T2 = 42), m1 = m2 = 3 and the underlying
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X̃s1,s2 : Xs1,s2 :

1

2

...

T̃2 − 1

T̃2

1 2 . . . T̃1 − 1 T̃1

1

2

...

T2

1 2 . . . T1

2 2 1 2 2 2 3 2
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4 4 1 2 1 1 1 0

Π

Figure 4.7: A realization of the minesweeper related model

random �eld generated by i.i.d. Bernoulli random variables of parameter p (X̃s1,s2 ∼
B(p)) in the range {0.1, 0.3, 0.5, 0.7}. We also include numerical values for the

corresponding i.i.d. model: T1 = T2 = 42, m1 = m2 = 3 and Xs1,s2 ∼ B(8, p).

n Sim AppH Esapp(2) Esf (2) Total
Eq.(4.20) Eq.(4.23) Error

29 0.828763 0.813457 0.018678 0.024528 0.043205
30 0.886702 0.875875 0.006135 0.010670 0.016805
31 0.930094 0.922997 0.001912 0.005374 0.007286
32 0.957297 0.953079 0.000628 0.003290 0.003918
33 0.974541 0.971980 0.000204 0.002239 0.002443
34 0.985523 0.984022 0.000063 0.001588 0.001651
35 0.991524 0.990718 0.000020 0.001171 0.001191
36 0.995301 0.994885 0.000006 0.000854 0.000860
37 0.997492 0.997253 0.000002 0.000617 0.000619
38 0.998668 0.998547 0.000000 0.000447 0.000447
39 0.999313 0.999272 0.000000 0.000319 0.000319
40 0.999653 0.999629 0.000000 0.000231 0.000231
41 0.999826 0.999808 0.000000 0.000164 0.000164
42 0.999916 0.999911 0.000000 0.000116 0.000116
43 0.999963 0.999959 0.000000 0.000079 0.000079
44 0.999981 0.999979 0.000000 0.000054 0.000054
45 0.999991 0.999993 0.000000 0.000037 0.000037
46 0.999995 0.999997 0.000000 0.000022 0.000022
47 0.999999 0.999999 0.000000 0.000017 0.000017
48 1.000000 0.999999 0.000000 0.000009 0.000009

Table 4.4: Block-factor: m1 = m2 = 3, T̃1 = T̃2 = 44, T1 = T2 = 42, p = 0.1, ITER = 108

For all of our results presented in the tables we used Monte Carlo simulations with

108 iterations for the block-factor model and with 105 replicas for the i.i.d. model.

Notice that the contribution of the simulation error that corresponds to the approx-

imation error (Esapp) to the total error is almost negligible in most of the cases with

respect to the other simulation error (Esf ). Thus, the precision of the method will

depend mostly on the number of iterations (ITER) used to estimate Qt1,t2 . The cu-

mulative distribution function and the probability mass function for the block-factor

and i.i.d. models are presented in Figure 4.8 and Figure 4.9.
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n Sim AppH Esapp(2) Esf (2) Total
Eq.(3.97) Eq.(3.96) Error

17 0.789376 0.788934 0.005813 0.011393 0.017206
18 0.925456 0.925186 0.000529 0.002095 0.002625
19 0.976889 0.976763 0.000045 0.000455 0.000500
20 0.993444 0.993447 0.000003 0.000105 0.000108
21 0.998288 0.998287 0.000000 0.000023 0.000024
22 0.999584 0.999583 0.000000 0.000005 0.000005
23 0.999905 0.999905 0.000000 0.000001 0.000001
24 0.999980 0.999980 0.000000 0.000000 0.000000

Table 4.5: Independent: m1 = m2 = 3, T1 = T2 = 42, B(r = 8,p = 0.1), ITER = 105

n Sim AppH Esapp(2) Esf (2) Total
Eq.(4.20) Eq.(4.23) Error

48 0.768889 0.749275 0.046577 0.053831 0.100408
49 0.844717 0.829918 0.014207 0.019702 0.033908
50 0.899398 0.889501 0.004574 0.008810 0.013384
51 0.936771 0.930795 0.001499 0.004769 0.006269
52 0.961836 0.958113 0.000485 0.002988 0.003472
53 0.977672 0.975326 0.000152 0.002045 0.002197
54 0.987307 0.985922 0.000047 0.001463 0.001510
55 0.993022 0.992251 0.000014 0.001056 0.001070
56 0.996333 0.995917 0.000004 0.000761 0.000765
57 0.998151 0.997954 0.000001 0.000539 0.000540
58 0.999091 0.998992 0.000000 0.000381 0.000381
59 0.999576 0.999522 0.000000 0.000265 0.000265
60 0.999794 0.999802 0.000000 0.000178 0.000178
61 0.999908 0.999920 0.000000 0.000115 0.000115
62 0.999965 0.999973 0.000000 0.000077 0.000077
63 0.999993 0.999991 0.000000 0.000044 0.000044
64 0.999999 0.999998 0.000000 0.000028 0.000028
65 1.000000 0.999999 0.000000 0.000017 0.000017

Table 4.6: Block-factor: m1 = m2 = 3, T̃1 = T̃2 = 44, T1 = T2 = 42, p = 0.3, ITER = 108

n Sim AppH Esapp(2) Esf (2) Total
Eq.(3.97) Eq.(3.96) Error

35 0.716804 0.716395 0.012836 0.021243 0.034079
36 0.867167 0.866643 0.001951 0.005093 0.007044
37 0.943946 0.944024 0.000285 0.001409 0.001694
38 0.978505 0.978400 0.000039 0.000419 0.000457
39 0.992274 0.992262 0.000005 0.000126 0.000131
40 0.997395 0.997399 0.000001 0.000037 0.000037
41 0.999176 0.999178 0.000000 0.000010 0.000010
42 0.999753 0.999754 0.000000 0.000003 0.000003
43 0.999931 0.999931 0.000000 0.000001 0.000001
44 0.999982 0.999982 0.000000 0.000000 0.000000
45 0.999995 0.999995 0.000000 0.000000 0.000000

Table 4.7: Independent: m1 = m2 = 3, T1 = T2 = 42, B(r = 8,p = 0.3), ITER = 105
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n Sim AppH Esapp(2) Esf (2) Total
Eq.(4.20) Eq.(4.23) Error

61 0.725109 0.701781 0.085110 0.093544 0.178654
62 0.828019 0.888902 0.004453 0.008665 0.013118
63 0.899560 0.888902 0.004453 0.008665 0.013118
64 0.945304 0.939436 0.001049 0.004054 0.005103
65 0.972203 0.969026 0.000235 0.002334 0.002569
66 0.986999 0.985439 0.000047 0.001460 0.001507
67 0.994506 0.993814 0.000008 0.000927 0.000935
68 0.997851 0.997605 0.000001 0.000572 0.000573
69 0.999326 0.999230 0.000000 0.000320 0.000320
70 0.999826 0.999786 0.000000 0.000171 0.000171
71 0.999968 0.999952 0.000000 0.000083 0.000083
72 1.000000 1.000000 0.000000 0.000000 0.000000

Table 4.8: Block-factor: m1 = m2 = 3, T̃1 = T̃2 = 44, T1 = T2 = 42, p = 0.5, ITER = 108

n Sim AppH Esapp(2) Esf (2) Total
Eq.(3.97) Eq.(3.96) Error

50 0.741089 0.735210 0.010514 0.018002 0.028516
51 0.882209 0.880827 0.001499 0.004196 0.005695
52 0.952545 0.952389 0.000200 0.001098 0.001299
53 0.982842 0.982891 0.000024 0.000307 0.000331
54 0.994328 0.994337 0.000002 0.000084 0.000087
55 0.998282 0.998278 0.000000 0.000022 0.000022
56 0.999517 0.999518 0.000000 0.000005 0.000005
57 0.999876 0.999876 0.000000 0.000001 0.000001
58 0.999971 0.999971 0.000000 0.000000 0.000000
59 0.999994 0.999994 0.000000 0.000000 0.000000
60 0.999999 0.999999 0.000000 0.000000 0.000000

Table 4.9: Independent: m1 = m2 = 3, T1 = T2 = 42, B(r = 8,p = 0.5), ITER = 105

n Sim AppH Esapp(2) Esf (2) Total
Eq.(4.20) Eq.(4.23) Error

70 0.729239 0.705944 0.074290 0.082392 0.156682
71 0.876484 0.864370 0.006976 0.011623 0.018600
72 1.000000 1.000000 0.000000 0.000000 0.000000

Table 4.10: Block-factor: m1 = m2 = 3, T̃1 = T̃2 = 44, T1 = T2 = 42, p = 0.7, ITER =

108

n Sim AppH Esapp(2) Esf (2) Total
Eq.(3.97) Eq.(3.96) Error

62 0.620295 0.611819 0.030328 0.042319 0.072646
63 0.847421 0.846730 0.002591 0.005851 0.008442
64 0.952524 0.952588 0.000194 0.000978 0.001172
65 0.987854 0.987887 0.000011 0.000168 0.000179
66 0.997472 0.997460 0.000000 0.000026 0.000027
67 0.999568 0.999568 0.000000 0.000003 0.000003
68 0.999943 0.999943 0.000000 0.000000 0.000000
69 0.999994 0.999994 0.000000 0.000000 0.000000

Table 4.11: Independent: m1 = m2 = 3, T1 = T2 = 42, B(r = 8,p = 0.7), ITER = 105
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Figure 4.8: Cumulative distribution function for block�factor and i.i.d. models
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Figure 4.9: Probability mass function for blockâ��-factor and i.i.d. models





Conclusions and perspectives

In this thesis, we provide a uni�ed method for estimating the distribution of the

multidimensional discrete scan statistics based on a result concerning the extremes

of 1-dependent sequences of random variables. This approach has two main advan-

tages over the existing ones presented in the literature: �rst, it includes, beside an

approximation formula, expressions for the corresponding error bounds and second,

the approximation can be applied no matter what the distribution of the observa-

tions under the null hypothesis is. We consider two models for the underlying dis-

tribution of the random �eld over which the scan process is performed: the widely

studied i.i.d. model and a new dependent model based on a block-factor construc-

tion. For each of these models we give detailed expressions for the approximation,

as well as for the associated error bounds formulas. Since the simulation process

plays an important part in the estimation of the multidimensional discrete scan

statistics distribution, we present, for the particular case of i.i.d. observations, a

general importance sampling algorithm that increases the e�ciency of the proposed

approximation. From the numerical applications conducted in both, the i.i.d. and

the block-factor models, we conclude that our results are accurate especially for the

high order quantiles.

Currently, we are working on adapting the methodology developed for the multidi-

mensional discrete scan statistics to the continuous scan statistics framework. One

of the main challenge in this problem is to develop fast and e�cient algorithms

for the simulation of the continuous scan statistics, in more than three dimensions.

Deriving accurate approximations for the distribution of the scan statistics over

a random �eld generated by independent but not identically distributed random

variables, constitutes a problem of future interest. Another future direction of re-

search, is to consider, in the multidimensional discrete scan statistics problem, that

the scanning window has a general convex shape and to study the in�uence of this

shape in the scanning process. We should mention that for the multidimensional

continuous scan statistics for Poisson processes, this problem was already addressed

by [Alm, 1998].





Appendix A

Supplementary material for

Chapter 1

A.1 Supplement for Section 1.1

In this section, we outline the algorithm of [Karwe and Naus, 1997], used for �nding

the distribution function of the one dimensional scan statistics over a sequence of

i.i.d. discrete random variables of length at most 3m1. Based on the notations

introduced in Section 1.1, we de�ne

bn2(m1)(y) = P (Sm1(2m1) ≤ n, Ym1+1 = y) ,

f(y) = P(X1 = y),

Qn2m1
= P (Sm1(2m1) ≤ n) .

We have the following recurrence relations for Qm1(2m1 − 1) and Qm1(2m1):

bn2(1)(y) =

 n∑
j=0

f(j)

 f(y),

bn2(m1)(y) =

y∑
η=0

n−y+η∑
ν=0

bn−ν2(m1−1)(y − η)f(ν)f(η),

Qn2m1
=

n∑
y=0

bn2(m1)(y),

Qn2m1−1 =
n∑
x=0

f(x)Qn−x2(m1−1).

For the computation of Qm1(3m1 − 1) and Qm1(3m1), we take bk1,k23(m1)(x, y) = 0 if

x > k1 ∧ k2 or y > k2 and for the other cases as

bk1,k23(m1)(x, y) = P

m1⋂
i=1

{Yi ≤ k1} ∩ {Ym1+1 = x}
2m1⋂

j=m1+2

{Yj ≤ k2} ∩ {Y2m1+1 = y}

 .

Considering that the random variables Xi take values in the set {0, . . . , c}, we have
the following recurrences (see [Karwe and Naus, 1997, Appendix] for closed form
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formulas):

bk1,k23(m1)(x, y) =
c∑

α=0

c∑
β=0

c∑
γ=0

bk1−α,k2−β3(m1−1) (x− β, y − γ)f(α)f(β)f(γ),

Qn3m1
=

n∑
x=0

n∑
y=0

bn,n3(m1)(x, y),

Qn3m1−1 =

n∑
x1=0

n−x1∑
x2=0

n−x1∑
x3=0

[
n−x3∑
x4=0

bn−x2,n−x33(m1−1) (x1, x4)

]
f(x2)f(x3).

A.2 Supplement for Section 1.2

Some supplementary materials for the results presented in Section 1.2 are given in

this section.

A.2.1 Supplement for Section 1.2.1

In this section, we include the formulas for the unknown quantities that appear

in the computation of the product-type approximation given in Eq.(1.64) in the

case of binomial and Poisson observations. These formulas were presented in

[Glaz et al., 2009, Chapter 5], for the case of T1 = T2 and m1 = m2.

The following notation, W j1,j2
i1,i2

=

j1∑
i=i1

j2∑
j=i2

Xi,j , will be used throughout this section.

a) Xi,j are i.i.d. binomial random variables with parameters r and p

We have

Q(m1 + 1,m2) =

n∧(m1−1)m2r∑
y=0

P2
(
W 1,m2

1,1 ≤ n− y
)
P
(
Wm1,m2

2,1 = y
)

and

Q(m1 + 1,m2 + 1) =

n∧(m1−1)(m2−1)r∑
y1=0

(n−y1)∧(m2−1)r∑
y2=0

(n−y1)∧(m2−1)r∑
y3=0

[n−y1−y2∨y3]∧(m1−1)r∑
y4=0

[n−y1−y2∨y3]∧(m1−1)r∑
y5=0

P
(
W 1,1

1,1 ≤ a1

)
× P

(
W 1,m2+1

1,m2+1 ≤ a2

)
P
(
Wm1+1,1
m1+1,1 ≤ a3

)
P
(
Wm1+1,m2+1
m1+1,m2+1 ≤ a4

)
× P

(
Wm1,m2

2,2 = y1

)
P
(
W 1,m2

1,2 = y2

)
P
(
Wm1+1,m2
m1+1,2 = y3

)
× P

(
Wm1,1

2,1 = y4

)
P
(
Wm1,m2+1

2,m2+1 = y5

)
,
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where

a1 = n− y1 − y2 − y4, a2 = n− y1 − y2 − y5,

a3 = n− y1 − y3 − y4, a4 = n− y1 − y3 − y5.

The random variables W 1,1
1,1 , W

1,m2+1
1,m2+1 , W

m1+1,m2+1
m1+1,m2+1 are binomial distributed with

parameters r and p, Wm1,m2
2,2 is a binomial random variable with parameters

(m1− 1)(m2− 1)r and p, W 1,m2
1,2 and Wm1+1,m2

m1+1,2 are binomial random variable with

parameters (m2−1)r and p andWm1,1
2,1 andWm1,m2+1

2,m2+1 are binomial random variable

with parameters (m1 − 1)r and p.

b) Xi,j are i.i.d. Poisson random variables of parameter λ

We have

Q(m1 + 1,m2) =
n∑
y=0

P2
(
W 1,m2

1,1 ≤ n− y
)
P
(
Wm1,m2

2,1 = y
)

and

Q(m1 + 1,m2 + 1) =

n∑
y1=0

n−y1∑
y2=0

n−y1∑
y3=0

n−y1−y2∨y3∑
y4=0

n−y1−y2∨y3∑
y5=0

P
(
W 1,1

1,1 ≤ a1

)
× P

(
W 1,m2+1

1,m2+1 ≤ a2

)
P
(
Wm1+1,1
m1+1,1 ≤ a3

)
P
(
Wm1+1,m2+1
m1+1,m2+1 ≤ a4

)
× P

(
Wm1,m2

2,2 = y1

)
P
(
W 1,m2

1,2 = y2

)
P
(
Wm1+1,m2
m1+1,2 = y3

)
× P

(
Wm1,1

2,1 = y4

)
P
(
Wm1,m2+1

2,m2+1 = y5

)
,

where

a1 = n− y1 − y2 − y4, a2 = n− y1 − y2 − y5,

a3 = n− y1 − y3 − y4, a4 = n− y1 − y3 − y5.

The random variables W 1,1
1,1 , W

1,m2+1
1,m2+1 , W

m1+1,m2+1
m1+1,m2+1 are Poisson distributed of pa-

rameter λ, Wm1,m2
2,2 is a Poisson random variable of mean (m1−1)(m2−1)λ, W 1,m2

1,2

andWm1+1,m2
m1+1,2 are Poisson of mean (m2−1)λ andWm1,1

2,1 andWm1,m2+1
2,m2+1 are Poisson

random variable of mean (m1 − 1)λ.

A.2.2 Supplement for Section 1.2.2

Following the methodology presented in Section 1.1.3 for �nding the upper bound

of the one dimensional scan statistics, in this section we extend the results to the

two dimensional case. Assume, for simplicity, that T1 = L1m1 and T2 = L2m2.
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Applying [Kuai et al., 2000] inequality, we can write

P (Sm1,m2 (T1, T2) ≤ n) = 1− P
(
L1−1⋃
i1=1

L2−1⋃
i2=1

Eci1,i2

)

≤ 1−
L1−1∑
i1=1

L2−1∑
i2=1


θi1,i1P(Eci1,i2)2

L1−1∑
j1=1

L2−1∑
j2=1

P
(
Eci1,i2 ∩ Ecj1,j2

)
+ (1− θi1,i2)P(Eci1,i2)

+
(1− θi1,i2)P(Eci1,i2)2

L1−1∑
j1=1

L2−1∑
j2=1

P
(
Eci1,i2 ∩ Ecj1,j2

)
− θi1,i2P(Eci1,i2)

 =: UB,

where for 1 ≤ i1 ≤ L1 − 1 and 1 ≤ i2 ≤ L2 − 1, the events Ei1,i2 are de�ned by

Ei1,i2 =

 max
(i1−1)m1+1≤s1≤i1m1+1
(i2−1)m2+1≤s2≤i2m2+1

Ys1,s2 ≤ n


and where

θi1,i2 =

L1−1∑
j1=1

L2−1∑
j2=1

P
(
Eci1,i2 ∩ Ecj1,j2

)
P(Eci1,i2)

−


L1−1∑
j1=1

L2−1∑
j2=1

P
(
Eci1,i2 ∩ Ecj1,j2

)
P(Eci1,i2)

 .

To simplify the results, we adopt the notations M = (L1 − 1)(L2 − 1) and

Σi1,i2 =

L1−1∑
j1=1

L2−1∑
j2=1

P
(
Eci1,i2 ∩ Ecj1,j2

)
.

We observe, from the de�nition of Ei1,i2 , that if |i1 − j1| ≥ 2 or |i2 − j2| ≥ 2, then

Ei1,i2 and Ej1,j2 are independent and, since the events are also stationary, we have

P(Eci1,i2) = 1− P(Ei1,i2) = 1−Q(2m1, 2m2),

and

P(Eci1,i2 ∩ Ecj1,j2) = 1− P(Ei1,i2)− P(Ei1,i2) + P(Ei1,i2 ∩ Ej1,j2)

= 1− 2Q(2m1, 2m2) + P(Ei1,i2 ∩ Ej1,j2).
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Simple calculations lead to

Σi1,i2 =



4− 7Q(2m1, 2m2) +Q(2m1, 3m2) +Q(3m1, 2m2) +Q(3m1, 3m2)

+(M − 4) [1−Q(2m1, 2m2)]2 , if i1 ∈ {1, L1 − 1}, i2 ∈ {1, L2 − 1}

6− 11Q(2m1, 2m2) +Q(2m1, 3m2) + 2Q(3m1, 2m2) + 2Q(3m1, 3m2)

+(M − 6) [1−Q(2m1, 2m2)]2 , if 2 ≤ i1 ≤ L1 − 2, i2 ∈ {1, L2 − 1}

6− 11Q(2m1, 2m2) + 2Q(2m1, 3m2) +Q(3m1, 2m2) + 2Q(3m1, 3m2)

+(M − 6) [1−Q(2m1, 2m2)]2 , if i1 ∈ {1, L1 − 1}, 2 ≤ i2 ≤ L2 − 2

9− 15Q(2m1, 2m2) + 2 [Q(2m1, 3m2) +Q(3m1, 2m2) +Q(3m1, 3m2)]

+(M − 9) [1−Q(2m1, 2m2)]2 , if 2 ≤ i1 ≤ L1 − 2, 2 ≤ i2 ≤ L2 − 2.

Hence, the upper bound becomes

UB = 1− 4B1 − 2(L1 − 3)B2 − 2(L2 − 3)B3 − (L1 − 3)(L2 − 3)B4,

where for i ∈ {1, 2, 3, 4},

Bi =
θi [1−Q(2m1, 2m2)]2

Σi + (1− θi) [1−Q(2m1, 2m2)]
+

(1− θi) [1−Q(2m1, 2m2)]2

Σi − θi [1−Q(2m1, 2m2)]
,

θi =
Σi

1−Q(2m1, 2m2)
−
⌊

Σi

1−Q(2m1, 2m2)

⌋
,

and Σ1, Σ2, Σ3 and Σ4 correspond to the �rst, second, third and fourth

branch, respectively of Σi1,i2 given above. The unknown quantities Q(2m1, 2m2),

Q(2m1, 3m2), Q(3m1, 2m2) and Q(3m1, 3m2) are evaluated by simulation.

A.3 Supplement for Section 1.3

Using the same approach as in [Guerriero et al., 2010a] for the case of T1 = T2 = T3,

m1 = m2 = m3 and where Xi,j,k were Bernoulli random variables, we present

computational expressions for the unknown quantities involved in the approximation

formula given in Eq.(1.87). We consider detailed formulas only for the situation of

binomial observations, the Poisson case being similar (see Remark A.3.1).

Throughout this section, we will use the following shorthand notation:

W j1,j2,j3
i1,i2,i3

=

j1∑
i=i1

j2∑
j=i2

j3∑
k=i3

Xi,j,k.

Assume that Xi,j,k are i.i.d. binomial random variables with parameters r and p.

• Q(m1,m2,m3)
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It is clear that

Q(m1,m2,m3) = P
(
Wm1,m2,m3

1,1,1 ≤ n
)

=

n∧m1m2m3r∑
i=0

(
m1m2m3r

i

)
pi(1− p)m1m2m3r−i.

• Q(m1 + 1,m2,m3), Q(m1,m2 + 1,m3), Q(m1,m2,m3 + 1)

We have

Q(m1 + 1,m2,m3) =

n∧(m1−1)m2m3r∑
x1=0

P2
(
W 1,m2,m3

1,1,1 ≤ n− x1

)
P
(
Wm1,m2,m3

2,1,1 = x1

)
,

Q(m1,m2 + 1,m3) =

n∧m1(m2−1)m3r∑
x1=0

P2
(
Wm1,1,m3

1,1,1 ≤ n− x1

)
P
(
Wm1,m2,m3

1,2,1 = x1

)
,

Q(m1,m2,m3 + 1) =

n∧m1m2(m3−1)r∑
x1=0

P2
(
W 1,m2,m3

1,1,1 ≤ n− x1

)
P
(
Wm1,m2,m3

1,1,2 = x1

)
.

• Q(m1,m2 + 1,m3 + 1)

We can write

Q(m1,m2 + 1,m3 + 1) ≈
y1∑

x1=0

y2∑
x2=0

y3∑
x3=0

y4∑
x4=0

y5∑
x5=0

(
4∏
i=1

ai

) 5∏
j=1

dj(xj)

,
where

y1 = n ∧m1(m2 − 1)(m3 − 1)r,

y2 = (n− x1) ∧m1(m2 − 1)r,

y3 = (n− x1) ∧m1(m2 − 1)r,

y4 = [n− x1 − (x2 ∨ x3)] ∧m1(m3 − 1)r,

y5 = [n− x1 − (x2 ∨ x3)] ∧m1(m3 − 1)r

and

a1 = P
(
Wm1,1,1

1,1,1 ≤ n− x1 − x2 − x4

)
,

a2 = P
(
Wm1,m2+1,1

1,m2+1,1 ≤ n− x1 − x3 − x4

)
,

a3 = P
(
Wm1,1,m3+1

1,1,m3+1 ≤ n− x1 − x2 − x5

)
,

a4 = P
(
Wm1,m2+1,m3+1

1,m2+1,m3+1 ≤ n− x1 − x3 − x5

)
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and

d1(x1) = P
(
Wm1,m2,m3

1,2,2 = x1

)
,

d2(x2) = P
(
Wm1,m2,1

1,2,1 = x2

)
,

d3(x3) = P
(
Wm1,m2,m3+1

1,2,m3+1 = x3

)
,

d4(x4) = P
(
Wm1,1,m3

1,1,2 = x4

)
,

d5(x5) = P
(
Wm1,m2+1,m3

1,m2+1,2 = x5

)
.

• Q(m1 + 1,m2,m3 + 1)

Similarly, we can write

Q(m1 + 1,m2,m3 + 1) ≈
y1∑

x1=0

y2∑
x2=0

y3∑
x3=0

y4∑
x4=0

y5∑
x5=0

(
4∏
i=1

ai

) 5∏
j=1

dj(xj)

,
where

y1 = n ∧ (m1 − 1)m2(m3 − 1)r,

y2 = (n− x1) ∧ (m1 − 1)m2r,

y3 = (n− x1) ∧m1(m2 − 1)r,

y4 = [n− x1 − (x2 ∨ x3)] ∧m2(m3 − 1)r,

y5 = [n− x1 − (x2 ∨ x3)] ∧m2(m3 − 1)r

and

a1 = P
(
W 1,m2,1

1,1,1 ≤ n− x1 − x2 − x4

)
,

a2 = P
(
W 1,m2,m3+1

1,1,m3+1 ≤ n− x1 − x3 − x4

)
,

a3 = P
(
Wm1+1,m2,1
m1+1,1,1 ≤ n− x1 − x2 − x5

)
,

a4 = P
(
Wm1+1,m2,m3+1
m1+1,1,m3+1 ≤ n− x1 − x3 − x5

)
and

d1(x1) = P
(
Wm1,m2,m3

2,1,2 = x1

)
,

d2(x2) = P
(
Wm1,m2,1

2,1,1 = x2

)
,

d3(x3) = P
(
Wm1,m2,m3+1

2,1,m3+1 = x3

)
,

d4(x4) = P
(
W 1,m2,m3

1,1,2 = x4

)
,

d5(x5) = P
(
Wm1+1,m2,m3
m1+1,1,2 = x5

)
.
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• Q(m1 + 1,m2 + 1,m3)

As before,

Q(m1 + 1,m2 + 1,m3) ≈
y1∑

x1=0

y2∑
x2=0

y3∑
x3=0

y4∑
x4=0

y5∑
x5=0

(
4∏
i=1

ai

) 5∏
j=1

dj(xj)

,
where

y1 = n ∧ (m1 − 1)(m2 − 1)m3r,

y2 = (n− x1) ∧ (m1 − 1)m3r,

y3 = (n− x1) ∧ (m1 − 1)m3r,

y4 = [n− x1 − (x2 ∨ x3)] ∧ (m2 − 1)m3r,

y5 = [n− x1 − (x2 ∨ x3)] ∧ (m2 − 1)m3r

and

a1 = P
(
W 1,1,m3

1,1,1 ≤ n− x1 − x2 − x4

)
,

a2 = P
(
W 1,m2+1,m3

1,m2+1,1 ≤ n− x1 − x3 − x4

)
,

a3 = P
(
Wm1+1,1,m3
m1+1,1,1 ≤ n− x1 − x2 − x5

)
,

a4 = P
(
Wm1+1,m2+1,m3
m1+1,m2+1,1 ≤ n− x1 − x3 − x5

)
and

d1(x1) = P
(
Wm1,m2,m3

2,2,1 = x1

)
,

d2(x2) = P
(
Wm1,1,m3

2,1,1 = x2

)
,

d3(x3) = P
(
Wm1,m2+1,m3

2,m2+1,1 = x3

)
,

d4(x4) = P
(
W 1,m2,m3

1,2,1 = x4

)
,

d5(x5) = P
(
Wm1+1,m2,m3
m1+1,2,1 = x5

)
.

• Q(m1 + 1,m2 + 1,m3 + 1)

We have

Q(m1 + 1,m2 + 1,m3 + 1) ≈
y1∑

x1=0

y2∑
x2=0

y3∑
x3=0

y4∑
x4=0

y5∑
x5=0

y6∑
x6=0

y7∑
x7=0

y8∑
x8=0

y9∑
x9=0

A1A2

×

 9∏
j=1

dj(xj)

 ,
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with

y1 = n ∧ (m1 − 1)(m2 − 1)(m3 − 1)r,

y2 = (n− x1) ∧ (m1 − 1)(m2 − 1)r,

y3 = (n− x1) ∧ (m1 − 1)(m2 − 1)r,

y4 = [n− x1 − (x2 ∨ x3)] ∧ (m1 − 1)(m3 − 1)r,

y5 = [n− x1 − (x2 ∨ x3)] ∧ (m1 − 1)(m3 − 1)r,

y6 = (n− x1 − x2 − x4) ∧ (m1 − 1)r,

y7 = (n− x1 − x2 − x5) ∧ (m1 − 1)r,

y8 = (n− x1 − x3 − x4) ∧ (m1 − 1)r,

y9 = (n− x1 − x3 − x5) ∧ (m1 − 1)r,

and

d1(x1) = P
(
Wm1,m2,m3

2,2,2 = x1

)
,

d2(x2) = P
(
Wm1,m2,1

2,2,1 = x2

)
,

d3(x3) = P
(
Wm1,m2,m3+1

2,2,m3+1 = x3

)
,

d4(x4) = P
(
Wm1,1,m3

2,1,2 = x4

)
,

d5(x5) = P
(
Wm1,m2+1,m3

2,m2+1,2 = x5

)
,

d6(x6) = P
(
Wm1,1,1

2,1,1 = x6

)
,

d7(x7) = P
(
Wm1,m2+1,1

2,m2+1,1 = x7

)
,

d8(x8) = P
(
Wm1,1,m3+1

2,1,m3+1 = x8

)
,

d9(x9) = P
(
Wm1,m2+1,m3+1

2,m2+1,m3+1 = x9

)
.

The unknown A1 is computed by

A1 =

y10∑
x10=0

y11∑
x11=0

y12∑
x12=0

y13∑
x13=0

y14∑
x14=0

(
4∏
i=1

ai

) 14∏
j=10

dj(xj)

,
with

y10 = (n− x1 − x2 − x4 − x6) ∧ (m2 − 1)(m3 − 1)r,

y11 = [n− x1 − x4 − x10 − (x2 + x6) ∨ (x3 + x8)] ∧ (m3 − 1)r,

y12 = [n− x1 − x5 − x10 − (x2 + x7) ∨ (x3 + x9)] ∧ (m3 − 1)r,

y13 = [n− x1 − x2 − x10 − (x4 + x6) ∨ (x5 + x7)] ∧ (m2 − 1)r,

y14 = [n− x1 − x3 − x10 − (x4 + x8) ∨ (x5 + x9)] ∧ (m2 − 1)r,
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and where

a1 = P
(
W 1,1,1

1,1,1 ≤ n− x1 − x2 − x4 − x6 − x10 − x11 − x13

)
,

a2 = P
(
W 1,1,m3+1

1,1,m3+1 ≤ n− x1 − x3 − x4 − x8 − x10 − x11 − x14

)
,

a3 = P
(
W 1,m2+1,1

1,m2+1,1 ≤ n− x1 − x2 − x5 − x7 − x10 − x12 − x13

)
,

a4 = P
(
W 1,m2+1,m3+1

1,m2+1,m3+1 ≤ n− x1 − x3 − x5 − x9 − x10 − x12 − x14

)
and

d10(x10) = P
(
W 1,m2,m3

1,2,2 = x10

)
,

d11(x11) = P
(
W 1,1,m3

1,1,2 = x11

)
,

d12(x12) = P
(
W 1,m2+1,m3

1,m2+1,2 = x12

)
,

d13(x13) = P
(
W 1,m2,1

1,2,1 = x13

)
,

d14(x14) = P
(
W 1,m2,m3+1

1,2,m3+1 = x14

)
.

Similarly, to compute A2, we use

A2 =

y15∑
x15=0

y16∑
x16=0

y17∑
x17=0

y18∑
x18=0

y19∑
x19=0

(
8∏
i=5

ai

) 19∏
j=15

dj(xj)

,
with

y15 = (n− x1 − x2 − x4 − x6) ∧ (m2 − 1)(m3 − 1)r,

y16 = [n− x1 − x4 − x15 − (x2 + x6) ∨ (x3 + x8)] ∧ (m3 − 1)r,

y17 = [n− x1 − x5 − x15 − (x2 + x7) ∨ (x3 + x9)] ∧ (m3 − 1)r,

y18 = [n− x1 − x2 − x15 − (x4 + x6) ∨ (x5 + x7)] ∧ (m2 − 1)r,

y19 = [n− x1 − x3 − x15 − (x4 + x8) ∨ (x5 + x9)] ∧ (m2 − 1)r

and where

a5 = P
(
Wm1+1,1,1
m1+1,1,1 ≤ n− x1 − x2 − x4 − x6 − x15 − x16 − x18

)
,

a6 = P
(
Wm1+1,1,m3+1
m1+1,1,m3+1 ≤ n− x1 − x3 − x4 − x8 − x15 − x16 − x19

)
,

a7 = P
(
Wm1+1,m2+1,1
m1+1,m2+1,1 ≤ n− x1 − x2 − x5 − x7 − x15 − x17 − x18

)
,

a8 = P
(
Wm1+1,m2+1,m3+1
m1+1,m2+1,m3+1 ≤ n− x1 − x3 − x5 − x9 − x15 − x17 − x19

)
,
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and

d15(x15) = P
(
Wm1+1,m2,m3
m1+1,2,2 = x15

)
,

d16(x16) = P
(
Wm1+1,1,m3
m1+1,1,2 = x16

)
,

d17(x17) = P
(
Wm1+1,m2+1,m3
m1+1,m2+1,2 = x17

)
,

d18(x18) = P
(
Wm1+1,m2,1
m1+1,2,1 = x18

)
,

d19(x19) = P
(
Wm1+1,m2,m3+1
m1+1,2,m3+1 = x19

)
.

Remark A.3.1. The above expressions remain valid in the i.i.d. Poisson model,

the only di�erence is that the upper bounds that appear in the sums (the yj's) do not

contain the minimum part. For example, consider the case of Q(m1,m2 +1,m3 +1).

The upper bounds y1 to y5 that appear in the formula, now become

y1 = n,

y2 = n− x1,

y3 = n− x1,

y4 = n− x1 − (x2 ∨ x3),

y5 = n− x1 − (x2 ∨ x3).





Appendix B

Supplementary material for

Chapter 3

B.1 Proof of Lemma 3.3.1

From the mean value theorem in two dimensions we have

H(x1, y1)−H(x2, y2) =
∂H(x∗, y∗)

∂x
(x1 − x2) +

∂H(x∗, y∗)

∂y
(y1 − y2), (B.1)

where (x∗, y∗) is a point on the segment (x1, y1)− (x2, y2). Notice that

∂H(x, y)

∂x
=

2
[
1 + x− y + 2(x− y)2

]
− (m− 1)(2x− y) [1 + 4(x− y)]

[1 + x− y + 2(x− y)2]m
, (B.2)

∂H(x, y)

∂y
=
−
[
1 + x− y + 2(x− y)2

]
+ (m− 1)(2x− y) [1 + 4(x− y)]

[1 + x− y + 2(x− y)2]m
(B.3)

and that when yi ≤ xi for i ∈ {1, 2}, we have y∗ ≤ x∗ (since both points, (x1, y1)

and (x2, y2), are lying between (0x and the �rst bisector the same is true for any

point on the segment determined by them). Applying Bernoulli inequality to the

denominator in Eqs.(B.2) and (B.3)[
1 + x− y + 2(x− y)2

]m ≥ 1 + (m− 1)
[
x− y + 2(x− y)2

]
, (B.4)

we see, by elementary calculations (study of the sign of the equation of degree 2),

that∣∣∣∣∂H(x, y)

∂x

∣∣∣∣ ≤ 4(x− y)2(m− 2) + (x− y) [4x(m− 1) +m− 3] + (mx− x− 2)

1 +m [x− y + 2(x− y)2]

≤
{
m− 1, for 3 ≤ m ≤ 5

m− 2, for m ≥ 6.
(B.5)

In the same way,∣∣∣∣∂H(x, y)

∂y

∣∣∣∣ ≤ 2(x− y)2(2m− 3) + (x− y) [4x(m− 1) +m− 2] + (mx− x− 1)

1 +m [x− y + 2(x− y)2]

≤
{
m− 1, for 3 ≤ m ≤ 5

m− 2, for m ≥ 6.
(B.6)

and in combination with Eq.(B.5), we obtain the requested result.
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B.2 Proof of Lemma 3.4.3

Obviously, the random variables Yi1,...,id follow a multivariate normal distribution

since are equal, by de�nition, with a sum of i.i.d normals (Xs1,...,sd ∼ N (µ, σ2),

1 ≤ sj ≤ Tj , j ∈ {1, . . . , d}). Thus, the mean is, clearly, equal with µ̄ = m1 · · ·mdµ.

We show that the covariance matrix is given by the formula

Cov [Yi1,...,id , Yj1,...,jd ] =


(m1 − |i1 − j1|) · · · (md − |id − jd|)σ2 , |is − js| < ms

s ∈ {1, . . . , d},
0 , otherwise.

(B.7)

Take uq = |iq − jq|, for each q ∈ {1, . . . , d}, and observe that if there is an index

r ∈ {1, . . . , d} such that ur ≥ mr, then the random variables Yi1,...,id and Yj1,...,jd are

independent (they do not share any random variable Xs1,...,sd), so the covariance is

zero.

Assume now that uq ≤ mq − 1, for all q ∈ {1, . . . , d}. We observe that the two

random variables, Yi1,...,id and Yj1,...,jd , can be rewritten as

Yi1,...,id = Zj1,...,jdi1,...,id
+X, (B.8)

Yj1,...,jd = Zj1,...,jdi1,...,id
+ Y , (B.9)

where

Zj1,...,jdi1,...,id
=

i1∧j1+m1−1∑
s1=i1∧j1+u1

· · ·
id∧jd+md−1∑
sd=id∧jd+ud

Xs1,...,sd (B.10)

and X = Yi1,...,id − Zj1,...,jdi1,...,id
and Y = Yj1,...,jd − Zj1,...,jdi1,...,id

, respectively.

Since Xs1,...,sd ∼ N (µ, σ2) are independent, 1 ≤ sj ≤ Tj , j ∈ {1, . . . , d}, the random
variables Zj1,...,jdi1,...,id

, X and Y are pairwise independent. The result now follows from

the following simple property:

Fact B.2.1. Assume that W1 and W2 are two random variables such that W1 =

X+Y , W2 = X+Z, where X, Y and Z are pairwise independent random variables.

Then, the covariance between W1 and W2 satis�es

Cov [W1,W2] = V ar [X] . (B.11)

From the foregoing relation and since the variance of Zj1,...,jdi1,...,id
is given by

V ar
[
Zj1,...,jdi1,...,id

]
= (m1 − u1) · · · (md − ud)σ2, (B.12)

we conclude that if uq ≤ mq − 1 for all q ∈ {1, . . . , d}, then

Cov [Yi1,...,id , Yj1,...,jd ] = (m1 − |i1 − j1|) · · · (md − |id − jd|)σ2. (B.13)
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B.3 Validity of the algorithm in Example 3.4.2

To verify the validity of the algorithm proposed by [Ho�man and Ribak, 1991], re-

duces to show that Wi ∼ N (µwi|t,Σwi|t), where

µwi|t = E[Wi] +
1

V ar[Zl]
Cov[Wi, Zl](t− E[Zl]), (B.14)

Σwi|t = Cov(Wi)−
1

V ar[Zl]
Cov[Wi, Zl]Cov

T [Wi, Zl]. (B.15)

Clearly, from the de�nition, the random vector Wi follow a multivariate normal

distribution and satis�es the relation

Wi = Wi + µwi|t − E [Wi|Zl] . (B.16)

By conditioning with Zl in Eq.(B.16), we have

E
[
Wi|Zl

]
= E [Wi|Zl] + µwi|t − E [Wi|Zl] = µwi|t (B.17)

hence, by taking the mean,

E
[
Wi

]
= E

[
E
[
Wi|Zl

]]
= µwi|t. (B.18)

For the covariance matrix, we notice that

Cov
[
Wi|Zl

]
= Cov

[
Wi + µwi|t − E [Wi|Zl] |Zl

]
= Cov [Wi − E [Wi|Zl] |Zl] (B.19)

and considering the (r, q) element, we have

Cov
[
Wi|Zl

]
(r, q) = E [(Zr − E [Zr|Zl]) (Zq − E [Zq|Zl]) |Zl]

− E [Zr − E [Zr|Zl] |Zl]E [Zq − E [Zq|Zl] |Zl]
= E[ZrZq|Zl]− E[Zr|Zl]E[Zq|Zl]− E[Zq|Zl]E[Zr|Zl]
+ E[Zr|Zl]E[Zq|Zl]
= E[ZrZq|Zl]− E[Zr|Zl]E[Zq|Zl] = Σwi|t(r, q), (B.20)

since the posterior covariance is independent of the speci�c observations from

Eq.(B.15).

By taking the average in Eq.(B.19) and using the last relation, we get

Cov
[
Wi

]
= Σwi|t. (B.21)

B.4 Proof of Lemma 3.4.4

The result in Lemma 3.4.4 is a direct consequence of the following proposition (by

an extension to the d-dimensional setting):
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Proposition B.4.1. Let 2 ≤ m ≤ N − 1 be positive integers and X1, . . . , XN be

independent and identically distributed normal random variables with mean µ and

variance σ2. If i ∈ {1, . . . , N −m + 1}, then conditionally given
i+m−1∑
j=i

Xj = t, the

random variables Xs, s 6= i, are jointly distributed as the random variables

X̃s =

 t− µ√m
m

− 1

m− 1

(
1− 1√

m

)i+m−1∑
j=i+1

Xj

1{i+1,...,i+m−1}(s) +Xs,

(B.22)

where 1A(x) is the indicator of the set A, i.e. 1A(x) = 1 if x ∈ A and zero otherwise.

For simplicity, we will prove the result for standard normal (Xj ∼ N (0, 1)) random

variables, since the general case will be straightforward after the usual change of

variable Xj → µ+ σXj .

Thus, we consider X1, . . . , XN be i.i.d. standard normal random variables and we

want to show that

X̃s =

 t

m
− 1

m− 1

(
1− 1√

m

)i+m−1∑
j=i+1

Xj

1{i+1,...,i+m−1}(s) +Xs, (B.23)

are jointly distributed as

(X1, . . . , Xi−1, Xi+1, . . . , XN ) |
i+m−1∑
j=i

Xj = t

.

To simplify the notations, let fX̃ and gX be the joint density functions corre-

sponding to the random vectors X̃ =
(
X̃1, . . . , X̃i−1, X̃i+1, . . . , X̃N

)
and X =

(X1, . . . , Xi−1, Xi+1, . . . , XN ), respectively. Also, denote by Φ(x) the density func-

tion of a standard normal random variable.

By the change of variable in N − 1 dimensions formula, we have

fX̃(u1, . . . , ui−1, ui+1, . . . , uN ) = gX
(
h−1(u1, . . . , ui−1, ui+1, . . . , uN )

)
|det(Jh−1)| ,

(B.24)

where the function h is given by

h(v1, . . . , vi−1, vi+1, . . . , vN ) =

v1, . . . , vi−1, α− β

i+m−1∑
j=i+1

vj

+ vi+1, . . . ,

α− β

i+m−1∑
j=i+1

vj

+ vi+m−1, vi+m, . . . , vN

 , (B.25)

with α = t
m , β = 1

m−1

(
1− 1√

m

)
and where the Jacobian matrix of h−1 is equal

with

Jh−1(x) =
∂h−1

∂u
(x). (B.26)
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From Eq.(B.25), we obtain that h−1 has the form

h−1 (u1 , . . . , ui−1, ui+1, . . . , uN ) =

u1, . . . , ui−1,−
t√
m

+
1√
m+ 1

i+m−1∑
j=i+1

uj


+ui+1, . . . ,−

t√
m

+
1√
m+ 1

i+m−1∑
j=i+1

uj

+ ui+m−1, ui+m, . . . , uN

 ,

(B.27)

hence, by simple calculations, the Jacobian is equal with

|det(Jh−1)| = √m. (B.28)

Since the random variables X1, . . . , XN are independent, the joint density function

gX is the product of the standard normal densities, that is

gX(v1, . . . , vi−1, vi+1, . . . , vN ) = Φ(v1) . . .Φ(vi−1)Φ(vi+1) . . .Φ(vN ), (B.29)

thus, from Eqs.(B.24), (B.27) and (B.28), we obtain

fX̃(u1, . . . , ui−1, ui+1, . . . , uN ) =
√
mΦ(u1) . . .Φ(ui−1)Φ(ui+m) . . .Φ(uN )

×
i+m−1∏
s=i+1

Φ

− t√
m

+
1√
m+ 1

i+m−1∑
j=i+1

uj

+ us

.
(B.30)

Taking the exponent of the joint density function fX̃ (denoted with Exp
(
fX̃
)
), we

can write

Exp
(
fX̃
)

= −1

2

 N∑
s=1

s6∈{i,...,i+m−1}

u2
s +

i+m−1∑
s=i+1

us − t√
m

+
1√
m+ 1

i+m−1∑
j=i+1

uj

2
 .

(B.31)

We have, by denoting with S =
i+m−1∑
s=i+1

us − t√
m

+
1√
m+ 1

i+m−1∑
j=i+1

uj

2

and

with A =
i+m−1∑
j=i+1

uj ,

S =
i+m−1∑
s=i+1

[
us −

t√
m(
√
m+ 1)

+
1√
m+ 1

(A− t)
]2

=
i+m−1∑
s=i+1

[(
us −

t√
m(
√
m+ 1)

)2

+
2(A− t)√
m+ 1

(
us −

t√
m(
√
m+ 1)

)
+

(A− t)2

(
√
m+ 1)2

]
.

(B.32)



138 Appendix B. Supplementary material for Chapter 3

Since
i+m−1∑
s=i+1

(A− t)2

(
√
m+ 1)

=

√
m− 1√
m+ 1

(A− t)2, (B.33)

i+m−1∑
s=i+1

2(A− t)√
m+ 1

(
us −

t√
m(
√
m+ 1)

)
=

2(A− t)2

√
m+ 1

+
2t(A− t)√
m(
√
m+ 1)

(B.34)

and

i+m−1∑
s=i+1

(
us −

t√
m(
√
m+ 1)

)2

=
i+m−1∑
s=i+1

u2
s−

2t(A− t)√
m(
√
m+ 1)

+
t2(
√
m− 1)√

m(
√
m+ 1)

, (B.35)

we deduce, by substituting Eqs.(B.33), (B.34) and (B.35) in Eq.(B.32) , that

S =
i+m−1∑
s=i+1

u2
s +

i+m−1∑
j=i+1

uj − t

2

− t2

m
, (B.36)

so exponent Exp
(
fX̃
)
becomes

Exp
(
fX̃
)

= −1

2

 N∑
s=1

u2
s +

i+m−1∑
j=i+1

uj − t

2

− t2

m

 . (B.37)

Combining Eqs.(B.30) and (B.37), we get that the density function fX̃ is given by

fX̃(u1, . . . , ui−1, ui+1, . . . , uN ) =
√
m

(
1√
2π

)N−1

eExp(fX̃). (B.38)

We note that the joint density function f̄ of the random variables Xs, s 6= i, condi-

tionally given
i+m−1∑
j=i

Xj = t, is by de�nition

f̄(y1, . . . , yi−1, yi+1, . . . , yN ) =
f1(y1, . . . , yi−1, t, yi+1, . . . , yN )

f2(t)
, (B.39)

where f1 is the density function of

X1, . . . , Xi−1,

i+m−1∑
j=i

Xj , Xi+1, . . . , XN

 and f2

is the density of
i+m−1∑
j=i

Xj . Since
i+m−1∑
j=i

Xj ∼ N (0,m), we have

f2(t) =
1√

2πm
e−

t2

2m . (B.40)

The density f1 is given by, after applying the change of variable,

f1(y1, . . . , yi−1, t, yi+1, . . . , yN ) = ḡ(h̄−1(y1, . . . , yN )) |det(Jh̄−1)| , (B.41)
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where ḡ is the density of the vector (X1, . . . , XN ) and

h̄−1(y1, . . . , yN ) =

y1, . . . , yi−1, yi −
i+m−1∑
j=i+1

yj , yi+1, . . . , yN

 . (B.42)

We can easily see that |det(Jh̄−1)| = 1 and, from the independence of Xs,

ḡ(v1, . . . , vN ) = Φ(v1) . . .Φ(vN ). (B.43)

Substituting Eqs.(B.40)-(B.43) in (B.39), we obtain

f̄ =

Φ(y1) . . .Φ(yi−1)Φ

t− i+m−1∑
j=i+1

yj

Φ(yi+1) . . .Φ(yN )

1√
2πm

e−
t2

2m

=
√
m

(
1√
2π

)N−1

e

− 1
2


N∑
s=1

y2
s +

i+m−1∑
j=i+1

yj − t

2

− t2

m


, (B.44)

which is exactly the formula in Eq.(B.38), what we needed to show.

Remark B.4.2. It is interesting to notice that the result in Proposition B.4.1 can

be generalized by conditioning with a linear combination instead of just the sum. The

proof follows the lines of the above proof and we will omit it.





Appendix C

A Matlab graphical user interface

for discrete scan statistics

We present here a graphical user interface (GUI), developed in Matlab R©, that per-

mits to estimate the distribution of the discrete scan statistics for di�erent scenar-

ios. The purpose of this GUI application is to illustrate the accuracy of the existing

methods used for the approximation process of the scan statistic variable. We con-

sider the cases of one, two and three dimensional scan statistics over a random �eld

distributed according to a Bernoulli, binomial, Poisson or Gaussian law. In the par-

ticular situation of one dimensional scan statistics, we have also included a moving

average of order q model.

We should emphasize that almost all of the numerical results included in this thesis

were obtained with the help of this GUI program.

C.1 How to use the interface

(a) The Input Window (b) The Output Window

Figure C.1: The Scan Statistics Simulator GUI
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Once the program is executed, the user interface window from Figure C.1(a) appears.

This window, denoted in the subsequent as Input Window, is divided into three main

panels: Model, Parameters and Options, which are interconnected. The Options

panel becomes active only after the �rst two panels are correctly �lled in, the same

being true for the Computation Button.

From the Model section, the user can choose the dimension of the problem and the

distribution of the model that needs to be evaluated. The following table illustrates

the available options for each dimension.

1 dimensional 2 dimensional 3 dimensional

Bernoulli
√ √ √

Binomial
√ √ √

Poisson
√ √ √

Gaussian
√ √ √

Moving Average
√

Table C.1: Scan Dimension versus Random Field

Based on the values selected for the Scan Dimension, the �rst section of the Pa-

rameters panel activates accordingly. The �rst line gives the size of the region to be

scanned (at most N1 ×N2 ×N3), while the second line shows the size of the scan-

ning window. The Random Field Parameters section change in accordance with the

selection made in the Random Field panel. For example, if we select the Bernoulli

distribution, then we get the possibility to insert only the success probability value

p.

If all the values in the Parameters panel are correctly inserted, the Options panel is

activated. This panel is composed of three sections: Margins, Number of Iterations

and Methods. In the Margins section, we insert the values in-between we need to

evaluate the distribution of the discrete scan statistics. For example, if k1 = 1 and

k2 = 4, the distribution P (Sm(T) ≤ k) is computed for k ∈ {1, 2, 3, 4}. In the case

of a Gaussian model, we also can choose the step. As the name mention, the Number

of Iterations section permits the user to select the number of replications needed to

run the algorithms for both simulation (IterSim) or approximation (IterApp).

The Methods section is probably the most important. This section lets the user

to choose between di�erent methods used in the estimation of scan statistics dis-

tribution. There are two approximation methods, the Haiman type approximation

developed in Chapter 3 and the product type approximation presented in Chap-

ter 1, a method used for the simulation of the distribution and lower and upper

bounds (when there are available). For the simulated value and the Haiman type

approximation we used the importance sampling algorithms described in Chapter 3.

Table C.2 summarizes the approaches used for evaluating the distribution of the

discrete scan statistics implemented in the program.

As soon as the computation button is pushed and the calculations are done, a

second window pops-up, namely the Output Window. This window, as we can see
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AppH Esapp Esf AppPT LowB UppB

1d Eq.(3.91) Eq.(3.92) � Eq.(1.46) Eq.(1.47) Eq.(1.49)
Bernoulli 2d Eq.(3.95) Eq.(3.96) Eq.(3.97) Eq.(1.67) Eq.(1.76) Eq.(1.77)

3d Eq.(3.99) Eq.(3.101) Eq.(3.100) Eq.(1.87) � �

1d Eq.(3.91) Eq.(3.93) Eq.(3.94) Eq.(1.46) Eq.(1.47) Eq.(1.49)
Binomial 2d Eq.(3.95) Eq.(3.96) Eq.(3.97) Eq.(1.67) Eq.(1.76) Eq.(1.77)

3d Eq.(3.99) Eq.(3.101) Eq.(3.100) Eq.(1.87) � �

1d Eq.(3.91) Eq.(3.93) Eq.(3.94) Eq.(1.46) Eq.(1.47) Eq.(1.49)
Poisson 2d Eq.(3.95) Eq.(3.96) Eq.(3.97) Eq.(1.67) Eq.(1.76) Eq.(1.77)

3d Eq.(3.99) Eq.(3.101) Eq.(3.100) Eq.(1.87) � �

1d Eq.(3.91) Eq.(3.93) Eq.(3.94) Eq.(1.46) Eq.(1.47) Eq.(1.49)
Gaussian 2d Eq.(3.95) Eq.(3.96) Eq.(3.97) Eq.(1.67) Eq.(1.76) Eq.(1.77)

3d Eq.(3.99) Eq.(3.101) Eq.(3.100) Eq.(1.87) � �

Moving 1d Eq.(3.91) Eq.(4.20) Eq.(4.23) Eq.(1.46) Eq.(4.35) Eq.(4.36)
Average

Table C.2: Relations used for estimating the distribution of the scan statistics

from Figure C.1(b), is partitioned into two parts: Plots and Results.

The Plots section is divided in three subsections: Axes, Options and Status. The

main part (the Axes) shows the graphical representation of the distribution functions

selected from the Option panel. The �gure is plotted in accordance to the given

computation parameters (bounds, methods, etc.) from the Input Window.

The Options panel is in one to one correspondence with the Methods panel from

the Input Window. Notice that there are active only the options that are conform

to the methods previously selected by the user. By checking an active option, on

the Axes panel it is drawn the distribution function associated with the method.

We should mention that the obtained image can be saved, by right clicking on the

�gure, in several formats: .bmp, .jpeg, .png or .pdf.

On the bottom of the Output Window, the user can �nd the Results panel. Here

it is displayed the numerical information obtained from the algorithms. The table

contains, for each method selected by the user, a di�erent number of columns as

follows: for the Product Type Approximation method one column with "AppT"

caption, for the Lower and Upper Bounds method two columns entitled "LowB" and

"UppB", for the Importance Sampling Simulation method two columns "Sim" and

"ErrSim" (the simulation error) and for the Haiman Type Approximation (IS) four

columns "AppH", "EsappH", "EsfH" and "EtotalH" (these captions corresponds

to Approximation, Approximation Error, Simulation Error, Total Error; for more

details see Table C.2). The resulted values can be saved, by right clicking on the

table, in .txt, .xlsx and even .tex formats.

C.2 Future developments

This graphical user interface is just a part of a larger project that will include also

the estimation of the distribution of the multidimensional continuous scan statistics.
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