Système complet d’acquisition vidéo, de suivi de trajectoires et de modélisation comportementale pour des environnements 3D naturellement encombrés : application à la surveillance apicole
Auteur / Autrice : | Guillaume Chiron |
Direction : | Michel Ménard |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique, image et signal |
Date : | Soutenance le 28/11/2014 |
Etablissement(s) : | La Rochelle |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Informatique, Image, Interaction (La Rochelle) |
Jury : | Président / Présidente : Alain Trémeau |
Examinateurs / Examinatrices : Michel Ménard, Alain Trémeau, Didier Demigny, Jean-Philippe Domenger, Yves Demazeau, Petra Gomez-Krämer | |
Rapporteur / Rapporteuse : Didier Demigny, Jean-Philippe Domenger |
Mots clés
Mots clés contrôlés
Résumé
Ce manuscrit propose une approche méthodologique pour la constitution d’une chaîne complète de vidéosurveillance pour des environnements naturellement encombrés. Nous identifions et levons un certain nombre de verrous méthodologiques et technologiques inhérents : 1) à l’acquisition de séquences vidéo en milieu naturel, 2) au traitement d’images, 3) au suivi multi-cibles, 4) à la découverte et la modélisation de motifs comportementaux récurrents, et 5) à la fusion de données. Le contexte applicatif de nos travaux est la surveillance apicole, et en particulier, l’étude des trajectoires des abeilles en vol devant la ruche. De ce fait, cette thèse se présente également comme une étude de faisabilité et de prototypage dans le cadre des deux projets interdisciplinaires EPERAS et RISQAPI (projets menées en collaboration avec l’INRA Magneraud et le Muséum National d’Histoire Naturelle). Il s’agit pour nous informaticiens et pour les biologistes qui nous ont accompagnés, d’un domaine d’investigation totalement nouveau, pour lequel les connaissances métiers, généralement essentielles à ce genre d’applications, restent encore à définir. Contrairement aux approches existantes de suivi d’insectes, nous proposons de nous attaquer au problème dans l’espace à trois dimensions grâce à l’utilisation d’une caméra stéréovision haute fréquence. Dans ce contexte, nous détaillons notre nouvelle méthode de détection de cibles appelée segmentation HIDS. Concernant le calcul des trajectoires, nous explorons plusieurs approches de suivi de cibles, s’appuyant sur plus ou moins d’a priori, susceptibles de supporter les conditions extrêmes de l’application (e.g. cibles nombreuses, de petite taille, présentant un mouvement chaotique). Une fois les trajectoires collectées, nous les organisons selon une structure de données hiérarchique et mettons en œuvre une approche Bayésienne non-paramétrique pour la découverte de comportements émergents au sein de la colonie d’insectes. L’analyse exploratoire des trajectoires issues de la scène encombrée s’effectue par classification non supervisée, simultanément sur des niveaux sémantiques différents, et où le nombre de clusters pour chaque niveau n’est pas défini a priori mais est estimé à partir des données. Cette approche est dans un premier temps validée à l’aide d’une pseudo-vérité terrain générée par un Système Multi-Agents, puis dans un deuxième temps appliquée sur des données réelles.