Thèse soutenue

Développement de jauges de contrainte à base de nanoparticules colloïdales : Application à la réalisation de surfaces tactiles souples

FR  |  
EN
Auteur / Autrice : Nicolas Decorde
Direction : Laurence RessierBenoît Viallet
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 06/02/2014
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique et chimie des nano objets (Toulouse ; 2007-....)
Jury : Président / Présidente : Christophe Vieu
Examinateurs / Examinatrices : Laurence Ressier, Benoît Viallet, Emanuelle Lacaze
Rapporteurs / Rapporteuses : Michel Calame, David Peyrade

Résumé

FR  |  
EN

Un grand défi actuel consiste à réaliser des capteurs innovants tirant partie des propriétés singulières de nanoparticules colloïdales synthétisées par voie chimique et assemblées de manière contrôlée sur des surfaces. L’objet de cette thèse est le développement de jauges de contrainte résistives à base de nanoparticules. Ces jauges de contrainte sont constituées de lignes parallèles, de quelques micromètres de large, denses, de nanoparticules colloïdales d’or synthétisées par voie chimique et assemblées sur des substrats souples par assemblage convectif contrôlé. Le principe de ces capteurs résistifs repose sur la conduction tunnel entre les nanoparticules qui varie de manière exponentielle lorsque que l’assemblée est déformée. Des mesures électro-mécaniques couplées à des observations en microscopie électronique à balayage et à force atomique ont permis d’identifier, de quantifier et de comprendre l’impact de la taille et de la nature des ligands des nanoparticules sur la sensibilité et les phénomènes de dérive de la résistance à vide des jauges de contrainte. Ces travaux, associés à des mesures de diffusion de rayons X aux petits angles ont permis de corréler les variations macroscopiques de résistance électrique des jauges de contrainte aux déplacements relatifs des nanoparticules. Finalement, ces jauges de contrainte ultra-sensibles et miniatures, mises en matrices, ont été exploitées pour réaliser des surfaces tactiles souples multi-points et sensibles à l’intensité de l’appui