Thèse soutenue

Hybridation de la FDTD à Double Grille (DG-FDTD) avec l'Optique Physique Itérative (IPO) - Application à la simulation d'antennes environnées positionnées sur des platesformes de grandes dimensions

FR  |  
EN
Auteur / Autrice : Benoît Le Lepvrier
Direction : Renaud Loison
Type : Thèse de doctorat
Discipline(s) : Electronique et télécommunications
Date : Soutenance le 13/10/2014
Etablissement(s) : Rennes, INSA
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Laboratoire : Institut d'Électronique et de Télécommunications (Rennes) - Institut d'Electronique et de Télécommunications de Rennes
: Université européenne de Bretagne (2007-2016)
Jury : Président / Présidente : Jean-Lou Dubard
Examinateurs / Examinatrices : Renaud Loison, Jean-Lou Dubard, Élodie Richalot, Christine Letrou, Maxime Romier, Philippe Pouliguen, Raphaël Gillard
Rapporteurs / Rapporteuses : Élodie Richalot, Christine Letrou

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les travaux de cette thèse ont été consacrés à l'extension du domaine d'application de la FDTD à Grille Double (DG-FDTD) via son hybridation avec l'Optique Physique Itérative. Ces recherches ont été motivées par le besoin d'évaluer précisément et efficacement le diagramme d'antenne environnées installées sur des plates-Formes de grandes dimensions (satellite, véhicule, lanceur spatial). Lors du tour d'horizon consacré aux méthodes numériques pouvant intervenir dans la résolution de ce type de problème, la DG-FDTD a révélé des caractéristiques intéressantes en permettant des analyses large bande rapides et précises d’antennes avec un environnement proche complexe. Cependant, sa formulation rigoureuse entraîne des besoins importants en ressources informatiques pour analyser des problèmes de grandes dimensions électriques. Les travaux présentés dans ce manuscrit précisent les limites de son domaine d'application. Ils mettent finalement en avant son incapacité à résoudre seule des problèmes d'antenne sur plateforme. En réponse à cette limitation, un nouveau schéma hybride associant la DG-FDTD avec une méthode asymptotique est proposé. La méthode DG-FDTD/IPO ainsi créée décompose la simulation du problème complet en deux simulations successives. L'antenne et son environnement proche sont tout d'abord simulés rigoureusement avec la DG-FDTD puis la plateforme est analysée efficacement avec l'IPO. Les deux simulations sont interfacées en utilisant le principe d’équivalence. Après avoir validé cette nouvelle méthode sur un scénario canonique, elle est appliquée au calcul de rayonnement électromagnétique en champ lointain dans deux scénarios d’antenne environnée sur porteur (antenne sur véhicule notamment). Deux améliorations de la DG-FDTD/IPO sont finalement proposées dans ce manuscrit. La première est consacrée à la prise en compte grossière des couplages retours entre l'environnement proche de l'antenne et la plate-Forme. Cette amélioration repose sur la redescription grossière de l’environnement proche de l’antenne dans la simulation IPO. La seconde amélioration concerne la modélisation des courants sur les parties ombrées de la plate-Forme dans la simulation IPO. Cette amélioration est motivée par le besoin d'analyser précisément des scénarios de type antenne sur lanceur spatial. En effet, l'IPO ne calcule pas les courants sur les zones ombrées, or dans ce type de problème elles représentent la majeure partie de la plate-Forme. Une nouvelle méthode basée sur l'IPO, et appelée Traitement Séquentielle des Domaines (TSD), est donc proposée pour répondre au besoin exprimé plus haut. Après avoir validé cette nouvelle méthode sur un cas simple impliquant un cylindre, elle est appliquée avec succès à l'analyse d'une plate-Forme de type lanceur spatial.