Segmentation d'objet pour l'interprétation sémantique
Auteur / Autrice : | Wenbin Zou |
Direction : | Lotfi Senhadji |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du signal et de l'image |
Date : | Soutenance le 13/03/2014 |
Etablissement(s) : | Rennes, INSA |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes) |
Partenaire(s) de recherche : | Laboratoire : Institut d'Électronique et de Télécommunications (Rennes) |
: Université européenne de Bretagne (2007-2016) | |
Jury : | Président / Présidente : Philippe Carré |
Examinateurs / Examinatrices : Lotfi Senhadji, Philippe Carré, Frédéric Jurie, Philippe Carré, Kidiyo Kpalma | |
Rapporteur / Rapporteuse : Zhi Liu, Frédéric Jurie |
Mots clés
Résumé
Cette thèse porte sur les problèmes de segmentation d’objets et la segmentation sémantique qui visent soit à séparer des objets du fond, soit à l’attribution d’une étiquette sémantique spécifique à chaque pixel de l’image. Nous proposons deux approches pour la segmentation d’objets, et une approche pour la segmentation sémantique. La première approche est basée sur la détection de saillance. Motivés par notre but de segmentation d’objets, un nouveau modèle de détection de saillance est proposé. Cette approche se formule dans le modèle de récupération de la matrice de faible rang en exploitant les informations de structure de l’image provenant d’une segmentation ascendante comme contrainte importante. La segmentation construite à l’aide d’un schéma d’optimisation itératif et conjoint, effectue simultanément, d’une part, une segmentation d’objets basée sur la carte de saillance résultant de sa détection et, d’autre part, une amélioration de la qualité de la saillance à l’aide de la segmentation. Une carte de saillance optimale et la segmentation finale sont obtenues après plusieurs itérations. La deuxième approche proposée pour la segmentation d’objets se fonde sur des images exemples. L’idée sous-jacente est de transférer les étiquettes de segmentation d’exemples similaires, globalement et localement, à l’image requête. Pour l’obtention des exemples les mieux assortis, nous proposons une représentation nouvelle de haut niveau de l’image, à savoir le descripteur orienté objet, qui reflète à la fois l’information globale et locale de l’image. Ensuite, un prédicteur discriminant apprend en ligne à l’aide les exemples récupérés pour attribuer à chaque région de l’image requête un score d’appartenance au premier plan. Ensuite, ces scores sont intégrés dans un schéma de segmentation du champ de Markov (MRF) itératif qui minimise l’énergie. La segmentation sémantique se fonde sur une banque de régions et la représentation parcimonieuse. La banque des régions est un ensemble de régions générées par segmentations multi-niveaux. Ceci est motivé par l’observation que certains objets peuvent être capturés à certains niveaux dans une segmentation hiérarchique. Pour la description de la région, nous proposons la méthode de codage parcimonieux qui représente chaque caractéristique locale avec plusieurs vecteurs de base du dictionnaire visuel appris, et décrit toutes les caractéristiques locales d’une région par un seul histogramme parcimonieux. Une machine à support de vecteurs (SVM) avec apprentissage de noyaux multiple est utilisée pour l’inférence sémantique. Les approches proposées sont largement évaluées sur plusieurs ensembles de données. Des expériences montrent que les approches proposées surpassent les méthodes de l’état de l’art. Ainsi, par rapport au meilleur résultat de la littérature, l’approche proposée de segmentation d’objets améliore la mesure d F-score de 63% à 68,7% sur l’ensemble de données Pascal VOC 2011.