Thèse soutenue

Imagerie par rayons X résolue en énergie : Méthodes de décomposition en base de matériaux adaptées à des détecteurs spectrométriques

FR  |  
EN
Auteur / Autrice : Alexandra-Iulia Potop
Direction : Françoise Peyrin
Type : Thèse de doctorat
Discipline(s) : STIC Santé
Date : Soutenance le 02/10/2014
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : CREATIS - Centre de Recherche et d'Application en Traitement de l'Image et du Son, UMR5515 (Lyon, Rhône ; 1995-2006) - Centre de recherche en applications et traitement de l'image pour la santé / CREATIS
Jury : Président / Présidente : Gérard Montarou
Examinateurs / Examinatrices : Françoise Peyrin, Gérard Montarou, Frédéric Truchetet, Jean-Michel Letang, Véronique Rebuffel
Rapporteurs / Rapporteuses : Frédéric Truchetet

Résumé

FR  |  
EN

Les systèmes d’imagerie par rayons X conventionnels utilisent des détecteurs à base de scintillateur en mode intégration d’énergie. La nouvelle génération de détecteurs à base de semi-conducteur CdTe/CdZnTe permet de compter le nombre de photons et de mesurer l’énergie avec laquelle les photons arrivent sur le détecteur. Le laboratoire LDET (CEA LETI) a développé des détecteurs spectrométriques pixellisés à base de CdTe pour l’imagerie par rayons X associés à un circuit de lecture rapide permettant de travailler à fort taux de comptage avec une bonne résolution en énergie. Ces travaux de thèse proposent d’apporter une contribution au traitement des données acquises sur ces détecteurs résolus en énergie pour la quantification des constituants des matériaux en radiographie et en tomographie. Le cadre médical applicatif choisi est l’ostéodensitométrie. Des simulations de radiographie, qui prennent en compte les imperfections du système de détection, comme le partage de charges et les empilements, ont été réalisées. Nous avons choisi d’étudier des méthodes de traitements des données spectrales basées sur la décomposition en base de matériaux. Cette technique de réduction des données consiste à modéliser le coefficient d’atténuation linéique d’un matériau par une combinaison linéaire des fonctions d’atténuation de deux matériaux de base. Deux approches, utilisant toutes les deux un apprentissage par calibrage, ont été adaptées pour notre application. La première est une adaptation de l’approche polynômiale standard, appliquée pour deux et trois canaux d’énergie. Un processus d’optimisation des seuils des canaux a été réalisé afin de trouver la configuration optimale des bandes d’énergie. Une étude sur le nombre de canaux a permis d’évaluer les limites de la formulation polynômiale. Pour aller plus loin dans l’exploitation du potentiel des nouveaux détecteurs, une approche statistique développée dans notre laboratoire a été adaptée pour la décomposition en base de matériaux. Elle peut se généraliser à un grand nombre de canaux (100 par exemple). Une comparaison des deux approches a été réalisée selon des critères de performance comme le bruit et la précision sur l’estimation des longueurs des matériaux traversés. La validation des deux approches étudiées sur des données expérimentales acquises en radiographie, dans notre laboratoire, avec des détecteurs spectrométriques, a montré une bonne quantification des constituants des matériaux, en accord avec les résultats obtenus en simulation.