Thèse soutenue

Optimisation par approche physique des micro-antennes RMN fabriquées par Techniques Microélectroniques : Etude Théorique et Expérimentale

FR  |  
EN
Auteur / Autrice : Tien Truong Cong
Direction : Latifa Fakri-Bouchet
Type : Thèse de doctorat
Discipline(s) : Micro et nano technologie
Date : Soutenance le 01/07/2014
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : CREATIS - Centre de Recherche et d'Application en Traitement de l'Image et du Son, UMR5515 (Lyon, Rhône ; 1995-2006)
Jury : Président / Présidente : Daniel Barbier
Examinateurs / Examinatrices : Latifa Fakri-Bouchet, Daniel Barbier, Claude Fermon, Souhil Megherbi, Abdelhamid Errachid el Salhi, Abdennasser Fakri, Philippe Lecoeur, Huy Hoang Pham
Rapporteur / Rapporteuse : Claude Fermon, Souhil Megherbi

Résumé

FR  |  
EN

Le concept de micro capteurs RMN (nommés aussi micro-antennes ou antennes aiguilles) pourrait conduire à des outils d'analyse fiables capables d'assurer la reproductibilité de mesures en spectroscopie RMN haute résolution. Leur emploi deviendra ainsi envisageable pour des applications in vivo. A notre connaissance, aucune étude in vivo utilisant ces micro-bobines ''high-tech'' n’a été rapportée. Le principal avantage de ce type de dispositifs est la possibilité d’observer une micro région d'intérêt bien définie, noyée dans un grand volume. A l’inverse, le principal inconvénient est le manque de sensibilité car l’efficacité des micro-antennes actuelles souffre de plusieurs paramètres (petite valeur d'inductance par rapport à l'inductance de fils de connexion, le bruit dû au fort couplage avec l’échantillon...etc.). Notre approche initiale réalisée in vitro dans le cadre des travaux de thèse de N. Baxan (2008) (http://www.spectroscopynow.com) et de A. Kadjo (2011), ne peut être mis en œuvre in vivo sans un travail complémentaire important. C’est d’une importance capitale car dans ce cas le signal RMN est si petit qu’il est comparable au bruit thermique. Une façon ''simple'', mais non moins aisée, d’optimiser l’efficacité d’une antenne est une conception minutieuse et une maîtrise des paramètres géométriques conditionnant les propriétés physiques et électriques. La partie principale des ''micro-antennes aiguilles'' implantables est la bobine aux bornes de laquelle la tension est induite. Elle est décrite schématiquement par une résistance et une inductance dont les valeurs impactent directement et fortement sur les principaux critères de performances en RMN: le rapport signal sur bruit (SNR) et les limites de détection (LOD). La fabrication de ces micro-antennes (500x1000µm2), est réalisée à l’aide de techniques de microélectroniques fort coûteuses. La modélisation et la simulation numériques s’avèrent des outils essentiels amplement justifiés. La majeure partie de ce travail est consacré à l’optimisation de ces microantennes. Les résultats de principes physiques visant à optimiser leurs paramètres géométriques sont décrits à travers la prédiction des paramètres électriques: la self inductance, l’inductance mutuelle et les pertes additionnelles dues à l’effet de peau et de proximité. L’originalité de ce travail, à la fois théorique et expérimental réside, dans: (i) la traduction de verrous technologiques en problématiques fondamentales, (ii) Le développement d’un ''Logiciel maison'' qui sans avoir la prétention de rivaliser avec les logiciels commerciaux, peut s’étendre à d'autre configuration plus complexes de micro-antennes ou d'antennes RMN et cibler au mieux les besoins des ''RMN’iste-Antenn-istes'' tout en leur offrant un gain en temps et en coût non négligeables.