Model unifié dérigé par l'usage pour l'extraction du profile de l'utilisateur et de la source de donnée
Auteur / Autrice : | Lyes Limam |
Direction : | Lionel Brunie, Harald Kosch |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 24/06/2014 |
Etablissement(s) : | Lyon, INSA en cotutelle avec Universität Passau (Allemagne) |
Ecole(s) doctorale(s) : | École doctorale InfoMaths (Lyon ; 2009-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'InfoRmatique en Images et Systèmes d'information (Ecully, Rhône ; 2003-....) - Laboratoire d'InfoRmatique en Images et Systèmes d'Information / LIRIS |
Jury : | Président / Présidente : Ernesto Damiani |
Examinateurs / Examinatrices : Lionel Brunie, Harald Kosch, Ernesto Damiani, Christine Verdier, Markus Zanker, Elöd Egyed-Zsigmond, Matthieu Exbrayat, Michael Granitzer | |
Rapporteur / Rapporteuse : Christine Verdier, Markus Zanker |
Mots clés
Résumé
La problématique traitée dans la thèse s’inscrit dans le cadre de l’analyse d’usage dans les systèmes de recherche d’information. En effet, nous nous intéressons à l’utilisateur à travers l’historique de ses requêtes, utilisées comme support d’analyse pour l’extraction d'un profil d’usage. L’objectif est de caractériser l’utilisateur et les sources de données qui interagissent dans un réseau afin de permettre des comparaisons utilisateur-utilisateur, source-source et source-utilisateur. Selon une étude que nous avons menée sur les travaux existants sur les modèles de profilage, nous avons conclu que la grande majorité des contributions sont fortement liés aux applications dans lesquelles ils étaient proposés. En conséquence, les modèles de profils proposés ne sont pas réutilisables et présentent plusieurs faiblesses. Par exemple, ces modèles ne tiennent pas compte de la source de données, ils ne sont pas dotés de mécanismes de traitement sémantique et ils ne tiennent pas compte du passage à l’échelle (en termes de complexité). C'est pourquoi, nous proposons dans cette thèse un modèle d’utilisateur et de source de données basé sur l’analyse d’usage. Les caractéristiques de ce modèle sont les suivantes. Premièrement, il est générique, permettant de représenter à la fois un utilisateur et une source de données. Deuxièmement, il permet de construire le profil de manière implicite à partir de l’historique de requêtes de recherche. Troisièmement, il définit le profil comme un ensemble de centres d’intérêts, chaque intérêt correspondant à un cluster sémantique de mots-clés déterminé par un algorithme de clustering spécifique. Et enfin, dans ce modèle le profil est représenté dans un espace vectoriel. Les différents composants du modèle sont organisés sous la forme d’un Framework, la complexité de chaque composant y est évaluée. Le Framework propose : - une méthode pour la désambigüisation de requêtes; - une méthode pour la représentation sémantique des logs sous la forme d’une taxonomie ; - un algorithme de clustering qui permet l’identification rapide et efficace des centres d’intérêt représentés par des clusters sémantiques de mots clés ; - une méthode pour le calcul du profil de l’utilisateur et du profil de la source de données à partir du modèle générique. Le Framework proposé permet d'effectuer différentes tâches liées à la structuration d’un environnement distribué d’un point de vue usage. Comme exemples d’application, le Framework est utilisé pour la découverte de communautés d’utilisateurs et la catégorisation de sources de données. Pour la validation du Framework, une série d’expérimentations est menée en utilisant des logs du moteur de recherche AOL-search, qui ont démontrées l’efficacité de la désambigüisation sur des requêtes courtes, et qui ont permis d’identification de la relation entre le clustering basé sur une fonction de qualité et le clustering basé sur la structure.