Thèse soutenue

Nouvelle génération de dispositif à microscope de grande ouverture pour le piégeage d’atomes individuels

FR  |  
EN
Auteur / Autrice : Charles Tuchendler
Direction : Antoine Browaeys
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 14/11/2014
Etablissement(s) : Palaiseau, Institut d'optique théorique et appliquée
Ecole(s) doctorale(s) : Ecole doctorale Ondes et Matière (Orsay, Essonne ; 1998-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire Charles Fabry / Optique quantique
Jury : Président / Présidente : Fabien Bretenaker
Examinateurs / Examinatrices : Nicolas Schlosser
Rapporteurs / Rapporteuses : Olivier Gorceix, Nicolas Treps

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse présente les premiers travaux réalisés autour d’un nouveau dispositif expérimental de piégeage d’atomes individuels utilisant une unique lentille asphérique de grande ouverture numérique. Au cours de cette thèse, nous avons testé les propriétés optiques de la lentille et démontré la formation d’un col laser de 1 µm ainsi qu’un champ transverse sur lequel la lentille est limitée par diffraction de plus ou moins 25 µm. Après avoir démontré la capacité de ce système à piéger des atomes uniques, les caractérisations usuelles des conditions de piégeage ont été conduites: durée de vie, taux de chauffage, polarisation de la lumière de fluorescence, fréquences d’oscillations. Cette thèse s’est intéressée spécifiquement à la distribution d’énergie des atomes uniques piégés. La technique de lâcher et recapture combinée à une étude spectroscopique de l’occupation du piège par les atomes a conduit à la vérification du caractère thermique de la distribution d’énergie des atomes. Par un refroidissement laser combiné à un refroidissement adiabatique, une température minimale de 1,75 µK sans pertes d’atomes est obtenue avec un niveau vibrationnel moyen occupé égal à 4. Ces résultats sont très encourageants dans le contexte de l’information quantique où la température est souvent la principale limite physique à la durée de vie des cohérences d’un bit quantique. La dernière partie de cette thèse revient sur la problématique de la manipulation spatiale d’atomes uniques. Envisagé dans le cadre de la réalisation d’un calculateur quantique, le transfert d’un bit quantique et son déplacement dans l’espace sur une échelle compatible avec les caractéristiques d’un calculateur sont successivement étudiés. Ces travaux ont montré que ni l’état externe des atomes (au travers de leur température) ni leur état interne (à travers la durée de vie des cohérences d’un bit quantique) sont affectés par ce type de manipulations.