Optimisation de forme d’un avion pour sa performance sur une mission
Auteur / Autrice : | François Gallard |
Direction : | Bijan Mohammadi, Marc Montagnac |
Type : | Thèse de doctorat |
Discipline(s) : | Aéronautique, Astronautique |
Date : | Soutenance le 26/05/2014 |
Etablissement(s) : | Toulouse, INPT |
Ecole(s) doctorale(s) : | École doctorale Aéronautique-Astronautique (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse) |
Mots clés
Résumé
Les avions rencontrent de nombreuses conditions d’opérations au cours de leurs vols, comme le nombre de Mach, l’altitude et l’angle d’attaque. Leur prise en compte durant la conception améliore la robustesse du système et finalement la consommation des flottes d’avions. L’optimisation de formes aérodynamiques contribue à la conception des avions, et repose sur l’automatisation de la génération de géométries ainsi que la simulation numérique de la physique du vol. La minimisation de la trainée des formes aérodynamiques doit prendre en compte de multiples conditions d’opération, étant donne que l’optimisation a une unique condition de vol mène a des formes dont la performance se dégrade fortement quand cette condition de vol est perturbée. De plus, la flexibilité structurelle déforme les ailes différemment selon la condition de vol, et doit donc être simulée lors de telles optimisations. Dans cette thèse, la minimisation de la consommation de carburant au cours d’une mission est formulée en problème d’optimisation. Une attention particulière est apportée au choix des conditions d’opérations à inclure dans le problème d’optimisation, étant donne que celles-ci ont un impact majeur sur la qualité des résultats obtenus, et que le cout de calcul est proportionnel à leur nombre. Un nouveau cadre théorique est proposé pour adresser cette question, offrant un point de vue original et surmontant des difficultés révélées par les méthodes a l’état-de-l’ art en matière de mise en place de problèmes d’optimisation multipoints. Un algorithme appelé Gradient Span Analysis (GSA), est proposé pour automatiser le choix des conditions d’opération. Il est base sur la réduction de dimension de l’espace vectoriel engendre par les gradients adjoints aux différentes conditions de vol. Des contributions de programmation a la chaine d’optimisation ont permis d’évaluer les méthodes aux optimisations du profil académique RAE2822 et de la configuration voilure-fuselage XRF-1, représentative des avions de transport modernes. Alors que les formes résultant d’optimisation mono-point présentent de fortes dégradations de performance hors du point de conception, les optimisations multipoints adéquatement formulées fournissent de bien meilleurs compromis. Il est finalement montre que les interactions fluide-structure ajoutent de nouveaux degrés de liberté, et ont un impact sur les optimisations en de multiples conditions de vol, ouvrant des perspectives en matière d’adaptation passive de forme.