Régulation par le complexe CCM du dialogue entre intégrines et cadhérines pour le maintien de la stabilité vasculaire.
Auteur / Autrice : | Justyna Lisowska |
Direction : | Corinne Albiges-Rizo, Eva Faurobert |
Type : | Thèse de doctorat |
Discipline(s) : | Biologie cellulaire |
Date : | Soutenance le 24/11/2014 |
Etablissement(s) : | Grenoble |
Ecole(s) doctorale(s) : | École doctorale chimie et science du vivant (Grenoble ; 199.-....) |
Partenaire(s) de recherche : | Equipe de recherche : Institut Albert Bonniot (Grenoble ; 2007-2015) |
Jury : | Président / Présidente : René-Marc Mège |
Examinateurs / Examinatrices : Elisabeth Tournier-Lasserve, Amel Mettouchi | |
Rapporteur / Rapporteuse : Ellen Van Obberghen-Schilling, Sylvie Dufour |
Mots clés
Résumé
Les interactions cellule-cellule et cellule-matrice extracellulaire (MEC) sont cruciales pour entretenir la cohésion tissulaire. Ces deux types d'adhésions sont fonctionnellement interconnectés par un dialogue permanent qui met en jeu des voies de signalisation convergentes régulant notamment l'architecture et la contractilité du cytosquelette d'acto-myosine sous-jacent. Ce dialogue permet d'établir un équilibre de forces intracellulaires en réponse à la tension appliquée par le milieu extérieur. L'endothélium des vaisseaux sanguins est un tissu soumis à des conditions mécaniques particulières. En plus des compressions intercellulaires subies par tout épithélium, les cellules endothéliales (CEs) doivent également subir et résister aux forces hémodynamiques du flux sanguin et à la rigidité de la lame basale – deux signaux mécaniques agissant de part et d'autre de l'endothélium. Les Cerebral Cavernous Maformations (CCM) ou encore angiomes caverneux sont des lésions vasculaires hémorragiques d'origine génétique qui se développent au niveau des capillaires du système nerveux central et qui se caractérisent par des défauts dans l'environnement proche des CEs. La perte des jonctions intercellulaires et du recouvrement par les cellules murales, l'organisation aberrante de la membrane basale aussi que la stagnation du flux sanguin sont les caractéristiques des CCM. C'est pourquoi nous avons choisi cette pathologie comme modèle intéressant de mécanotransduction mettant en jeu le dialogue entre les intégrines et les cadhérines. En effet, les trois gènes indifféremment mutés dans cette pathologie codent pour des protéines, CCM1-3, qui s'associent en un complexe ternaire et qui sont reconnues comme des acteurs importants de la régulation des jonctions adhérentes. Des études moléculaires et protéomiques montrant que le complexe CCM interagit avec la protéine ICAP-1, un régulateur négatif de l'intégrine β1, nous ont conduit à formuler l'hypothèse selon laquelle ce complexe jouerait un rôle pivot dans la signalisation croisée entre ces intégrines et cadhérines. Les études effectuées pendant ma thèse ont démontré que les protéines CCM régulent l'homéostasie tensionnelle médiée par les structures d'adhérence intercellulaires et à la MEC par leur action inhibitrice sur l'intégrine β1 et en controlant une balance d'activité entre les deux isoformes de ROCK, ROCK1 et ROCK2. Nous avons montré que, suite à la perte des protéines CCMs, la suractivation de l'intégrine β1 augmente la sensibilité des CEs aux signaux mécaniques comme la rigidité de la MEC ou les forces hémodynamiques du flux sanguin. Il en résulte une suractivation de la contractilité cellulaire dépendante de ROCK1 déclenchant une boucle de rétrocontrôle mécanique conduisant à l'amplification des tensions intra- et extracellulaire et brisant ainsi l'homéostasie tensionnelle pour favoriser le phénotype malin.