Thèse soutenue

L’étude des performances et le dimensionnement du radar pénétrateur pour la mission EJSM (Ganymède et Europa)

FR  |  
EN
Auteur / Autrice : Yann Berquin
Direction : Wlodek Kofman
Type : Thèse de doctorat
Discipline(s) : Sciences de la terre et de l'univers, et de l'environnement
Date : Soutenance le 27/02/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut de planétologie et d'astrophysique de Grenoble
Jury : Président / Présidente : Jean-Louis Monin
Examinateurs / Examinatrices : Roberto Orosei, Essam Heggy, Alain Hérique
Rapporteurs / Rapporteuses : Jean-Pierre Barriot, Amélie Litman

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

On se propose dans un premier temps d'étudier des jeux de données topographiques sur la lune glacée de Jupiter Ganymède et d'estimer l'impact de la topographie sur les performances du futur radar sondeur. Les principaux résultats sont présentés dans [1]. Une seconde partie est dédiée à l'expression mathématique du problème direct du sondage radar planétaire (physique et instrumentation). On rappelle ainsi comment dériver à partir des formulations de Stratton-Chu les formulations volumiques classiques et surfaciques (i.e. Huygens-Fresnel). On s'attache ensuite à détailler un algorithme performant basé sur la formulation surfacique pour simuler des échos radar à partir d'une surface planétaire maillée. Cette approche est largement inspirée par le travail de J.-F. Nouvel [2]. Une troisième partie s'intéresse à l'inversion des paramètres géophysiques de surface à partir des mesures radar. On écrit ainsi le problème dans un cadre probabiliste (c.f. [3]) et on présente trois grandes familles d'algorithmes : (i) une approche avec une linéarisation du problème, (ii) une approche itérative basée sur une méthode de gradient et (iii) une approche statistique pour estimer les densités de probabilités a posteriori. Ces algorithmes sont appliqués à des jeux de données synthétiques pour illustrer leurs performances. [1] Y. Berquin, W. Kofman, A. Herique, G. Alberti, and P. Beck. A study on ganymede's surface topography: Perspectives for radar sounding. Planetary and Space Science, (0), 2012. [2] J.-F. Nouvel, A. Herique, W. Kofman, and A. Safaeinili. Radar signal simulation: Surface modeling with the Facet Method. Radio Science, 39:RS1013, February 2004. [3] A. Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM, 2005.