Thèse soutenue

Etude d’une tête de réception hyperfréquence en technologie supraconductrice
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Romain Collot
Direction : Pascal Febvre
Type : Thèse de doctorat
Discipline(s) : Optique et radiofréquence
Date : Soutenance le 02/09/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut de microélectronique, électromagnétisme et photonique - Laboratoire d'hyperfréquences et de caractérisation (Grenoble)
Jury : Président / Présidente : Jérôme Lesueur
Examinateurs / Examinatrices : Pascal Febvre, Jean-Claude Villegier, Gérard Ghibaudo, Jean-Claude Villegier
Rapporteurs / Rapporteuses : Annick Degardin, Pierre Bernstein

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Les systèmes de télécommunication de type radio logicielle ou "Software Defined Radio" (SDR) exploitent les techniques numériques qui permettent leur reconfigurabilité, que ce soit en termes de fréquence, de bande passante utilisée, ou de méthode de modulation/démodulation des signaux. Ceux-ci nécessitent des architectures permettant la numérisation des signaux analogiques RF à des fréquences d'échantillonnage de plusieurs dizaines de GHz, avec des bandes passantes de plusieurs dizaines de MHz et une résolution supérieure à 10 bits. Ces objectifs sont très difficiles à atteindre avec la technologie actuelle des semi-conducteurs. La logique à quantum de flux magnétique ou logique "Rapid Single-Flux-Quantum" (RSFQ) se présente comme un candidat séduisant pour la conception de tels systèmes.En effet, celle-ci permet d'atteindre des fréquences d'horloge de plusieurs centaines de GHz pour une consommation d'environ 100 nW par porte logique. Le travail de thèse a consisté en la réalisation d'un prototype de chaîne de réception RF analogique-numérique en technologie RSFQ. L'étude et la conception des différents blocs la constituant comme le convertisseur analogique-numérique et ceux de traitement du signal numérisé en aval a été réalisée. Les premiers résultats expérimentaux confirment la fonctionnalité des cellules RSFQ de base constituant le bloc de traitement numérique. La difficulté à faire fonctionner expérimentalement les blocs plus complexes a soulevé la question de la sensibilité des cellules RSFQ aux perturbations magnétiques extérieures. Cette problématique a été étudiée sur des circuits RSFQ simples et a permis de conclure qu'un champ magnétique externe de quelques dizaines de µT était suffisant pour dégrader le fonctionnement de tels circuits. Une solution de prise en compte des effets d'un champ magnétique externe dans le simulateur utilisé a été développée pour anticiper ces problèmes dès la conception. Celle-ci a été validée expérimentalement avec un Superconducting Quantum Interference Device (SQUID).