Thèse soutenue

Caractérisation électrique de transistors à effet de champ avancés : transistors sans jonctions, sur réseaux de nanotubes de carbone ou sur nanofil en oxyde d'étain
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Min Kyu Joo
Direction : Mireille MouisGyu-Tae Kim
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 27/05/2014
Etablissement(s) : Grenoble en cotutelle avec Korea University
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut de microélectronique, électromagnétisme et photonique - Laboratoire d'hyperfréquences et de caractérisation (Grenoble)
Jury : Président / Présidente : Gérard Ghibaudo
Examinateurs / Examinatrices : Mireille Mouis, Gyu-Tae Kim, Moongyu Jang
Rapporteurs / Rapporteuses : Abdelkader Souifi, Sunae Seo

Résumé

FR  |  
EN

Les matériaux de faible dimensionnalité, tels que les nanotubes de carbone, le graphène, les nanofils de semi-conducteurs ou d'oxydes métalliques, présentent des propriétés intéressantes telles qu'un rapport surface/ volume important, des mobilités électroniques élevées, des propriétés thermiques et électriques particulières, avec la possibilité de constituer une alternatives à certaines fonctions CMOS ou d'intégrer de nouvelles fonctions comme la récupération d'énergie ou des capteurs. Pour la bio-détection, les nanofils permettent par exemple d'obtenir une grande sensibilité à la présence de biomolécules cibles grâce à la modification de charge qui accompagne leur hybridation sur des biomolécules sondes greffées à la surface du nanofil et au fort couplage électrostatique de cette charge de surface avec le cœur du nanofil. La fabrication de ce type de structure suit différentes voies: une voie dite "top-down" qui est utilisée par la production microélectronique de masse et qui permet un excellent contrôle technologique grâce à l'utilisation d'équipements, notamment de lithographie, extrêmement performants; une seconde voie moins coûteuse mais moins contrôlée dite "bottom-up" dont un exemple répandu est la réalisation de réseaux aléatoires, obtenus par dispersion de nanostructures réalisées directement sous forme 1D par croissance et en général relativement dopés de façon non nécessairement contrôlée. Dans les deux cas, le mécanisme de base est le contrôle électrostatique du canal par effet de champ d'un ensemble (organisé ou non) de nanostructures. Dans cette thèse, trois types de transistors différents sont explorées ; des transistors à nanofils SnO2, des réseaux aléatoires de nanotubes de carbone, des transistors à nanofil à canal uniformément dopé, dits "junctionless transistors" ou JLTs). Par rapport à la configuration classique d'un transistor MOS à inversion, le contrôle demande en général à être reconsidéré pour tenir compte des spécificités de ce type de structures: topologie du canal, isolants non standards (résines), effets de percolation dans les réseaux désordonné, contrôle électrostatique dans les nanofils fortement dopés, rôle crucial des états d'interface. Le travail s'appuie sur (i) une caractérisation approfondie de ces composants en statique (contrôle du courant), en petit signal (contrôle de la charge) et en bruit (pièges et états d'interfaces), (ii) une analyse critique des méthodologies d'extraction de paramètres et des modèles utilisés pour analyser ce fonctionnement avec dans certains cas l'appui de simulations et (iii) le développement, lorsque cela s'avère nécessaire, de nouvelles méthodologies d'extraction.