Thèse soutenue

Commande non linéaire en présence de modes souples, applications aérospatiales

FR  |  
EN
Auteur / Autrice : Elodie Duraffourg
Direction : Tarek Ahmed-AliLaurent Burlion
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 11/12/2014
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Equipe de recherche : Equipe d'accueil doctoral Commande des systèmes et dynamique du vol (Toulouse, Haute-Garonne)
Laboratoire : Office national d'études et recherches aérospatiales (Toulouse, Haute-Garonne). Département Commande des Systèmes et Dynamique du vol (DCSD)

Résumé

FR  |  
EN

En aérospatial, les contraintes de masse ont conduit à utiliser des structures plus légères et par conséquent plus souples, induisant de nouveaux objectifs de commande, comme la réduction des efforts structuraux. Pour satisfaire ces objectifs, les modes de flexion doivent être considérés dès la synthèse de la loi de commande, ce qui entraîne certaines contraintes comme les non linéarités, le sous actionnement et l’altération des mesures par les modes souples. En considérant ces contraintes, cette thèse traite de la synthèse d’une méthode de commande non linéaire pour les systèmes aérospatiaux souples. Nous nous intéressons particulièrement au problème d’atténuation des oscillations provoquées par les modes souples. Pour cela, nous définissons une classe de système non linéaire, sous actionnée et à minimum de phase, représentative des systèmes aérospatiaux souples. Pour cette classe de système, nous proposons une loi de commande non linéaire synthétisée par retour d’état en utilisant des changements de variables et la technique du backstepping. La synthèse est effectuée de façon à améliorer le régime transitoire des modes souples. Les états souples n’étant pas mesurés, le problème du retour de sortie est également traité par l’intermédiaire d’observateurs adaptatifs (à temps fini et asymptotique). Des incertitudes sur la pulsation et l’amortissement des modes souples sont en particulier considérées. La méthode proposée est illustrée par des simulations numériques réalisées sur un lanceur et un avion hypersonique.