Thèse soutenue

Scalabilité des méthodes multifrontales pour la résolution de grands systèmes linéaires creux sur architectures hybrides à mémoire partagée et distribuée

FR  |  
EN
Auteur / Autrice : Mohamed Wissam Sid Lakhdar
Direction : Jean-Yves L'Excellent
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 01/12/2014
Etablissement(s) : Lyon, École normale supérieure
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'informatique du parallélisme (Lyon ; 1988-....) - ROMA / ENS Lyon / CNRS / Inria Grenoble Rhône-Alpes
Jury : Président / Présidente : François Pellegrini
Examinateurs / Examinatrices : Jean-Yves L'Excellent, François Pellegrini, Iain S. Duff, Jean-François Méhaut, Xiaoye Sherry Li, Antoine Petitet
Rapporteur / Rapporteuse : Iain S. Duff, Jean-François Méhaut

Résumé

FR  |  
EN

La résolution de systèmes d'équations linéaires creux est au cœur de nombreux domaines d'applications. De même que la quantité de ressources de calcul augmente dans les architectures modernes, offrant ainsi de nouvelles perspectives, la taille des problèmes rencontré de nos jours dans les applications de simulations numériques augmente aussi et de façon significative. L'exploitation des architectures modernes pour la résolution efficace de problèmes de très grande taille devient ainsi un défit a relever, aussi bien d'un point de vue théorique que d'un point de vue algorithmique. L'objectif de cette thèse est d'adresser les problèmes de scalabilité des solveurs creux directs basés sur les méthodes multifrontales en environnements parallèles asynchrones. Dans la première partie de la thèse, nous nous intéressons a l'exploitation du parallélisme multicoeur sur les architectures a mémoire partagée. Nous introduisons une variante de l'algorithme Geist-Ng afin de gérer aussi bien un parallélisme a grain fin, a travers l'utilisation de librairies BLAS séquentiel et parallèle optimisées, que d'un parallélisme a plus gros grain, a travers l'utilisation de parallélisme a base de directives OpenMP. Nous considérons aussi des aspects mémoire afin d'améliorer les performances sur des architectures NUMA: (i) d'une part, nous analysons l'influence de la localité mémoire et utilisons des stratégies d'allocation mémoire adaptatives pour gérer les espaces de travail privés et partagés; (ii) d'autre part, nous nous intéressons au problème de partages de ressources sur les architectures multicoeurs, qui induisent des pénalités en termes de performances. Enfin, afin d'éviter que des ressources ne reste inertes a la fin de l'exécution de leurs taches, et ainsi, afin d'exploiter au mieux les ressources disponibles, nous proposons un algorithme conceptuellement proche de l'approche dite de vol de travail, et qui consiste a assigner les ressources de calculs inactives au taches de travail actives de façon dynamique. Dans la deuxième partie de cette thèse, nous nous intéressons aux architectures hybrides, a base de mémoire partagées et de mémoire distribuées, pour lesquels un travail particulier est nécessaire afin d'améliorer la scalabilité du traitement de problèmes de grande taille. Nous étudions et optimisons tout d'abord les noyaux d'algèbre linéaire danse utilisé dans les méthodes multifrontales en environnent distribué asynchrone, en repensant les variantes right-looking et left-looking de la factorisation LU avec pivotage partiel dans notre contexte distribué. De plus, du fait du parallélisme multicoeurs, la proportion des communications relativement aux calculs et plus importante. Nous expliquons comment construire des algorithmes de mapping qui minimisent les communications entres nœuds de l'arbre de dépendances de la méthode multifrontale. Nous montrons aussi que les communications asynchrones collectives deviennent christiques sur grand nombres de processeurs, et que les broadcasts asynchrones a base d'arbres de broadcast doivent être utilisés. Nous montrons ensuite que dans un contexte multifrontale complètement asynchrone, où plusieurs instances de tels communications ont lieux, de nouveaux problèmes de synchronisation apparaissent. Nous analysons et caractérisons les situations de deadlock possibles et établissons formellement des propriétés générales simples afin de résoudre ces problèmes de deadlock. Nous établissons par la suite des propriétés nous permettant de relâcher les synchronisations induites par la solutions précédentes, et ainsi, d'améliorer les performances. Enfin, nous montrons que les synchronisations peuvent être relâchées dans un solveur creux danse et illustrons les gains en performances, sur des problèmes de grande taille issue d'applications réelles, dans notre environnement multifrontale complètement asynchrone.