Thèse soutenue

Sémantique des jeux et réalisabilité pour la logique classique

FR  |  
EN
Auteur / Autrice : Valentin Blot
Direction : Olivier Laurent
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/11/2014
Etablissement(s) : Lyon, École normale supérieure
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'informatique du parallélisme (Lyon ; 1988-....)
Jury : Président / Présidente : Pierre-Louis Curien
Examinateurs / Examinatrices : Olivier Laurent, Pierre-Louis Curien, Andrzej Murawski, Thomas Streicher, Pierre Hyvernat, Colin Riba
Rapporteurs / Rapporteuses : Andrzej Murawski, Thomas Streicher

Résumé

FR  |  
EN

Cette thèse étudie deux modèles de réalisabilité pour la logique classique construits sur la sémantique des jeux HO, interprétant la logique, l'arithmétique et l'analyse classiques directement par des programmes manipulant un espace de stockage d'ordre supérieur.La non-innocence en jeux HO autorise les références d'ordre supérieur, et le non parenthésage révèle la CPS des jeux HO et fournit une catégorie de continuations dans laquelle interpréter le lambda-mu calcul de Parigot. Deux modèles de réalisabilité sont construits sur cette interprétation calculatoire directe des preuves classiques.Le premier repose sur l'orthogonalité, comme celui de Krivine, mais il est simplement typé et au premier ordre. En l'absence de codage de l'absurdité au second ordre, une mu-variable libre dans les réaliseurs permet l'extraction. Nous définissons un bar-récurseur et prouvons qu'il réalise l'axiome du choix dépendant, utilisant deux conséquences de la structure de CPO du modèle de jeux: toute fonction sur les entiers (même non calculable) existe dans le modèle, et toute fonctionnelle sur des séquences est Scott-continue. La bar-récursion est habituellement utilisée pour réaliser intuitionnistiquement le « double negation shift » et en déduire la traduction négative de l'axiome du choix. Ici, nous réalisons directement l'axiome du choix dans un cadre classique.Le second, très spécifique au modèle de jeux, repose sur des conditions de gain: des ensembles de positions d'un jeu munis de propriétés de cohérence. Un réaliseur est alors une stratégie dont les positions sont toutes gagnantes.