Bornes inférieures et supérieures dans les circuits arithmétiques
Auteur / Autrice : | Sébastien Tavenas |
Direction : | Pascal Koiran |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 09/07/2014 |
Etablissement(s) : | Lyon, École normale supérieure |
Ecole(s) doctorale(s) : | École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de l'informatique du parallélisme (Lyon ; 1988-....) |
Jury : | Président / Présidente : Étienne Grandjean |
Examinateurs / Examinatrices : Pascal Koiran, Étienne Grandjean, Markus Bläser, Mohab Safey El Din, Frédéric Bihan, Natacha Portier | |
Rapporteurs / Rapporteuses : Markus Bläser, Mohab Safey El Din, Neeraj Kayal |
Mots clés
Mots clés contrôlés
Résumé
La complexité arithmétique est l’étude des ressources nécessaires pour calcu- ler des polynômes en n’utilisant que des opérations arithmétiques. À la fin des années 70, Valiant a défini (de manière semblable à la complexité booléenne) des classes de polynômes. Les polynômes, ayant des circuits de taille polyno- miale, considérés faciles forment la classe VP. Les sommes exponentielles de ces derniers correpondent alors à la classe VNP. L’hypothèse de Valiant est la conjecture que VP ̸= VNP.Bien que cette conjecture soit encore grandement ouverture, cette dernière semble toutefois plus accessible que son homologue booléen. La structure algé- brique sous-jacente limite les possibilités de calculs. En particulier, un résultat important du domaine assure que les polynômes faciles peuvent aussi être cal- culés efficacement en paralèlle. De plus, quitte à autoriser une augmentation raisonnable de la taille, il est possible de les calculer avec une profondeur de calcul bornée par une constante. Comme ce dernier modèle est très restreint, de nombreuses bornes inférieures sont connues. Nous nous intéresserons en premier temps à ces résultats sur les circuits de profondeur constante.Bürgisser a montré qu’une conjecture (la τ-conjecture) qui borne supérieu- rement le nombre de racines de certains polynômes univariés, impliquait des bornes inférieures en complexité arithmétique. Mais, que se passe-t-il alors, si on essaye de réduire, comme précédemment, la profondeur du polynôme consi- déré? Borner le nombre de racines réelles de certaines familles de polynômes permetterait de séparer VP et VNP. Nous étudierons finalement ces bornes su- périeures sur le nombre de racines réelles.