Thèse soutenue

Règles de modélisation des systèmes énergétiques dans les bâtiments basse consommation

FR  |  
EN
Auteur / Autrice : Hubert Blervaque
Direction : Dominique Marchio
Type : Thèse de doctorat
Discipline(s) : Energétique et Procédés
Date : Soutenance le 20/10/2014
Etablissement(s) : Paris, ENMP
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Centre Efficacité Énergétique des Systèmes. Paris
Jury : Examinateurs / Examinatrices : Dominique Marchio, Sila Filfli, Michaël Kummert, Pascal Stabat
Rapporteurs / Rapporteuses : Gilles Fraisse, Christian Inard

Résumé

FR  |  
EN

La réduction des besoins dans les bâtiments à basse consommation d'énergie (BBC) nécessite un réexamen de l'approche de modélisation des systèmes énergétiques dans les outils de simulation. L'approche proposée repose sur une modélisation plus fine des phénomènes physiques incluant la régulation en boucle fermée du système énergétique couplé au bâtiment. A partir de l'identification des phénomènes propres au comportement énergétique des BBC, des recommandations, ou règles de modélisation, sont établies pour le développement des modèles de leurs systèmes énergétiques. Ces recommandations sont mises en application dans deux études. Tout d'abord, une simulation dynamique d'un bâtiment et de son système conduit à un dimensionnement plus adapté comparé aux méthodes classiques dans le cas de BBC avec des répercussions sur les appels de puissance et la consommation d'énergie. Ensuite, une analyse de sensibilité par la méthode de Morris sur une représentation générique du système énergétique a permis d'identifier les paramètres nécessitant d'être connus avec précision. La différence entre l'approche développée et la simulation horaire avec régulation idéale n'est que de quelques pourcents en besoins énergétiques pour un bâtiment existant mais elle passe à plus de 20% dans un bâtiment BBC. Un écart du même ordre de grandeur peut être identifié pour la détermination de la performance énergétique globale du système par une prise en compte plus détaillée des phénomènes de cyclage, de charge partielle ou de consommation des auxiliaires.