Thèse soutenue

Test de génotypage plaquettaire in vitro à base de sandwich de microparticules biofonctionnalisées : Détection par capteur de fluorescence à ondes évanescentes, imagerie de fluorescence et cytométrie en flux

FR  |  
EN
Auteur / Autrice : Amandine Cornillon
Direction : Jean-Pierre CloarecEliane SouteyrandPaul Charette
Type : Thèse de doctorat
Discipline(s) : STIC santé et micro et nano-technologies
Date : Soutenance le 18/12/2014
Etablissement(s) : Ecully, Ecole centrale de Lyon en cotutelle avec Université de Sherbrooke (Québec, Canada)
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Etablissement public : Etablissement français du sang
Laboratoire : Institut des nanotechnologies de Lyon
Jury : Président / Présidente : Marie-Hélène Delville
Examinateurs / Examinatrices : Jean-Pierre Cloarec, Eliane Souteyrand, Paul Charette
Rapporteurs / Rapporteuses : Denis Boudreau, Christine Ménager

Résumé

FR  |  
EN

Cette thèse porte sur l’élaboration d’un outil de capture d’ADN permettant d’identifier une mutation génétique (SNP) grâce à la formation de sandwichs avec des particules de carboxylatex biofonctionnalisées avec des oligonucléotides couplée à une détection de la fluorescence. Le modèle biologique choisi pour ce projet est le génotypage plaquettaire et plus particulièrement la recherche du gène biallélique HPA-1. Le principal objectif de ce travail a été d’optimiser un outil de capture préalablement développé dans l’équipe (Trévisan, 2011) afin de réduire le nombre d’étapes et de simplifier la mise en oeuvre globale du test en modifiant les interactions moléculaires utilisée pour capturer l’ADN cible et en utilisant des particules fluorescentes comme élément de détection. En présence d’ADN cible, des sandwichs sont formés entre les particules fluorescentes et les particules magnétiques biofonctionnalisées. Ces sandwichs sont purifiés par séparation magnétique et la fluorescence est détectée par trois méthodes : la cytométrie en flux, l’imagerie de fluorescence et l’Evareader (détection par ondes évanescentes). Dans un premier temps, les paramètres de fonctionnalisation chimique et biologique des différentes particules (magnétiques et fluorescentes) ont été déterminés et optimisés ainsi que les conditions d’hybridation pour la capture de l’ADN cible. Ensuite, la formation des sandwichs et leur détection ont été suivies par des mesures de fluorescence en utilisant trois méthodes différentes : la cytométrie en flux, l’imagerie de fluorescence et l’Evareader (capteur à ondes évanescentes). Les résultats obtenus avec les différentes méthodes de détection sont concordants et montrent que l’outil de capture d’ADN développé permet de capturer la cible synthétique (oligonucléotide) HPA-1 en réduisant le temps d’analyse de 45 min. Dans nos conditions, le test permet de discriminer l’allèle a de l’allèle b du gène HPA-1 qui ne diffère que d’un nucléotide. Le rapport des signaux de fluorescence issus du sandwich spécifique et du sandwich non spécifique est d’environ 2,5 à 3. Ce rapport devra être amélioré par la suite, en optimisant les conditions de formation des sandwichs. La prochaine étape consistera à optimiser le système de capture d’ADN développé pour gagner en spécificité et déterminer la limite de détection du test. Ce test devra également être validé avec des échantillons biologiques. A plus long terme, la fluorescence pourra être détectée par un photodétecteur miniaturisé actuellement développé à l’Université de Sherbrooke. Des études préliminaires présentées dans ce manuscrit montrent les potentialités de ce nouveau transducteur.