Thèse soutenue

Systèmes mécatroniques à paramètres variables : analyse du comportement et approche du tolérancement

FR  |  
EN
Auteur / Autrice : Manel Zerelli
Direction : Thierry Soriano
Type : Thèse de doctorat
Discipline(s) : Sciences de l'ingénieur
Date : Soutenance le 31/03/2014
Etablissement(s) : Châtenay-Malabry, Ecole centrale de Paris
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Ingénierie des Systèmes Mécaniques et des Matériaux (Toulon)
Jury : Président / Présidente : Jean Brac
Examinateurs / Examinatrices : Pierre Seppecher, Raouf Fathallah
Rapporteur / Rapporteuse : Christine Prelle, Dominique Meizel

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans cette thèse nous avons proposé une méthode d’étude des variations paramétriques pour les systèmes mécatroniques continus et hybrides puis une approche du tolérancement mécatronique. Nous avons d’abord étudié les différentes approches existantes pour la prise en compte de la variation de paramètres. Pour les systèmes continus à paramètres variables nous avons choisi la méthode des inclusions différentielles. Nous avons repris l’algorithme de Raczynski et nous avons développé un algorithme d’optimisation qui se base sur la méthode du steepest descent, avec une extension permettant d’obtenir l’optimum global. Pour les systèmes hybrides, contenant des évolutions continues et des sauts discrets, et qui présentent des variations paramétriques, nous avons choisi le formalisme de l’inclusion différentielle impulsionnelle comme outil de modélisation. Nous avons repris ce formalisme et identifié ses éléments sur un système mécatronique. Nous avons développé des algorithmes de résolution des inclusions différentielles impulsionnelles pour un puis pour plusieurs paramètres variables. Pour visualiser les résultats, les algorithmes développés ont été implémentés sous Mathématica. Nous avons fini cette partie par une comparaison entre notre approche et d’autres comme celles autour des automates hybrides à invariant polyèdre, les inclusions différentielles polygonales et l’algorithme pratique de résolution des inclusions différentielles. Nous avons montré alors certains avantages de notre approche. En dernière partie, nous avons repris les différents outils utilisés et résultats obtenus pour définir et affiner notre approche du tolérancement. Nous avons défini la zone du fonctionnement désiré, les différents cas de figures qu’elle peut présenter et son intersection avec le domaine atteignable. Nous avons présenté un outil métrique basé sur la distance topologique de Hausdorff pour le calcul des distances entre ces différents ensembles. Munis de ces éléments, nous avons proposé une démarche itérative pour le tolérancement dans l’espace d’état.