Fragilisation du cuivre par le mercure liquide : étude expérimentale et numérique
Auteur / Autrice : | Julien Colombeau |
Direction : | Marie-Laurence Giorgi, Thierry Auger |
Type : | Thèse de doctorat |
Discipline(s) : | Physique des matériaux |
Date : | Soutenance le 07/03/2014 |
Etablissement(s) : | Châtenay-Malabry, Ecole centrale de Paris |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mécanique des sols, structures et matériaux (Gif-sur-Yvette, Essonne ; 1998-2021) - Laboratoire de génie des procédés et matériaux (Gif-sur-Yvette, Essonne) - Laboratoire de mécanique des sols- structures et matériaux - Laboratoire de Génie des Procédés et Matériaux - EA 4038 / LGPM |
Jury : | Président / Présidente : Pietro Cortona |
Examinateurs / Examinatrices : Vassilis Pontikis, Alexandre Legris, Olivier Hardouin Duparc |
Mots clés
Résumé
L'objectif de cette thèse est de produire une avancée dans la compréhension du phénomène de fragilisation par les métaux liquide (FML), en nous appuyant sur l'étude expérimentale et numérique du couple cuivre/mercure. La fragilisation du cuivre pur OFHC (Oxygen Free High Conductivity) par le mercure liquide est mise en évidence et quantifiée par des mesures de ténacité. En outre, un procédé d'ingénierie des joints de grains est appliqué afin d'augmenter de façon importante la proportion de joints de grains spéciaux Σ3 dans le cuivre. Des essais de FML sont alors réalisés et permettent d'établir le rôle de ces joints de grains dans la fragilisation du cuivre par le mercure liquide. En parallèle, des modélisations de joints de grains spéciaux Σ3 et Σ5 sont réalisées par calcul basés sur la théorie de la fonctionnelle de la densité (DFT). Ces modélisations permettent à la fois de mettre en évidence une réduction des propriétés mécaniques de ces joints de grains en présence d'atomes de mercure, ainsi que de comprendre l'immunité des joints Σ3 observée expérimentalement. Cependant, ces modélisations ne permettent pas de rendre compte quantitativement des observations expérimentales. Pour améliorer cette description atomique de la FML, une contribution non locale est ajoutée, via l'utilisation d'un modèle de zone cohésive nourri par calcul DFT. Il est montré que le confinement du métal liquide en extrême pointe de fissure engendre une force normale aux parois de la fissure (l'origine physique de cette force est discutée), et que l'introduction de cette nouvelle composante permet de rendre compte des observations expérimentales de façon beaucoup plus quantitative. Ce dernier modèle est appuyé par la réalisation d'expériences de FML sous pression hydrostatique.