Thèse soutenue

Étude de problèmes différentiels elliptiques et paraboliques sur un graphe

FR  |  
EN
Auteur / Autrice : Baptiste Vasseur
Direction : Joachim Von Below
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 06/02/2014
Etablissement(s) : Littoral
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques pures et appliquées (Calais, Pas de Calais) - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville / LMPA
Jury : Président / Présidente : Felix Ali Mehmeti
Examinateurs / Examinatrices : Joachim Von Below, Mabel Cuesta, Jens Bolte, José Antonio Lubary
Rapporteurs / Rapporteuses : B. Malcolm Brown, Wolfgang Reichel

Résumé

FR  |  
EN

Après une présentation des notations usuelles de la théorie des graphes, on étudie l'ensemble des fonctions harmoniques sur les graphes, c'est à dire des fonctions dont le laplacien est nul. Ces fonctions forment un espace vectoriel et sur un graphe uniformément localement fini, on montre que cet espace vectoriel est soit de dimension un, soit de dimension infinie. Lorsque le graphe comporte une infinité de cycles, ce résultat tombe en défaut et on exhibe des exemples qui montrent qu'il existe un graphe sur lequel les harmoniques forment un espace vectoriel de dimension n, pour tout n. Un exemple de graphe périodique est également traité. Ensuite, toujours pour le laplacien, on étudie plus précisément sur les arbres uniformément localement finis les valeurs propres dont l'espace propre est de dimension infini. Dans ce cas, il est montré que l'espace propre contient un sous-espace isomorphe à l'ensemble des suites réelles bornées. Une inégalité concernant le spectre est donnée dans le cas spécial où les arêtes sont de longueur un. Des exemples montrent que ces inclusions sont optimales. Dans le chapitre suivant, on étudie le comportement asymptotique des valeurs propres pour des opérateurs elliptiques d'ordre 2 quelconques sous des conditions de Kirchhoff dynamiques. Après réécriture du problème sous la forme d'un opérateur de Sturm-Liouville, on écrit le problème de façon matricielle. Puis on trouve une équation caractéristique dont les zéros correspondent aux valeurs propres. On en déduit une formule pour l'asymptotique des valeurs propres. Dans le dernier chapitre, on étudie la stabilité de solutions stationnaires pour certains problèmes de réaction-diffusion où le terme de non linéarité est polynomial.