Solutions de chaînes de spin XXZ et XYZ avec bords par la séparation des variables
Auteur / Autrice : | Simone Faldella |
Direction : | Nikolai Kitanine |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 11/12/2014 |
Etablissement(s) : | Dijon |
Ecole(s) doctorale(s) : | École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de Mathématiques de Bourgogne (IMB) (Dijon) |
Jury : | Président / Présidente : Vladimir Roubtsov |
Examinateurs / Examinatrices : Olivier Babelon, Giuliano Niccoli | |
Rapporteurs / Rapporteuses : Jean Avan, Anastasia Doikou |
Mots clés
Mots clés contrôlés
Résumé
Dans cette thèse nous donnons une solution des chaînes quantiques de spin-1/2 XXZ et XYZ ouvertes avec les termes de bord intégrables les plus généraux. En utilisant la méthode de la Séparation des Variable (SoV), à la Sklyanin, on est capable, dans le cas inhomogène, de construire l’ensemble complet des états propres et des valeurs propres associés. La caractérisation de ces quantités est faite par un système maximal de N équations quadratiques, où N est la taille du système. Des méthodes différentes, comme l’ansatz de Bethe algébrique (ABA) ou autres généralisations de l’ansatz de Bethe, ont été utilisés dans le passé pour résoudre ces problèmes. Aucune méthode a pu effectivement reproduire l’ensemble complet des états propres et valeur propres dans le cas de conditions au bord les plus génériques. Une expression, sous forme d’un déterminant à la Vandermonde, pour les produits scalaires entre les états en représentation de SoV est aussi obtenue. La formule pour les produits scalaires représente la première étape pour approcher le problème relié au calcul des facteurs de forme et fonctions de corrélations.