Thèse soutenue

Propagation des incertitudes dans un modèle réduit de propagation des infrasons

FR  |  
EN
Auteur / Autrice : Michaël Bertin
Direction : Daniel Bouche
Type : Thèse de doctorat
Discipline(s) : Sciences
Date : Soutenance le 12/06/2014
Etablissement(s) : Cachan, Ecole normale supérieure
Ecole(s) doctorale(s) : École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne)
Jury : Président / Présidente : Florian de Vuyst
Examinateurs / Examinatrices : Christophe Millet, Jean-Christophe Robinet, Roger Waxler
Rapporteur / Rapporteuse : Régis Marchiano, Jean-Michel Bernard

Résumé

FR  |  
EN

La perturbation d’un système peut donner lieu à de la propagation d’onde. Une façon classique d’appréhender ce phénomène est de rechercher les modes propres de vibration du milieu. Mathématiquement, trouver ces modes consiste à rechercher les valeurs et fonctions propres de l’opérateur de propagation. Cependant, d’un point de vue numérique, l’opération peut s’avérer coûteuse car les matrices peuvent avoir de très grandes tailles. En outre, dans la plupart des applications, des incertitudes sont inévitablement associées à notre modèle. La question se pose alors de savoir s’il faut attribuer d’importantes ressources de calcul pour une simulation dont la précision du résultat n’est pas assurée. Nous proposons dans cette thèse une démarche qui permet à la fois de mieux comprendre l’influence des incertitudes sur la propagation et de réduire considérablement les coûts de calcul pour la propagation des infrasons dans l’atmosphère. L’idée principale est que tous les modes n’ont pas la même importance et souvent, seule une poignée d’entre eux suffit à décrire le phénomène sans perte notable de précision. Ces modes s’avèrent être ceux qui sont les plus sensibles aux perturbations atmosphériques. Plus précisément, l’analyse de sensibilité permet d’identifier les structures de l’atmosphère les plus influentes, les groupes de modes qui leur sont associés et les parties du signal infrasonore qui leur correspondent. Ces groupes de modes peuvent être spécifiquement ciblés dans un calcul de spectre au moyen de techniques de projection sur des sous-espace de Krylov, ce qui implique un gain important en coût de calcul. Cette méthode de réduction de modèle peut être appliquée dans un cadre statistique et l’estimation de l’espérance et de la variance du résultat s’effectue là aussi sans perte notable de précision et avec un coût réduit.