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Abstract

Title: Modeling and Solving University Timetabling

This thesis investigates university timetabling problems. These problems oc-
cur across universities and are faced each year by the practitioners. We propose
new lower bounds, heuristic approaches, mixed integer and constraint program-
ming models to solve them.

We address the exam timetabling and the student scheduling problem. We
investigate new methods and formulations and compare them to the existing
approaches. For exam timetabling, we propose an improvement to an existing
mixed integer programming model that makes it possible to obtain optimal solu-
tions. Next, lower bounds, a more compact reformulation for constraints and a
constraint programming model are proposed. For the exam timetabling problem
at Université de Technologie de Compiegne, we designed a memetic approach.
Finally, we present a new formulation for the student scheduling problem and

investigate its performance on a set of real-world instances.
Keywords. Timetabling, Heuristics, Integer Programming, Exact Approaches.

Supervisors: Aziz Moukrim and Jean-Paul Boufflet
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Résumé

Titre : Modélisation et résolution de problémes d’emploi du temps d"universités.

Cette these s’intéresse aux problemes d’emploi du temps d’'universités. Ces
problemes sont rencontrés chaque année par les utilisateurs. Nous proposons des
bornes inférieures, des méthodes heuristiques et des modeles de programmation
mixte en nombres entiers et de programmation par contraintes.

Nous traitons le probleme d’emploi du temps d’examens et celui d’affectation
des étudiants. Nous proposons de nouvelles méthodes et formulations et les com-
parons aux approches existantes. Nous proposons, pour le probléeme d’emploi
du temps d’examens, une amélioration d’'un modele mathématique en nombres
entiers qui permettra d’obtenir des solutions optimales. Ensuite, des bornes in-
térieures, une formulation plus compacte des contraintes et un modele de pro-
grammation par contraintes sont proposés. Pour le probléme d’emploi du temps
d’examens a 1'Université de Technologie de Compiegne, nous proposons une ap-
proche mémétique. Enfin, nous présentons un modele mathématique pour le
probleme d’affectation des étudiants et nous étudions sa performance sur un en-
semble d’instances réelles.

Mots clés. Emploi du temps, Approches heuristiques, Programmation en
nombres entiers, Approches exactes.

Directeurs de theése. Aziz Moukrim et Jean-Paul Boufflet.
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INTRODUCTION

Companies, schools, universities or hospitals are regularly brought to solve a
timetabling problem. Building a good timetable is often a time-consuming task
that requires a considerable effort in order to meet the requirements and the
needs. Flight timetables, for instance, are very crucial for the airline companies
as well as airports and passengers because of the tight schedules and the vari-
ous uncertain conditions airplanes operate in. Train schedules, inside or outside
the cities, confront different circumstances such as peak and off-peak times, con-
struction zones and drivers’ availability. Having a good timetable is important
for the students in schools and universities to be able to achieve their best results.
Nurses’ efficiency in hospital is influenced by the quality of the timetable they get
for their shifts.

Within all these categories of problems, the university timetabling problem
has gained an increasing interest in the last two decades. Due to the grow-
ing number of institutions and students across the globe, planning a university
timetable has become harder than ever. Institutions and universities dispose of
different environments and working places, which implies various constraints
and real cases to be solved. Researchers throughout the years tried to bring for-
ward different solution methods and procedures to face the increasing difficulty
of these problems.

Among university timetabling problems, exam and course timetabling are the
two most studied sub-problems. Every university faces these two sub-problems
at least twice a year and is therefore brought to build a course and an exam
timetable. Other variants such as student scheduling and school timetabling con-
stitute other promising variants. While meeting the hard constraints is agreed on
to be the condition to consider a solution feasible, it is often discussed what makes
a solution "good" enough. The community often defines the soft constraints as the
means for measuring the solution quality. However, due to the difference in both
hard and soft constraints set by the institutions, it has become hard to measure
the algorithms proposed in the literature. To overcome this difficulty, benchmarks
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and timetabling competition were set in order to reduce the gap between research
and practice and put a common base on which algorithms can be tested and eval-
uated. The Toronto benchmark, the first and the second international timetabling
competitions present one of the most studied benchmarks in exam and course
timetabling.

We are interested in this thesis in proposing new methodologies and approaches
for course and exam timetabling in universities. Chapter 1 presents, in the first
half, an introduction to the different optimization problems related to university
timetabling. The second half is concerned with giving the reader a background on
the existing university timetabling problems and the several methods previously
proposed to solve them.

Following the presentation of the field of the study of the thesis, we detail in
Chapter 2 an improved mathematical model for the exam timetabling problems.
A preprocessing procedure that deduces hidden conflicts and dependencies be-
tween the exams is presented. The preprocessing is based on a transitive closure
applied on the exam-related constraints such as the coincidence and precedence
to deduce new ones. A small MIP model that exploits the room capacities is
used to determine the exams that cannot be placed together in certain periods.
To improve the existing model proposed by McCollum et al. (2012), we propose
a set of reformulations and valid inequalities to help accelerate solving the dif-
ferent instances. We show that our models succeed in reducing the number of
constraints and is able to be run for more instances than the original one. The
valid inequalities proposed include cliques and the dual-feasible functions that
are usually applied on the Bin Packing problems. Both models were tested on the
instances of the second International Timetabling Competition (ITC2007) and the
Yeditepe instances. The results show that our improved model is able to obtain
better results compared to the original one.

In the continuity of Chapter 2, we present in Chapter 3 lower bounds tech-
niques, reformulation for the linear model and a constraint programming model
for the same problem. The lower bounds techniques use the structure of the in-
stances and the cliques to assess inevitable costs. A set covering linear model
is applied on a clique of exams to detect the costs implied on these exams. The
new reformulations are concerned with three types soft constraints and can be

generalized to any spacing constraints. They reduce the number of constraints
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and variables to allow the model to run in limited memory space for the large in-
stances. The constraint programming model presents new solutions and reduces
the existing gap between the lower and upper bounds. Compared to the linear
model, the CP model appears to be promising and further improvements are to
be investigated.

We address in Chapter 4 the exam timetabling problem in Université de Tech-
nologie de Compiegne (UTC) and give a memetic approach to solve it. We start
by the describing the problem and show that some constraints fall in the poten-
tial extensions of the second international timetabling competition given by the
organizers. We then give a mathematical formulation to formally model the prob-
lem and use this formulation to validate the solutions obtained by the memetic
approach. This memetic approach, which operates on a population of chromo-
somes, is afterward detailed. The population is represented by a set of chromo-
somes, each refers to a neighborhood of solutions. An indirect encoding for the
chromosomes is used. To decode the chromosomes, a fast first fit decoding pro-
cess is applied. Using the indirect encoding allows each chromosome to cover
a neighborhood of solutions and therefore a better exploring of the search space
is made. Hill Climbing, Light Destruction Construction and Swap are the three
different operators used to help improve the chromosomes. To test the approach,
we modeled and formatted a set of instances from the read-world data provided
by the practitioner. The algorithm helped solve all the different instances of the
university and presented a very good results compared the ones resulted from
the old method. The instances were put into the ITC2007 format and are made
available for the community to enlarge the existing collection of instances.

For the course timetabling, we describe in Chapter 5 the student scheduling
problem in our university. To solve this problem, we propose a mathematical
model with a set of preprocessing and valid inequalities. Before processing the
model, a preprocessing procedure that helps reduce the number of groups and
detect infeasible timetables for students is applied. Following the preprocessing,
the mathematical model that aims at maximizing the number of students totally
assigned is presented. We next present the valid inequalities used. The results
show that the preprocessing and the valid inequalities help reduce the run time
of the model and show that the optimality can be reached in a very short time.

Finally, the different parts of the thesis are discussed in a general conclusion
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and future works and perspectives are presented.
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1.1 Introduction

This chapter is an introduction to combinatorial problems. We first introduce
combinatorial problems. Next, a non-exhaustive list of different techniques used
to solve them is presented. We next provide a general introduction to timetabling
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problems that are the subject of this manuscript. Finally, a conclusion of the chap-

ter is given.

1.2 Combinatorial Optimization

This section tackles first the definition of a Combinatorial Optimization Prob-
lem (COP). Notions and terminology of graphs, algorithms and complexity are
exposed. The goal is to state the main definitions and the framework of the

manuscript.

1.2.1 Combinatorial Optimization Problems

An optimization problem (Pardalos and Resende [2002]) consists in finding the
best variable values according to a given objective function while respecting a set
of constraints. The problem’s difficulty depends on the nature of the variables,
discrete or continuous. When the variables are discrete, the problem is called a
combinatorial optimization problem (Papadimitriou and Steiglitz [1998]). Definition
1 gives a formal description of a combinatorial optimization problem (COP).

Definition 1 A combinatorial optimization problem ® = (Q, f) is defined as:

A set of variables X = {x1,- - ,xn}

Each variable x; is associated to a domain D;, i.e. x; € D;

A set of constraints linking the variables

An objective function to minimize (or to maximize): f : Dy X --- x D, — R

Set () is called the search space. A feasible solution s for problem @ is an ele-
ments € Qsuchthats = {vy,---,v, | v; € D;and all the constraints are satisfied}.
Solving a COP with an objective function to minimize consists in finding a solu-
tion s* such that Vs € Q), f(s*) < f(s) (or f(s*) > f(s) in case of maximization).

Section 1.4 provides some examples of combinatorial optimization problems.
The brute force way to solve a COP is by enumerating all the possible solutions.
However, enumerating impractical and ineffective if the number of possible so-
lutions is huge. Thus, effective and efficient techniques become a necessity for
solving @ if () is huge.
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1.2.2 Complexity Theory

The formal definition of an algorithm is introduced by Alain Turing (Turing [1937]).
This definition is deduced from the notion of a formal language for an abstract
machine, called Turing’s Machine. In a nutshell, an algorithm can be defined as:
Algorithm A is a finite series of instructions allowing the user to solve a defined
problem ®. For instance, to solve a COP, an algorithm would represent all the
steps needed to find a solution s*. An algorithm is a heuristic approach when it
does not guarantee finding solution s* but a solution s that is as close as possible
to solution s*, i.e. | f(s*) — f(s) |< € with € being a very small number.

There exist numerous methods to measure the performance of algorithm A:

¢ Runtime: the time spent to find solution s*

Memory: the memory space required to run it

The quality of the solution

Robustness: the capacity of the algorithm to adapt to problem’s input chang-
ing

Note that runtime is dependent on the machine used. The theory of com-
plexity has been introduced to measure the performance of an algorithm without
considering the speed of the machine on which it is executed. The idea is to state

asymtotic bounds using the size of the input data parameters.

Definition 2 The algorithmic complexity C 4 of an algorithm A is defined as the number

of instructions needed to solve any instance of problem ® of size n.

The Landau’s notation defines for instance asymptotic lower or upper bound
for C4. The notation O corresponds to an upper bound of C4: A is said to be
of complexity O(g(n)) if IM > 0,3ng such that Vn > ny,Cy < Mg(n). An
algorithm A is said to be polynomial if ¢(n) represents a polynomial function.
Below, some examples of algorithmic complexity:

e O(1): constant complexity independent of the size of ®
e O(logn): logarithmic in the size of ®

e O(n): linear in the size of ®
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e O(nP): (with p > 2) polynomial in the size of ®
e O(a"): (with a > 2) exponential in the size of ®

The complexity can also depend on some parameters of the problem. For exam-
ple, g(n) = nPv7 with v being a parameter of the problem and g a constant. The
algorithm in this case is called pseudo-polynomial.

1.2.3 Complexity of Decision Problems

Considering that solving complex problems in general and optimization prob-
lems in particular is a source of attraction for several researchers, computer per-
formance has gained a noticeable advancement. For some optimization prob-
lems, no one has yet found a polynomial algorithm to solve them. For others,
we know that we can solve them with a polynomial algorithm. Thus, a natural
classification would be classifying the problems according to the complexity of
algorithms solving them (Garey and Johnson [1979]).

To introduce the notion of complexity classes of problems, we introduce the
definition of decision problems: a decision problem is a problem to which the an-
swer is either a yes or a no. Each optimization problem with an objective function
f disposes of an equivalent decision problem. The decision problem would be
formulated as follows: considering k € IR, does there exist a solution s* for which

fls) = k2

Definition 3 A problem is in class P (polynomial time) if a polynomial algorithm that
solves it exists.

Definition 4 A decision problem is in class NP (non-deterministic polynomial time) if

verifying that the solution is valid can be done in a polynomial time.

Definition 5 A decision problem is said to be NP-Complete if it belongs to class NP but
not to class P, i.e. no polynomial algorithm that solves it has been found.

Definition 6 An optimization problem is said to be NP-Hard if its decision problem is
NP-Complete.
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Definition 7 An optimization problem (or decision) is NP-Hard (or NP-Complete) in
the ordinary sense if it is NP-Hard (or NP-Complete) and if there exists a pseudo-polynomial

algorithm to solve it.

As a result, we easily notice that P C NP. The remaining question to answer
(and to prove) is: if P C NP or P = NP. If P = NP then the set of NP-Complete
problems is empty, which implies that there are always polynomial algorithms
that solve NP problems. This hypothesis, difficult to accept, lead the researchers
to orient their works on proving that P # NP. For a new optimization problem,
in order to prove that it is NP-Complete, a polynomial reduction can be used
(Karp [1972]).

1.2.4 Graph classes

A graph is a mathematical object that uses nodes to model elements of the prob-
lem and edges (or arcs) as relationships between the elements. Graphs represent
a powerful tool, used to model and solve combinatorial optimization problems.
These definitions will be used to describe approaches developed for the time-

tabling problems.

Definition 8 A graph G is defined by a set of nodes V and a set of edges E C 'V x V
that represents the relationships between the nodes. The graph is complete if E =V x V.
The neighborhood of a node i is defined as: N (i) = {j | (i,j) € E} and the degree of node
iis | N(i) |.

When there is no orientation mentioned for the edges, the graph is called a

non-oriented graph. If orientations exist, we have a directed graph.
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Definition 9 A path in a directed graph G is a list of nodes (v1,--- ,vg) such that
(vi,vi41) € E, Vi < k. If v = vy, the path is called a directed cycle.

Definition 10 G’ = (V’, E') is a sub-graph of graph G = (V, E) if it is obtained by
removing nodes or edges, i.e. V' C Vand E' C E.

Definition 11 G(S) is an induced graph of G(V,E) if SC VandVi,j €S, (i,j) €
E is kept from the original graph.

Definition 12 A Clique is a subset of nodes S C V such that G(S) is a complete graph

Definition 13 An independent set of G is a subset of nodes I C V such that G(I) does
not contain any edge

Definition 14 A vertex cover is a subset of nodes S C V such that the set Eg =
{V(i,j) € E,i€ Sorj€ S}isequal to E

Definition 15 A coloration of graph G consists in assigning to every node i of the
graph a color c¢; such that ¢; # c;,V(i,j) € E. The minimum number of colors needed to

color graph G is called the chromatic number, denoted x(G).

1.3 Solution Approaches

We provide next a general idea on some of the different methods used to solve
COPs. Prior to applying any approach to solve a COP, preprocessing can some-
times be applied so as to reduce the size of a problem or to discover dependen-
cies useful to facilitate the processing. We first give an example of preprocessing.
Heuristic and metaheuristic algorithms are described next. Finally, exact algo-

rithms such as tree search and mixed integer programming are introduced.

1.3.1 Preprocessing

Preprocessing is a technique used to modify the problem in order to ease the
solving process. Preprocessing usually reduces the search space of the problem
by analyzing the data of the problem and its nature, namely the objective function

and the constraints. For instance, by analyzing the constraints of a COP ®, some

10
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Figure 1.2 — Preprocessing example

variables x; can be fixed or the size of D; can be reduced. However, we have to
guarantee that the optimal solution for the reduced problem must be the optimal
for the original one.

Let us consider a concrete example, finding the maximum clique in a graph
G. The following preprocessing will allow us to reduce the size of graph G: if
3(i,j) € E such that N(j) C N(i), then the node j can be deleted from graph
G. The reason is that a maximal clique K; (ie. Vk € V\K;, K; U {k} is not a
clique) containing node j has a size that is always less or equal to the size of
the maximum clique K; containing node i. Figure 1.2 illustrates a series of this
preprocessing on an initial graph which gives eventually the maximum clique:
we have N(3) C N(1) = node 3 can be deleted. Next, node 2 is deleted because
N(2) C N(4). The remaining nodes in the graph represent the maximum clique
of the initial graph.

1.3.2 Heuristic Algorithms

The heuristic algorithms to solve NP-Hard problems can be divided into two
categories: PTAS and non-PTAS algorithms. The first category involves the algo-
rithms with polynomial complexity that assures a certain distance from the opti-
mal solution in the worse case. These algorithms are called PTAS (Polynomial-Time
Approximation Scheme). The second category of algorithms produces generally a
very good solution in a short time, even though no distance from the optimal
solution is guaranteed.

11
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Greedy Algorithms

Greedy algorithms (Cormen01) are simple constructive algorithms. These algo-
rithms takes a partial (or an empty) solution and fill it element by element. El-
ements are incorporated in turn in the solution. They are chosen according to a
greedy criterion. These algorithms does not question the decision taken in previ-
ous iterations. The resulting solution is most likely not optimal.

Despite their simple design, the greedy algorithms are useful when integrated
in a heuristic approach. They are widely used as a part of elaborated approaches,
especially in preparing solutions for local searches. They are easily maintained

and flexible when changing the criteria.

Local Searches

Local searches (Hoos and Stutzle [2004]) are often effective algorithms used to
solve COPs. Most approaches developed to practically solve NP-Hard COPs con-
tain one or more local searches. Technically, a local search uses a current solution
s and repeatedly replaces it with a better solution s’ close to s in the search space.
The set of solutions close to solution s is called Neighborhood of s, noted N(s).

Definition 16 A neighborhood structure is a function N: Q — 2 which is associated
to a solution s € Q) where ) is the search space and N(s) C Q.

In general, a neighborhood N is not defined by a partial enumeration of ()
but by an operator of transformation of s. Ideally, local search algorithms permit
to start with a solution s € () and, using a series of transformation, to reach the
optimal solution s* of the problem. When developing a local search, it is usually
recommended that the comparison between f(s) and f(s’) can be done in a short

time. A smart and fast local search avoids comparing f(s) and f(s’).

Definition 17 A local optimum of a neighborhood N(s), noted sy, of a minimization
problem (resp. maximization) is a solution that verifies sy, € N(s) and Vs € N(s),
f(s") > f(s§) (resp.f(s") < f(sx)). Thisoptimum is strict if f(s") > f(sx) (resp.f(s') <
£(s))-

There are two ways of choosing s’ out of N(s): the first one is by selecting
sy (best improvement) whereas the second consists in taking the first solution
s’ € N(s) that has strictly a better quality than s (first improvement).

12
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Other local searches proceed otherwise. They permit developing complex
metaheuristics or obtain solutions with the same quality. Two examples of these

local searches are:

e Random Walk: s est replaced by s’ which is not always better. This allows
the local search to escape from local optimum. If the solutions accepted are
only the ones with the same quality as s, the local search is then called a

plateau search

e Stochastic local search (Hoos and Stutzle [2004]): some of the solutions in N(s)
are randomly generated and the best solution s’ is used to replace the solu-
tion s. If the quality of s is lower than the one of s, the solution is accepted
with a certain threshold (or probability). This technique is useful when the
neighborhood N(s) is large. In this category of local searches, we can men-
tion the simulated annealing (Kirkpatrick, Gelatt, and Vecchi [1983]; Cerny
[1985]) and the ruin and recreate principle (Schrimpf et al. [2000])

Metaheuristics

Metaheuristics (Blum and Roli [2003]; Glover and Kochenberger [2003]) are more
elaborated algorithms and represent a large part of the techniques used to solve
most of the COPs. Numerous metaheuristics exist today and their conception
comes from various sources of inspirations. Some are made by analogy to other
scientific fields such as physics (simulated annealing), biology (ant colony and
evolutionary algorithms), neurology (tabu search) and sociology (memetic algo-
rithms, particle swarm optimization and multi-agent systems).

Our purpose is not to exhaustively present the metaheuristics used in the liter-
ature. We give outlines of algorithms relevant to this thesis hereafter. We classify
these algorithms into two parts: solution-based algorithms and population-based
algorithms.

Greedy randomized adaptive search procedure - GRASP (Feo and Resende
[1995]): this procedure is an elaborated version of constructive heuristics with
local searches. In each iteration, a new solution is generated using random ele-
ments. The solution is then improved using a local search. The best solution is

saved during the process.
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Iterated local search - ILS (Glover and Kochenberger [2003]): ILS consists in
mixing local searches with perturbation/mutation of elements. In each iteration,
the current solution s is modified and perturbed using the two operators. First,
the solution is perturbed with the mutation operator. Second, it is later improved
using a local search operator. If f(s’) is better than f(s), s’ replaces s and becomes
the current solution. There exist several variants of ILS in the literature. Some
accept worse solutions with certain conditions. Others consider more than one
type of perturbations and apply them at specific steps of the algorithm.

Variable Neighborhood Search - VNS (Hansen and Mladenovi [2001]): mul-
tiple neighborhoods are used inside the local search to escape from local opti-
mum. A solution can be a local optimum in a neighborhood but not in another.
The algorithm proceeds as follows. Given the current solution s (initialized ran-
domly using a heuristic), a set of neighborhoods (Ny, Ny, - - - , Nj) is associated
with it and i the index of the current neighborhood (initialized by 1). In each iter-
ation of the algorithm, neighborhood N; is explored to obtain a new solution s’.
If s’ is better than s, then s’ becomes the current solution, otherwise i is increased
for the next iteration. When the solution cannot be enhanced, VNS changes the
neighborhood in hope of finding a better neighborhood or diversifying the solu-
tion. This flexibility resulted numerous VNS schemes in the literature, namely
reduced VNS, skewed VNS and VND.

Simulated Annealing - SA (Kirkpatrick, Gelatt, and Vecchi [1983]; éern}’r
[1985]): by an analogy to metallurgy, simulated annealing is concerned with a so-
lution s and considers the objective function of the problem as the system’s en-
ergy at a given temperature T (initialized at high temperature). In each step,
transformations on the current solution s are done to obtain a new solution s’. If
f(s") < f(s) (in case of a minimization problem), s is replaced by s’. Otherwise,

. . . - fN=f(5) .
the replacement is considered with a probability e 7. Worst solutions can

be accepted to allow the algorithm to escape from local optimum. The tempera-
ture is managed by a cooling strategy.

Tabu Search (Glover and Laguna [1997]): coming from a biological prospec-
tive, tabu search emulates the memory function. At a iteration ¢, the tabu search
considers a solution s and a list of solutions recently visited L;, called the tabu
list. The aim of the tabu list is to memorize recently visited solutions in order to

avoid re-exploring them. Additionally strategies sometimes permit to re-consider
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these solutions to escape from local optimum. The algorithm explores the neigh-
borhood N(s) and chooses the solution s, from the best solutions of N(s)\L; to
replace solution s. The tabu list L; 1 of the next iteration consists in list L; with
the new solution s};. If the max size of L; is reached, adding a new solution will
automatically remove the oldest solution of the list. The algorithm’s efficiency
comes from the tabu list and in practice we do not keep the solutions in the list

but their signature.

For population-based algorithms, here are some of the most known:

Genetic Algorithm - GA (Holland [1975]): Inspired by molecular biology, GA
considers a solution as a chromosome structure containing good and bad pheno-
types. Assuming that good phenotypes are part of the optimal solutions, GA uses
the reproduction mechanism, the natural selection and the mutation principle to
produce new solutions in which the chromosome contains better phenotypes. In
practice, at each iteration, a set of chromosomes are selected for reproduction.
The selected chromosomes are then crossed to produce new chromosomes called
children chromosomes. The children are then mutated using a mutation operator
with a low probability. Their fitness (solution quality) is then calculated and they
are inserted in the population. The population considered after crossing depends
on the algorithm’s variant. The first variant is the generational genetic algorithm
(GGA) in which only the new chromosomes constitutes the population. The sec-
ond variant is the steady-state genetic algorithm (SSGA) in which the children are
not directly inserted but are in competition with the existing chromosomes.

Scatter Search - SS (Glover and Kochenberger [2003]): The algorithm works
on a reference set. The reference set represents the best solutions found. At each it-
eration of the algorithm, new solutions are generated randomly or with a heuris-
tic and are later combined with the references to have intermediate solutions.
The solution generated (new and intermediate) are then improved using a lo-
cal search. The best of the improved solutions are inserted in the reference set.
This update of the reference set has to assure diversity within the references of
the population. The generalization of scatter search is called path-relinking (PR).
It is about a progressive combination to explore the path relating the solutions
generated and the references in the reference set.

Swarm Intelligence - SI (Bonabeau, Dorigo, and Theraulaz [1999]): the swarm

intelligence is a generic term for metaheuristics inspired by intelligent collec-
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tive aspects. They include ant colony optimization (ACO) (Colorni, Dorigo, and
Maniezzo [1992]; Glover and Kochenberger [2003]) , particle swarm optimiza-
tion (PSO) (Kennedy and Eberhart [1995]), multi-agent systems (MAS) (Meignan,
Koukam, and Créput [2010]; Roli and Milano [2002]), etc. We describe the PSO
as an example of these metaheuristics. PSO has been developed first for the
continuous-variable optimization. The main idea is to observe the orientations
of animals when searching for food in groups. A particle represents an indi-
vidual of a group in a swarm and the solutions are the positions (or the search
places). Every particle memorizes its current position in the search space and the
best position that it visited. The best individual position represents the individ-
ual experience of the particle. The global best position found by the population
represents the group’s experience. Every particle has a movement speed that rep-
resents the degree of change that can occur on its solution in the next iteration.
At each iteration of the PSO algorithm, the speed and the current position of an
individual are updated. Speed update is managed using three orientations: the
current speed of the particle multiplied by w (inertia factor), the tendency of re-
turning to the previous individual experiences multiplied by c; (cognitive factor)
and the tendency of group’s experiences multiplied by c; (social factor). That is,
the movement’s speed guides the particles to the global optimum. The applica-
tion of PSO on optimization problems does not have the same success that the
other population-based algorithms have had (for instance Genetic Algorithms).
Indeed, a great difficulty is faced in the different parts of the algorithm that have
to be adjusted according the problem’s definition.

Memetic Algorithm - MA (Corne et al. [1999]): the term was introduced by
Moscato (1989) and is widely used in recent works to point out the hybrid method
between global search (classic metaheuristic) and local search. It has been ob-
served that the genetic algorithm, for example, is not efficient enough for some
problems (Hoos and Stutzle [2004]; Park and Carter [1995]). The reason is that
mutation, crossover and selection cannot intensify the search sufficiently. Crossover
and mutation play a role in diversifying the population but seem to be not effi-
cient enough to improve the population. To overcome this, the genetic algorithm
is usually hybridized with local searches. Such a scheme allows the algorithm
to intensify the search in the areas explored by the genetic operators. In some
memetic algorithms, the mutation stage is replaced by local searches. Moscato
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(1989) compared the different memetic algorithm versions in order to analyze the

performance of the different local searches.

1.3.3 Exact Algorithms

Efficiency of new heuristic approaches are often assessed by comparing the so-
lutions they obtain to those resulted from previous approaches. A safer method
is to compare the quality of the solutions obtained by the new approaches to the
theoretical bounds or to the exact solutions.

In this section, we present the definition of theoretical bounds and two general

exact approaches used to solve COPs.

Theoretical Bounds

Bounds of a COP are defined as the boundaries between which the evaluation of
the optimal solution is included. Thus, the upper and lower bounds are used for
COPs.

Definition 18 For a COP ® = (Q), f), a lower bound LB is a value such that Vs €
Q, f(s) > LB. In the same spirit, an upper bound UB is defined as Vs € Q, f(s) < UB.

For a minimization problem, solutions obtained using heuristic approaches
represent upper bounds (UB), whereas a lower bound (LB) is obtained by solving
a relaxed version of the problem. When LB = UB for an instance of the problem,

the instance is solved.

Branch and Bound Scheme

The branch and bound scheme (B&B) (Clausen [1997]) is a method that enumerates
solutions in the search space of a COP & = ((), f). This enumeration is done
by successive branching on (2 into subspaces (S, - - - , S) and by bounding these
sub-spaces. These evaluations are performed by calculating the lower and upper
bounds of () on a sub-problem. For example, for a minimization problem, to
accelerate solving the problem, we can prune a sub-space S; if LB(S;) > UBpeg;
where UBy,s; is the best upper bound known during the search. This pruning

implies that solutions of the sub-space S; will not be explored. When efficient
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strong formulation

Figure 1.3 — Example of Mixed Integer Programming (MIP)

pruning strategies and evaluation can be designed, B&B is usually faster than a
complete enumeration of the solutions.

The runtime efficiency of a B&B algorithm depends on the following factors:

¢ The bounding scheme: different techniques for bounding result in different

tree searches.

e UB and LB methods: the more effective the methods that assess the UB and
the LB are, the more efficient decisions, taken during the search, are.

* Exploration strategy: while branching, the strategy used to generate sub-
space to be explored highly contribute to the efficiency of the algorithm

Linear Programming

A linear program is a continuous COP in which the constraints and the objective
function are linear. Solving a linear program is proved to be done in a poly-
nomial time using the ellipsoid method Khachiyan (1979). Although not proved
to be theoretically performed in polynomial time, the simplex method is widely
used thanks to its efficiency in practice. Most of the commercial software (CPLEX,
GUROB]I, XPress, SCIP, etc.) implements this method and the interior point method
(barrier method) (Dantzig and Thapa [2003]). The interior point method is also
proved to be polynomial.

COPs can generally be modeled using Mixed Integer linear Programming
(MIP). The integrity constraint on variables makes solving a mixed integer linear
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program difficult, generally NP-Hard. Figure 1.3 shows the difference between
solutions of a MIP and an LP. Due to relaxed constraints, the LP solution shown
is not included in the convex hull of the strong formulation. The dots in bold
represent the ILP solution and are obtained when solving the MIP problem.

Efficient techniques used to solve MIPs are the adaptation of the Branch-and-
Bound scheme by integrating mathematical tools such as cutting planes. When
the cutting planes are added to the branch-and-bound algorithm, the algorithm
is then called branch-and-cut. This algorithm is also available on most of the soft-
ware.

There are several ways to model a COP using a MIP or an LP. The model is
said to be strong if the polyhedron relax the integrity constraint. The model can
be strengthened using the cutting planes. Unfortunately, the number of variables
can be exponential on some problems and therefore the tree search would be
huge. In such a case, column generation (Desaulniers, Desrosiers, and Solomon
[2005]) is used to efficiently solve the program. Integrating column generation in
a branch and bound algorithm results the branch-and-price algorithm (Desaulniers,
Desrosiers, and Solomon [2005]). Note that the Branch-and-Price scheme is a
problem-dependent scheme.

1.4 Timetabling Problems

The Oxford Advanced Learner’s Dictionary defines a timetable as “a list show-
ing the times at which particular events will happen”. Wren (1996) described
timetabling as a special type of scheduling. He defined timetabling as follows:

Timetabling is the allocation, subject to constraints, of given resources to
objects being placed in spacetime, in such a way as to satisfy as nearly as
possible a set of desirable objectives.

A timetabling problem is usually composed of two types of constraints: hard
and soft constraints. Hard constraints are to be satisfied to consider the solution
valid for the problem. Soft constraints can be violated and are used to assess the
quality of the solution. Each violation implies a penalty on the solution that is
added to the cost.

Since the early 1960’s, numerous research papers reporting work on time-
tabling problems have appeared in the literature. Today, research in this area
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is still active and new research directions are continuing to emerge. Overviews
and surveys can be found in papers by Burke et al. (1997a); Werra (1985); Leung
(2004).

The educational timetabling problems can be classified into three types (Schaerf
[1999]), each with their own specific characteristics and constraints:

* School timetabling: These are problems that are concerned with assigning
the weekly lessons in schools. The aim is to assign a set of teachers to a
set of classes (groups of students) for a set of lessons in a set of periods,
while satisfying a set of constraints. There are many variations to the basic
problem. For example, in junior (lower) schools, sometimes a single teacher
remains in the same room with the same class all the day, teaching a variety
of subjects. In secondary schools, teachers may remain in the same room
or a teacher may move between rooms for different lessons. Examples of
hard constraints are: no teacher may teach at two different rooms in the
same period and that no classes can have different lessons at the same time.
Soft constraints may cover issues such as rest periods for teachers, teachers
preferences for certain rooms and / or specific timing of certain lessons.
Further examples of constraints are listed by Costa (1994).

¢ Exam timetabling: The main objective is to assign a set of exams to a given
set of time slots. Each exam has a list of enrolled students. A main hard
constraint is that no student can sit more than one exam at the same time.
Further details on the problem specification and examples of hard and soft
constraints are given in the Section 1.4.1.

¢ Course timetabling: The purpose is to assign courses and associated events,
groups of students and lecturers to time slots in such a way that no conflict
occurs at any period. The number of students assigned to a room should
be no more than the maximum room capacity. More details are given in
Section 1.4.2.

Basically, the core characteristic is to assign events to time slots while minimiz-
ing soft constraint violations. However, there are substantive differences between
these problems. For example, in exam timetabling problems, two exams can take

place in the same room, this is not the case in course timetabling. See Carter and
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Laporte (1998) for a more detailed description of the differences between school
and university course timetabling. Description of the differences between exam

and course timetabling are detailed in McCollum and Ireland (2006).

1.4.1 Exam Timetabling

Carter, Laporte, and Lee (1996) defined the exam timetabling problem as:

The assigning of examinations to a limited number of available time periods
in such a way that there are no conflicts or clashes.

Contflicts or clashes are institution-dependent hard constraints. A timetable
which satisfies all hard constraints is called a feasible timetable. In addition to
hard constraints, there are often soft constraints whose satisfaction is desirable
but not essential. The set of constraints which need to be satisfied is usually very
different from one institution to another (Burke et al. [1995]). Examples of widely

encountered hard constraints are the following;:
¢ students cannot sit for two exams at the same time
¢ each exam should be assigned to one period and at least to a room
¢ room capacities should always be respected at any period

Each institution has different requirements for evaluating the quality of a fea-
sible timetable. In many cases, the quality is assessed using a penalty function
which measures the soft constraints violations. Examples of soft constraints are

the following:

e Exam A shall be scheduled before/after exam B

Avoid students having to sit exams in consecutive time slots

Exams with a large number of students should be scheduled earlier in the

timetable

Only certain time slots and/or rooms may be available for particular exams

¢ Some exams should be scheduled in the same time slot
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The timetabling problem, in its simplest form, can usually be modeled as a
graph coloring problem. Nodes represent the exams, colors represent the time
slots and the edges represent the conflict between exams (Werra [1985]; Carter,
Laporte, and Lee [1996]; Burke et al. [2004b]). In the graph coloring problem, the
goal is to find the minimum number of colors used to color the vertices such that
no two adjacent vertices are colored with the same color. This minimum number
of colors x(G) of a graph G. If the exam timetabling problem is considered as
a graph coloring problem, the aim is to find the minimum number of time slots
which are able to accommodate all the exams without any clashes.

The student enrollment lists permit to build a conflict matrix C = [c;;] where
i,j € {1,..,N} and N is the number of exams. Element c;; denotes the number
of students enrolled for both exam i and exam j. When a non-weighted graph is
employed, it is also possible to use ¢;; = 1 if there is conflict between exam i and
exam j; ¢;; = 0 otherwise. C is a symmetrical matrix, i.e. element ¢;; = c;;. For
diagonal cells (i.e. i =j), each cell either contains the number of students enrolled
for the particular exam ( ¢;; = number of students for exam i) or the cell contains
zero (c;; = 0) to denote that there is no conflict. Either is acceptable, depending
on how the information stored in the conflict matrix is used. The conflict matrix
is used to build the conflict graph. The number of exams in conflict for an exam is
equivalent to the node degree. Node degree values are used, for example, when
heuristic orderings (e.g. Largest Degree, Largest colored Degree and Weighted
Largest Degree) are used to build solutions.

The benchmarks proposed in the literature vary according to the hard and soft
constraints. Carter, Laporte, and Lee (1996) proposed the Toronto Benchmark. This
benchmark is a set of thirteen instances taken from universities around the world.
The authors studied the set of instances with regards to two different objectives:
a graph-coloring objective and a exam-spacing objective. For the graph-coloring
objective, the aim is to plan a clash-free timetable in the minimum number of pe-
riods. Exams represent the nodes in the graph and the number of periods is the
number of colors to be minimized. For the exam-spacing objective, the purpose
is to build a clash-free timetable in a fixed number of periods while spacing out
the exams for the same student. Burke, Newall, and Weare (1996) proposed the
Nottingham Benchmark. The instances of this benchmark were taken from the Not-

tingham university. The objective to minimize was avoiding exams in the same
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day for the students. Merlot et al. (2003) proposed the Melbourne Benchmark which
is a set of two instances. The objective was to minimize the occasions of students
having two exams consecutively either on the same day or overnight. In 2007, the
second International Timetabling Competition (ITC2007) proposed a new bench-
mark. The goal of the competition was to reduce the gap between research and
practice by proposing real-world instances. The objective function to minimize is
a set of summed penalties related to the violation of soft constraints. The compe-
tition brought a new set of hard and soft constraints that didn’t exist in previous
benchmarks. An example of hard constraints is the room exclusive constraint. It
states that some exams require to be scheduled alone in the room. An example
of soft constraints is the front load constraint. The constraint requires some exams
that are identified to be “large” to be scheduled early in the timetable. If this
constraint is not respected, a corresponding penalty is applied.

Researchers continue to study the Toronto benchmark and the interest in the
benchmark of ITC2007 is increasing. Even though the set of benchmarks does not
represent all the constraints available in universities, it still gives a good test base

on which approaches can be tested.

1.4.2 Course Timetabling

A general overview of course timetabling can be found in the paper by Carter
and Laporte (1998). A complete formal description of the problem can be found
in Burke et al. (2004b).

The course timetabling is defined in Carter and Laporte (1998) as:

a multi-dimensional assignment problem in which students, teach-
ers (or faculty members) are assigned to courses, course sections or
classes; “events” (individual meetings between students and teach-
ers) are assigned to classrooms and times.

As stated earlier, in university course timetabling, a set of courses and associ-
ated events is assigned to a set of rooms and periods within a week and, at the
same time, students and teachers are assigned to the courses so that the appropri-
ate lessons can take place, subject to a variety of hard and soft constraints. In 2002,
Paechter (Metaheuristics Network. [2002]) introduced a course timetabling problem
instance generator as part of an “International Timetabling Competition”. The
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objective of the first International Timetabling Competition was to create feasible
weekly class timetables for a university, in which a number of hard constraints
were satisfied, while minimizing the number of soft constraints violated. The in-
stance generator was used to produce simplified, but realistic, problem instances,
all of which had at least one perfect solution (a solution with no constraint viola-
tions, hard or soft).

The competition used the following hard constraints:

* No student is required to attend more than one course at the same time

* A course can only be scheduled to a room which satisfies the features re-

quired by the course

* A course can only be scheduled to a room which has enough room to ac-
commodate all students registered for it

* Only one course can be scheduled in one room at any time slot

By definition, it is not compulsory to satisfy the soft constraints for any given
problem. Thus, some form of penalty function is used to measure the degree to
which the soft constraints are satisfied. There is no universally accepted method,
the number of students for which each constraint is not satisfied are usually sim-
ply summed.

Automated approaches for course timetabling have been studied over the last
thirty years. A comprehensive survey of the early approaches can be found in
Carter and Laporte (1998). Other surveys of university timetabling that cover
both examination and course problems include Burke et al. (2004a); Schaerf (1999);
Wren (1996). The set of twenty instances introduced for the competition (three
more instances were also generated, to be used as “unseen’ tests) have also been
used by a number of authors as a benchmark data set. The competition was won
by Kostuch (2005) utilising a ‘three-phase approach’ featuring simulated anneal-
ing, which obtained the best results on 13 out of the 20 instances. Burke et al.
(2004a) used an approach based on the Great Deluge Algorithm, which obtained
the best results on the remaining 7 of the 20 problem instances. Other approaches
used by the competitors include those based on simulated annealing, a hybrid

local search method and several variations of tabu-search.
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Paechter’s test instance generator was used by Socha, Knowles, and Sam-
pels (2002) to generate eleven problem instances of various sizes. They com-
pared a local search method and an Ant Colony Optimization algorithm on these
eleven problem instances and showed that the Ant Colony Optimization algo-
rithm achieved better performance. The same eleven problem instances have
subsequently been used by other authors as a comparison basis. Burke, Kendall,
and Soubeiga (2003) introduced a hyper-heuristic that utilized tabu search in an
attempt to raise the level of generality of automated timetabling systems, and the
system was used to solve both these course timetabling problem instances and
nurse scheduling problems. Burke et al. (2007) developed a graph-based hyper-
heuristic approach which used a sequence of heuristic orderings to construct the
initial solution and then applied steepest descent local search to improve the so-
lution.

These data sets were also used by Abdullah, Burke, and Mccollum (2005) who
employed a variable neighbourhood search with a fixed length tabu list used to
penalise the unperformed neighbourhood structures. Following on from this,
Abdullah, Burke, and McCollum (2007) applied a randomised iterative improve-
ment method featuring composite neighbourhood structures to the test instances.
Despite the fact that the problem of timetabling university courses is very dif-
ferent from timetabling university examinations, some authors have blurred the
distinctions and/or have applied the same techniques to solve both problems
(McCollum and Ireland [2006]).

1.4.3 Student Scheduling

Despite the fact that course and exam timetabling represent the most encountered

problems, the Student Scheduling Problem (SSP) is included, whether implicitly

as in the course timetabling or explicitly by considering it a sole problem.
Cheng, Kruk, and Lipman (2003) defines the student scheduling problem as:

The Student Scheduling Problem is the assignation of students to
sections of courses offered at various times during the week. The
objective is to fulfill student requests, providing each student with a
conflict-free schedule (no two assigned sections meeting at the same
time), while respecting room capacities and possibly also balancing
section sizes (or some other side constraint).
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The student scheduling problem can be considered as a part of course time-
tabling. Since it can be considered a part of course timetabling, it did not get
the same attention the exam and course timetabling have got. The main differ-
ences between the course timetabling and student scheduling problem are that
the course timetabling aims at fixing the timetable whereas the student schedul-
ing problem disposes of a fixed timetable. The fixed timetable in the SSP con-
tains the different courses taught in the university and is made available for the
students in order to allow them choosing the different courses. The courses are
composed of one or multiple sections, each of which has a timeslot and a room in
the timetable.

SSP was discussed by different researchers in the literature. Laporte and
Desroches (1986) provide a mathematical model for SSP. Their model consider
one hard constraint which is respecting the list of preferences for the students.
However, the conflicts are considered as soft constraints and thus to be min-
imized. The problem is solved in three phases: it starts by finding a feasible
solution, balancing the sections and finally adjusting the solution to respect the
room sizes. Cheng, Kruk, and Lipman (2003) refers to SSP as part of solving the
American high school timetabling problem. The goal is to respect the list of stu-
dent preferences while having a conflict-free timetable. They demonstrate that
SSP is an NP-hard problem and present a multi-commodity flow formulation to
solve. Broek, Hurkens, and Woeginger (2009) present the timetabling problem
in the TU Eindhoven. They provide two problem formulations and give some
complexity results to the different variants of SSP. SSP solving approaches and
discussions can also be found in Tripathy (1992); Sabin and Winter (1986); Feld-
man and Golumbic (1989).

1.4.4 Practical Cases

Timetabling problems are generally practical cases taken from real-world prob-
lems. Each university, school or college has their own constraints and environ-
ments that make their problem slightly or heavily different than the ones dealt
with in research. At the Université de Technologie de Compiegne (UTC), two
timetabling problems are faced each semester: a course and an exam timetabling.

The course timetabling is composed into two sub-problems, each processed dif-
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ferently. The first sub-problem is building a fixed timetable that constitutes the
input for the second sub-problem: the student scheduling problem. The first is
done manually by the practitioner by using the data from previous semesters
to build a new timetable. The adjustment is done according to expectations on
the student choice and the teachers requirements. Once this timetable is stabled,
it is made available for students to choose their courses. When the student are
tinished choosing, the final timetable is made so that all the students are totally
assigned to their list of preferences (Vayssade [1978]). The exam timetabling prob-
lem is classical with extra constraints which are specific for the UTC (Boufflet
and Negre [1995]). Most constraints can be found in the benchmarks of the liter-
ature but some are new and to be found nowhere. We believe that through the
UTC problem, we provide a new set of co