Planification et affectation de ressources dans les réseaux de soin : analogie avec le problème du bin packing, proposition de méthodes approchées
Auteur / Autrice : | Nathalie Klement |
Direction : | Michel Gourgand |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 04/12/2014 |
Etablissement(s) : | Clermont-Ferrand 2 |
Ecole(s) doctorale(s) : | École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) |
Partenaire(s) de recherche : | Equipe de recherche : Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes |
Laboratoire : (LIMOS) Laboratoire d'Informatique- de Modélisation et d'optimisation des Systèmes | |
Jury : | Président / Présidente : Alain Quilliot |
Examinateurs / Examinatrices : Michel Gourgand, Nathalie Grangeon, Virginie Fortineau | |
Rapporteur / Rapporteuse : Aziz Moukrim, Samir Lamouri |
Mots clés
Résumé
Les travaux de thèse présentés s’intéressent à l’optimisation des systèmes hospitaliers. Une solution existante est la mutualisation de ressources au sein d’un même territoire. Cela peut passer par différentes formes de coopération dont la Communauté Hospitalière de Territoire. Différents problèmes sont définis en fonction du niveau de décision : stratégique, tactique ou opérationnel ; et du niveau de modélisation : macroscopique, mesoscopique et microscopique. Des problèmes de dimensionnement, de planification et d’ordonnancement peuvent être considérés. Nous définissons notamment le problème de planification d’activités avec affectation de ressources. Plusieurs cas sont dissociés : soit les ressources humaines sont à capacité infinie, soit elles sont à capacité limitée et leur affectation sur site est une donnée, soit elles sont à capacité limitée et leur affectation sur site est une variable. Ces problèmes sont spécifiés et formalisés mathématiquement. Tous ces problèmes sont comparés à un problème de bin packing : le problème du bin packing de base pour le problème où les ressources humaines sont à capacité infinie, le problème du bin packing avec interdépendances dans les deux autres cas. Le problème du bin packing avec incompatibilités est ainsi défini. De nombreuses méthodes de résolution ont déjà été proposées pour le problème du bin packing. Nous faisons plusieurs propositions dont un couplage hiérarchique entre une heuristique et une métaheuristique. Des métaheuristiques basées individu et une métaheuristique basée population, l’optimisation par essaim particulaire, sont utilisées. Cette proposition nécessite un nouveau codage inspiré des problèmes de permutation d’ordonnancement. Cette méthode donne de très bons résultats sur les instances du problème du bin packing. Elle est simple à appliquer : elle couple des méthodes déjà connues. Grâce au couplage proposé, les nouvelles contraintes à considérer nécessitent d’être intégrées uniquement au niveau de l’heuristique. Le fonctionnement de la métaheuristique reste le même. Ainsi, notre méthode est facilement adaptable au problème de planification d’activités avec affectation de ressources. Pour les instances de grande taille, le solveur utilisé comme référence ne donne qu’un intervalle de solutions. Les résultats de notre méthode sont une fois encore très prometteurs : les solutions obtenues sont meilleures que la borne supérieure retournée par le solveur. Il est envisageable d’adapter notre méthode sur d’autres problèmes plus complexes par intégration dans l’heuristique des nouvelles contraintes à considérer. Il serait notamment intéressant de tester ces méthodes sur de réelles instances hospitalières afin d’évaluer leur portée.