Thèse soutenue

Estimation Bayésienne de l’abondance par ''removal sampling'' en présence de variabilité du taux d’échantillonnage : application aux tiques Ixodes ricinus en quête d’hôtes

FR  |  
EN
Auteur / Autrice : Séverine Bord
Direction : Pierre DruilhetGwenaël Vourc'h
Type : Thèse de doctorat
Discipline(s) : Ecologie
Date : Soutenance le 17/06/2014
Etablissement(s) : Clermont-Ferrand 2
Ecole(s) doctorale(s) : École doctorale des sciences de la vie, santé, agronomie, environnement (Clermont-Ferrand)
Partenaire(s) de recherche : Equipe de recherche : Institut National de la Recherche Agronomique (France). Unité de Recherche d'Epidémiologie Animale (Clermont-Ferrand, Puy-de-Dôme)
Laboratoire : Unité d'Epidémiologie Animale
Jury : Président / Présidente : Hervé Monod
Examinateurs / Examinatrices : Pierre Druilhet, Gwenaël Vourc'h, Christian Amblard
Rapporteur / Rapporteuse : Christophe Abraham, Karen D. McCoy

Résumé

FR  |  
EN

L'estimation des abondances de population est essentielle pour comprendre les dynamiques de population, les interactions entre espèces et estimer les risques de transmission d'agents pathogènes dans les populations. Plusieurs méthodes d'échantillonnages, basées sur des hypothèses spécifiques permettent d'estimer ces abondances : les méthodes par comptages uniques, par « distance sampling », par échantillonnages successifs ou par capture marquage recapture. Nous nous sommes intéressés à l'abondance des tiques Ixodes ricinus, vecteurs de nombreux agents pathogènes. Cette abondance est classiquement estimée par le nombre de tiques capturées lors d'échantillonnages uniques réalisés sur différentes unités d'observation. Cependant, de nombreuses études remettent en cause cette hypothèse forte et suggèrent que le taux d'échantillonnage est variable selon les conditions d'échantillonnage (type de végétation,…) mais ne prennent pas en compte ce taux d'échantillonnage pour autant. A partir d'une méthode d'échantillonnage par « removal sampling » (RS), (i) nous avons montré que les conditions environnementales influençaient le taux d'échantillonnage et l'indicateur d'abondance usuel i.e. le nombre de tiques capturées lors d'un seul échantillonnage (ii) nous avons proposé une méthode pour détecter l'indicateur d'abondance, basés sur le nombre cumulé de capture, le moins soumis aux variations du taux ; (iii) par une approche Bayésienne hiérarchique, nous avons estimé simultanément l'abondance de tiques des unités d'observation et la valeur du taux d'échantillonnage en fonction du type de végétation et de l'heure d'échantillonnage. Nous avons montré que le taux d'échantillonnage sur des arbustes (entre 33,9 % et 47,4%) était significativement inférieur au taux d'échantillonnage sur des feuilles mortes (entre 53,6 % et 66,7%). De plus, nous avons montré que le modèle RS tend vers un modèle de Poisson iid lorsque la taille de la population N0 tend vers l'infini ce qui pose des problèmes d'indétermination pour estimer les paramètres N0 et τ, le taux d'échantillonnage. Nous avons également montré que (i) les estimateurs Bayésiens divergent lorsque les lois a priori sont des lois vagues ; (ii) les lois a priori β(a, b) avec a > 2 sur τ conduisaient à des estimateurs Bayésien convergents. Enfin, nous avons proposé des recommandations quant au choix des lois a priori pour τ afin d'obtenir de bonnes estimations pour N0 ou pour τ. Nous discutons de la pertinence des méthodes RS pour les tiques et des perspectives envisageables pour (i) estimer le risque acarologique représenté par la population de tiques potentiellement actives sur une unité d'observation, (ii) estimer un risque à l'échelle d'une parcelle, à savoir comment répartir l'effort d'échantillonnage entre le nombre d'unités d'observation et le nombre d'échantillonnages successifs par unités d'observation.