Thèse soutenue

Les échelles de temps des processus magmatiques avant une éruption caldérique

FR  |  
EN
Auteur / Autrice : Gareth Nicholas Fabbro
Direction : Tim H. Druitt
Type : Thèse de doctorat
Discipline(s) : Volcanologie
Date : Soutenance le 24/04/2014
Etablissement(s) : Clermont-Ferrand 2
Ecole(s) doctorale(s) : École doctorale des sciences fondamentales (Clermont-Ferrand)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire Magmas et Volcans
Jury : Président / Présidente : Bruno Scaillet
Examinateurs / Examinatrices : Tim H. Druitt, Thierry Menand, Fidel Costa
Rapporteurs / Rapporteuses : Ralf Gertisser, Luca Caricchi

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Les grandes éruptions caldériques sont parmi les phénomènes les plus destructeurs de la Terre, mais les processus à l’origine des grands réservoirs de magma siliceux et pauvre en cristaux qui alimentent ces éruptions ne sont pas bien compris. Le temps de stockage de ces réservoirs dans la croûte supérieure a un intérêt particulier. De longs temps de stockage—jusqu’à 105 ans—ont été estimés en utilisant les temps de repos entre les éruptions et les âges radiométriques des cristaux qui se trouvent dans les produits éruptifs. Par contre, des travaux récents sur la diffusion dans des cristaux suggèrent que les réservoirs qui alimentent même les plus grandes éruptions peuvent se mettre en place pendant une période beaucoup plus courte—101–102 ans. Afin de répondre à cette question, j’ai étudié l’éruption dacitique de Cape Riva de Santorin, Grèce (>10km3, 22 ka). Pendant les 18.000 ans précédant cette éruption, une série de dômes et de coulées dacitiques a été émise, alternant avec des dépôts de ponce dacitique (le complexe de dômes de Therasia). Ces dacites ont des compositions similaires à celle qui a été émise pendant l’éruption de Cape Riva, et ont été décrites précédemment comme des « fuites » provenant du réservoir de Cape Riva pendant sa croissance. Cependant, le magma de Cape Riva est appauvri en éléments incompatibles (tels que K, Zr, La, Ce) par rapport au magma de Therasia, une différence qui apparaît également dans les cristaux de plagioclase. Cette différence ne peut pas être expliquée par des processus peu profonds, tels que la cristallisation fractionnée ou l’assimilation de la croûte, ce qui suggère que les magmas de Cape Riva et Therasia ont des origines différentes. En outre, il existe des arguments tendant à montrer que les dacites de Therasia n’ont pas été alimentées par un réservoir majoritairement liquide ayant eu une longue durée de vie. Il y a des variations non systématiques dans la composition du magma, les compostions des bords ainsi que les caractéristiques des cristaux de plagioclase tout au long de la séquence. De plus, les temps de résidence à haute température des cristaux de plagioclase et d’orthopyroxène estimés par des modèles de diffusion sont 101–102 ans. Ces temps sont courts par rapport au temps moyen entre éruptions (1.500 ans), ce qui suggère que les cristaux observés dans chaque coulée ne se sont formés que peu de temps avant l’éruption. Les différentes teneurs en éléments incompatibles indiquent qu’un nouveau magma s’est mis en place dans le système volcanique superficiel peu de temps avant l’éruption de Cape Riva. Cet apport de magma a eu lieu après la dernière éruption de Therasia, qui s’est produite <2.800±1.400 ans avant l’éruption de Cape Riva selon les âges 40Ar/39Ar. Les périphéries des cristaux de plagioclase présents dans la dacite de Cape Riva sont en équilibre avec une rhyodacite, avec une composition similaire à celui du verre de l’éruption. Cependant, les zonations dans les éléments majeurs et traces enregistrent des changements dans la composition du liquide magmatique pendant la croissance des cristaux. La composition du centre de la plupart des cristaux de plagioclase est la même que celle des bords ; toutefois ces cristaux sont souvent partiellement résorbés, et la croissance a repris avec du plagioclase plus calcique. Ces cycles se répètent jusqu’à trois fois. La relation étroite entre la teneur en anorthite, Sr et Ti des différentes zones suggère que la composition des plagioclases est corrélé avec la composition du liquide, allant de liquides dacitiques à rhyodacitiques. Des cristaux d’orthopyroxène révèlent une séquence similaire. Les motifs de zonation sont interprétés comme un témoin de la formation du réservoir de Cape Riva dans la croûte supérieure par le mélange de plusieurs magmas ayant des compositions diverses. Des modèles de diffusion de Mg dans le plagioclase et de Fe–Mg dans l’orthopyroxène suggèrent que ce mélange a eu lieu 101–102 ans avant l’éruption.