Thèse soutenue

Contributions aux problèmes de l'étalonnage extrinsèque d'affichages semi-transparents pour la réalité augmentée et de la mise en correspondance dense d'images

FR  |  
EN
Auteur / Autrice : Jim Braux-Zin
Direction : Adrien Bartoli
Type : Thèse de doctorat
Discipline(s) : Vision par ordinateur
Date : Soutenance le 26/09/2014
Etablissement(s) : Clermont-Ferrand 1
Ecole(s) doctorale(s) : École doctorale des sciences pour l'ingénieur (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : (LIMOS) Laboratoire d'Informatique- de Modélisation et d'optimisation des Systèmes
Jury : Président / Présidente : Lourdes Agapito
Examinateurs / Examinatrices : Mohamed Tamaazousti, Romain Dupont, Simon Lacroix
Rapporteur / Rapporteuse : Lourdes Agapito, Étienne Mémin

Résumé

FR  |  
EN

La réalité augmentée consiste en l'insertion d'éléments virtuels dans une scène réelle, observée à travers un écran. Les systèmes de réalité augmentée peuvent prendre des formes différentes pour obtenir l'équilibre désiré entre trois critères : précision, latence et robustesse. On identifie trois composants principaux : localisation, reconstruction et affichage. Nous nous concentrons sur l'affichage et la reconstruction. Pour certaines applications, l'utilisateur ne peut être isolé de la réalité. Nous proposons un système sous forme de ''tablette augmentée'' avec un écran semi transparent, au prix d'un étalonnage adapté. Pour assurer l'alignement entre augmentations et réalité, il faut connaître les poses relatives de l'utilisateur et de la scène observée par rapport à l'écran. Deux dispositifs de localisation sont nécessaires et l'étalonnage consiste à calculer la pose de ces dispositifs par rapport à l'écran. Le protocole d'étalonnage est le suivant : l'utilisateur renseigne les projections apparentes dans l'écran de points de référence d'un objet 3D connu ; les poses recherchées minimisent la distance 2D entre ces projections et celles calculées par le système. Ce problème est non convexe et difficile à optimiser. Pour obtenir une estimation initiale, nous développons une méthode directe par l'étalonnage intrinsèque et extrinsèque de caméras virtuelles. Ces dernières sont définies par leurs centres optiques, confondus avec les positions de l'utilisateur, ainsi que leur plan focal, constitué par l'écran. Les projections saisies par l'utilisateur constituent alors les observations 2D des points de référence dans ces caméras virtuelles. Un raisonnement symétrique permet de considérer des caméras virtuelles centrées sur les points de référence de l'objet, ''observant'' les positions de l'utilisateur. Ces estimations initiales sont ensuite raffinées par ajustement de faisceaux. La reconstruction 3D est basée sur la triangulation de correspondances entre images. Ces correspondances peuvent être éparses lorsqu'elles sont établies par détection, description et association de primitives géométriques ou denses lorsqu'elles sont établies par minimisation d'une fonction de coût sur toute l'image. Un champ dense de correspondance est préférable car il permet une reconstruction de surface, utile notamment pour une gestion réaliste des occultations en réalité augmentée. Les méthodes d'estimation d'un tel champ sont basées sur une optimisation variationnelle, précise mais sensible aux minimums locaux et limitée à des images peu différentes. A l'opposé, l'emploi de descripteurs discriminants peut rendre les correspondances éparses très robustes. Nous proposons de combiner les avantages des deux approches par l'intégration d'un coût basé sur des correspondances éparses de primitives à une méthode d'estimation variationnelle dense. Cela permet d'empêcher l'optimisation de tomber dans un minimum local sans dégrader la précision. Notre terme basé correspondances éparses est adapté aux primitives à coordonnées non entières, et peut exploiter des correspondances de points ou de segments tout en filtrant implicitement les correspondances erronées. Nous proposons aussi une détection et gestion complète des occultations pour pouvoir mettre en correspondance des images éloignées. Nous avons adapté et généralisé une méthode locale de détection des auto-occultations. Notre méthode produit des résultats compétitifs avec l'état de l'art, tout en étant plus simple et plus rapide, pour les applications de flot optique 2D et de stéréo à large parallaxe. Nos contributions permettent d'appliquer les méthodes variationnelles à de nouvelles applications sans dégrader leur performance. Le faible couplage des modules permet une grande flexibilité et généricité. Cela nous permet de transposer notre méthode pour le recalage de surfaces déformables avec des résultats surpassant l'état de l'art, ouvrant de nouvelles perspectives.