Thèse soutenue

Etudes physico-chimiques des plasmas induits par laser pour l'analyse quantitative des matériaux dans les systèmes nucléaires

FR  |  
EN
Auteur / Autrice : Rawad Saad
Direction : Bruno BousquetDaniel L’Hermite
Type : Thèse de doctorat
Discipline(s) : Lasers, matière et nanosciences
Date : Soutenance le 24/10/2014
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Etablissement d'accueil : Université Bordeaux-I (1971-2013)
Laboratoire : Laboratoire d'Analyses Nucléaires Isotopiques et Elémentaires
Jury : Président / Présidente : Lionel Canioni
Examinateurs / Examinatrices : Jin Yu, Jörg Hermann, Patrick Mauchien
Rapporteurs / Rapporteuses : Nicole Delépine-Gilon, Arnaud Bultel

Résumé

FR  |  
EN

La LIBS (Laser Induced Breakdown Spectroscopy) est une technique d’analyse multi-élémentaire basée sur la spectroscopie d’émission optique surplasma créé par laser. Elle est bien adaptée pour l'analyse en milieu hostile notamment dans l'industrie nucléaire. Des mesures quantitatives sont fréquemment réalisées sur des échantillons solides ou liquides mais, dans certains cas, des comportements atypiques des signaux émis par le plasma ont été observés dans les expériences LIBS. Afin d’éviter ou de limiter d’éventuelles conséquences sur la précision des mesures, il est nécessaire d’améliorer la compréhension de ces phénomènes. L’objectif des travaux effectués dans le cadre de cette thèse est d’étudier les réactions chimiques se produisant à l’intérieur d’un plasma généré par laser lors d’une analyse LIBS. Des expériences sur un matériau modèle, d’aluminium métallique pur, ont eu pour but de mettre en évidence la dynamique des recombinaisons moléculaires en fonction du gaz ambiant utilisé par l’étude de l’évolution temporelle des raies d’émission atomiques Al I et des bandes moléculaires AlO et AlN. Un effet d’excitation collisionnelle a été mis en évidence pour un niveau électronique particulier de l’aluminium dans le cas d’une ambiance d’azote. Cet effet disparaît sous air. Des expériences d'imageries de plasma ont été menées pour localiser spatialement les zones où se déroulent ces recombinaisons et des effets spectaculaires de projection de particules ont été mis en évidence.