Thèse soutenue

Etude de relaxations en traitement d'images. Application à la segmentation et autres problèmes multi-étiquettes.

FR  |  
EN
Auteur / Autrice : Romain Yildizoglu
Direction : Jean-François AujolCharles DossalNicolas Papadakis
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et calcul scientifique
Date : Soutenance le 08/07/2014
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Etablissement d'accueil : Université Bordeaux-I (1971-2013)
Laboratoire : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Michel Berthier
Rapporteurs / Rapporteuses : Andrés Almansa, Simon Masnou

Résumé

FR  |  
EN

Cette thèse étudie différentes relaxations pour minimiser des fonctionnelles non convexes qui apparaissent en traitement d’images. Des problèmes comme la segmentation d’image peuvent en effet s’écrire comme un problème de minimisation d’une certaine fonctionnelle, le minimiseur représentant la segmentation recherchée. Différentes méthodes ont été proposées pour trouver des minima locaux ou globaux de la fonctionnelle non convexe du modèle de Mumford-Shah constant par morceaux à deux phases. Certaines approches utilisent une relaxation convexe qui permet d’obtenir des minima globaux de la fonctionnelle non convexe. On rappelle et compare certaines de ces méthodes et on propose un nouveau modèle par bande étroite, qui permet d’obtenir des minima locaux tout en utilisant des algorithmes robustes qui proviennent de l’optimisation convexe. Ensuite, on construit une relaxation convexe d’un modèle de segmentation à deux phases qui repose sur la comparaison entre deux histogrammes donnés et les histogrammes estimés globalement sur les deux régions de la segmentation. Des relaxations pour des problèmes multi-étiquettes à plusieurs dimensions comme le flot optique sont également étudiées. On propose une relaxation convexe avec un algorithme itératif qui ne comprend que des projections qui se calculent exactement, ainsi qu’un nouvel algorithme pour une relaxation convexe sur chaque variable mais non convexe globalement. On étudie la manière d’estimer une solution du problème non convexe original à partir d’une solution d’un problème relaxé en comparant des méthodes existantes avec des nouvelles