ATP synthase mitochondriale : fonction de la sous-unité ε et biogenèse du F0
Auteur / Autrice : | Francois Godard |
Direction : | Jean-Paul Di Rago |
Type : | Thèse de doctorat |
Discipline(s) : | Génétique |
Date : | Soutenance le 25/06/2014 |
Etablissement(s) : | Bordeaux |
Ecole(s) doctorale(s) : | École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de biochimie et génétique cellulaires (Bordeaux) |
Jury : | Président / Présidente : Nadine Camougrand |
Examinateurs / Examinatrices : Jean-Paul Di Rago, Nadine Camougrand, Geneviève Dujardin, Francis Harraux, Jean-Pierre Mazat, Agnès Delahodde | |
Rapporteurs / Rapporteuses : Geneviève Dujardin, Francis Harraux |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Dans un premier temps, je me suis intéressé à la sous-unité ε de l’ATP synthase mitochondriale chez la levure, un organisme qui se prête bien à l’étude des fonctions mitochondriales. Cette protéine fait partie d’un élément de l’ATP synthase appelé la tige centrale. Celui-ci permet de coupler le domaine translocateur de protons de cette enzyme (FO) à son secteur catalytique (F1) où l’ATP est synthétisé. En utilisant un système d’expression régulable (répressible par la doxycycline), j’ai montré qu’en l’absence de la sous-unité ε les secteurs F1 et FO ne sont plus couplés, avec pour résultat des fuites massives de protons à travers la membrane interne des mitochondries. J’ai ensuite montré que l’absence de la sous-unité ε peut être compensée par des mutations ralentissant l’activité du FO. Ces données permettent de conclure que la sous-unité ε est nécessaire au maintien de l’intégrité physique de l’ATP synthase lors de son fonctionnement. Dans un second temps, j’ai cherché à identifier de nouveaux facteurs intervenant dans la biogenèse du FO. Pour cela, j’ai utilisé un crible génétique où la survie des cellules de levure est conditionnée à des mutations inactivation le FO. Un millier d’isolats a été analysé. Les mutations ont été localisées dans les génomes mitochondrial et nucléaire. Dix-huit clones, issus de mutations n’affectant pas des facteurs connus pour être nécessaires à l’expression de l’ATP synthase, ont été entièrement séquencés. Plusieurs nouveaux systèmes cellulaires potentiellement impliqués dans la biogenèse du FO ont été identifiés.