Thèse soutenue

Etude de la plasticité morpho-fonctionnelle des axones du CA3 sur tranches de cerveau vivantes par la microscopie STED et l'électrophysiologie
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Ronan Chereau
Direction : Valentin Nägerl
Type : Thèse de doctorat
Discipline(s) : Neurosciences
Date : Soutenance le 19/06/2014
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Bordeaux)
Partenaire(s) de recherche : Etablissement d'accueil : Université Bordeaux-II (1971-2013)
Laboratoire : Institut Interdisciplinaire de Neurosciences (Bordeaux)
Jury : Président / Présidente : Stéphane Oliet
Examinateurs / Examinatrices : Peter Kind, Andreas Frick
Rapporteurs / Rapporteuses : Dominique Debanne, Juan Burrone

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Une précision à l’échelle de la milliseconde dans le transfert d'informations entre les neurones est essentielle pour la synchronisation et la plasticité des circuits neuronaux dans le cerveau. Les axones sont des prolongements neuronaux qui assurent la communication via des impulsions électriques ou des potentiels d’action (PA). A cause du manque de myéline et de leur diamètre très fin, les axones de l'hippocampe propagent les PA lentement et ainsi générer des délais de conduction très long (jusqu’à 100 ms) qui sont traditionnellement considérés comme invariants. Cependant, plusieurs études ont montré que l'activité change la morphologie des axones et module le temps de latence de la transmission. Il convient donc de se demander si le diamètre des axones varie en fonction de l'activité pouvant influencer lapropagation des PA.Les diamètres des axones non-myélinisés de l’hippocampe (compris entre 100-350 nm) sont généralement trop petits pour être résolu par la microscopie photonique conventionnelle. Le développement récent de l’imagerie super résolution STED permet désormais l'observation de la dynamique de leur morphologie détaillée dans le tissu vivant. En combinant la microscopie STED, l’électrophysiologie avec enregistrements en champs et patch-clamp dans des tranches de cerveau de souris et des simulations informatiques, nous avons découvert que les axones du CA3 subissent un élargissement de leur diamètre après l'induction de la potentialisation à long terme (PLT). Nous démontrons que cet élargissementde diamètre augmente la vitesse de conduction des PA. Dans l'ensemble, nos résultats indiquent que les axones peuvent réguler leur diamètre de manière dynamique changeant le délai de conduction des PA, ce qui modifie le timing du transfert d’information dans les circuits neuronaux. Cette étude suggère l’existence d’un nouveau type de mécanisme structurel dans le compartiment axonal jouant un rôle pour la plasticité neuronale.