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ABSTRACT

This thesis is dedicated to develop a kernel of a symbolic asymptotic modeling
software package MEMSALab which will be used for automatic generation of asymp-
totic models for arrays of micro and nanosystems. Unlike traditional software
packages aimed at numerical simulations by using pre-built models, the purpose of
MEMSALab is to derive asymptotic models for input equations by taking into account
their own features i.e. the scalar valued /vector valued solution, different estimates
on the solutions and sources, thin structures, periodic structures, multiple nested
scales etc.

We have proposed an approach called " by extension-combination" for the asymp-
totic modeling which allows an incremental model construction so that the wanted
features can be included step by step. In this approach, the derivation starts from a
so-called reference proof which is a periodic homogenization model derivation for a
second order elliptic equation with periodic coefficient defined in a one-dimensional
domain, then a complex model is constructed by extending and combining elemen-
tary models, each of which covers a specific feature, until all wanted features are
taken into account. On the other hand, a theoretical framework for the computer-
aided asymptotic model derivation is proposed. It relies on a combination of the
asymptotic method used in the field of partial differential equations with term
rewriting techniques coming from computer science. In this framework, the first
order rewriting rules (FO-rules) are used to express mathematical rules and their
application are controled by first order strategies. The design of FO-rules benefits
from the grammar which is proposed for a systematic formulation of all needed
mathematical objects, ie geometry domains, functions, operators etc, used in the
model derivation. Then second order rewriting rules (SO-rules) and strategies are
introduced to built elementary models by extending existing proofs and to combine
them to built complex models. To avoid conflicts in the combination of extensions,
each SO-rule is formulated as a combination of unit outward growths. Each unit
outward growth is a composition of an R-semantic conservation SO-rule and an
Admissible parameterized SO-rule corresponding to semantic conservation trans-
formation and parametrization of the FO-rules. Thanks to the simple formulation
of the unit outward growth, the behavior of their combination becomes possible
to be studied. Then the rules for fluent combinations are proposed.

The interest of this approach is that if features of the input model are covered
by the existing elementary models, the derivation can be generated by applying
combination of the existing rules on the reference proof. This facilitates the pro-



gramming for new models.

Next, an homogenization model of the electrothermoelastic equation defined
in a multi-layered thin domain has been derived following the reference proof by
using extended mathematical rules and some extended steps. It contributes in two
aspects. First, the model can be used for simulation embedded in an optimiza-
tion loop. Second, it prepares the design of related extensions for its inclusion in
MEMSALab.

At last, an optimization tool has been developed by combining a house-made
optimization software package SIMBAD and COMSOL-MATLAB simulation and
it has been applied for optimization of a SThM probe. General optimization
principles have been summarized and an optimal design has been obtained.

Keywords: Multi-scale, Arrays, Nanosystem, Asymptotic model, Rewriting tech-
nique, extension-combination, Elementary model, Thin-domain, Feature, Opti-
mization



Résumé

Cette thése est consacrée au développement d’un noyau du logiciel MEMSALab de
modélisation par calcul symbolique qui sera utilisé pour la génération automatique
de modéles asymptotiques pour des matrices de micro et nanosystémes. Contraire-
ment a des logiciels traditionnels réalisant des simulations numériques utilisant des
modéles prédéfinis, le principe de fonctionnement de MEMSALab est de construire
des modéles asymptotiques qui transforment des équations aux dérivées partielles
en tenant compte de leurs caractéristiques, a savoir : la nature scalaire ou vec-
torielle de la solution, les ordres des estimations des solutions et des sources, la
périodicité de coefficients ou de géomeétries, la minceur de certaines parties, ou
bien la présence d’échelles multiples imbriquées.

Nous avons proposé une méthode appelée "par extension-combinaison" pour la
modélisation asymptotique, qui permet la construction de modéle de facon incré-
mentale de sorte que les caractéristiques désirées soient incluses étape par étape.
Par cette approche, la construction d’un modéle utilise la démonstration d’un
modéle qui sert de référence. Ce dernier est un modéle d’homogénéisation péri-
odique d'une équation elliptique du second ordre avec coefficient périodique définie
dans un domaine mono-dimensionnel. Un modéle complexe est ensuite réalisé par
la combinaison d’extensions élémentaires de ce modéle, chaque extension tenant
compte d'une caractéristique spécifique, jusqu’a ce que toutes les caractéristiques
nécessaires soient prises en compte. Un cadre théorique a été proposé pour la
formulation de cette méthode de facon a ce qu’elle puisse étre mise en oeuvre de
facon informatique. Il repose sur une combinaison de méthodes asymptotiques
issues de la théorie des équations aux dérivés partielles et de techniques de réécri-
ture issues de l'informatique. Dans ce cadre, les régles de réécriture du premier
ordre sont utilisées pour exprimer des régles mathématiques et leur applications
sont controlées par des stratégies du premier ordre. Ces régles et stratégies sont
exprimées dans une grammaire qui permet de prendre en compte tous les objets
mathématiques nécessaires, a savoir les domaines géométriques, les fonctions, les
opérateurs etc... . Des régles de réécriture et des stratégies du second ordre ser-
vent a construire des extensions de la preuve de référence et a les combiner. Pour
éviter les conflits dans la combinaison d’extensions, ces régles du second ordre
sont formulées par des opérations simples ou par leurs combinaisons, introduites
pour l'occasion, appelées "greffes". Grace a ce concept, la combinaison devient
une opération facile a réaliser. L’intérét de cette approche est que si les carac-
téristiques du modéle d’entrée sont bien couvertes par les extensions élémentaires
existantes, la construction du nouveau modéle asymptotique est générée par simple
combinaison des extensions de la preuve de référence. Cela permet la construction
et la programmation de nouveaux modéles.

Ensuite, un modéle d’homogénéisation de I’équation d’électro-thermo-mécanique



posée dans un domaine mince multicouche est établi en suivant les étapes de la
construction du modéle de référence, mais utilisant des propriétés plus générales.
Cette contribution conduit d’une part & un nouveau modéle qui peut étre utilisé
comme modeéle simplifié qui peut étre intégré dans un calcul d’optimisation pour
accélérer les calculs. D’autre part, elle prépare I'implantation de la construction
de ce modéle dans MEMSATLab exprimée sous forme d’extensions élémentaires et
de leurs combinaisons. Pour finir, un outil d’optimisation a été développé en com-
binant SIMBAD, une boite a outils logicielle pour I'optimisation et développée
en interne, et COMSOL-MATLAB. Il a été appliqué pour étudier la conception
optimale d’une classe de sondes de microscopie atomique thermique et a permis
d’établir des régles générale pour leurs conception.

Mots-clés: Multi-échelle, réseau, nanosystémes, modéle asymptotique, technique
de réécriture, extension-combinaison, modéle primaire, mince-domaine, caractéris-
tique, Optimisation
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1. Micro-system arrays, asymptotic methods

1 Context of the thesis: micro-system arrays, asymp-
totic methods and their implementation

During the past two decades, in the field of micro and nanotechnologies, a num-
ber of devices involving arrays on a chip, or MEMS® Arrays have been fabricated.
Typical ones are micro-conveyors, arrays of micro-cantilevers (used for atomic force
microscopy, nano-lithography or data storage), arrays of micro-mirrors and micro-
lenses (used in optical applications e.g. in video projectors and lithography masks,
and in many applications such as filters for fiber optic and laser arrays), arrays of
microneedles, micro-bolometers, etc, see Figure 1. These systems have common

Figure 1: Examples of micro-system arrays

features: they are distributed, often spatially periodic, and they have multi-physics
and various multi-scale characteristics. Because of the complex geometry of their
cells, having possibly a multiscale structure, and their large number the direct
simulation of the micro-system arrays by a numerical method as the Finite Ele-
ment Method (FEM) turns out to be impractical. Extensive development of such
systems requires design and simulation tools which motivates this work and more
generally a research activity at the FEMTO-ST institute. It is worthwhile men-
tioning that the presented application is about scanning thermal microscopy and
involves a relatively complex microsystem, but not an array. However, as the
reader will see, the developed model fits well with the illustration needed by our
approach.

Asymptotic methods. One possible solution is to use asymptotic methods
and especially periodic homogenization methods. Asymptotic methods applied
to partial differential equations (PDE, for short) are model reduction techniques,
their purpose is to approximate the initial model, given as a PDE, by a second
model of which the simulation by the FEM can be done in a reasonable time. They
are very useful for complex system simulation and are of great interest in the soft-
ware design community. They have experienced strong growth since 1980, with an
increasing range of applications in all fields of physics and engineering: thermal,

! Micro-Electro-Mechanical Systems
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solid and fluid mechanical, electromagnetism, etc. They have rigorous mathemat-
ical foundation and can lead to error estimates based on the small parameters
involved in the approach. This is a valuable aspect from the model reliability
point of view. They have been applied when a physical problem depends on one
or more small parameters which can be some coefficients or can be related to the
geometry. Their principle is to identify the asymptotic model obtained when the
parameters tend to zero. For instance, this method applies in periodic homoge-
nization, i.e. to systems consisting of a large number of periodic cells, the small
parameter being the ratio of the cell size over the size of the complete system, see
for instance |7, 30, 44|. Another well-developed case is when parts of a system are
thin, e.g. thin elastic plates as in [26], that is to say that some of their dimensions
are small compared to others. A third kind of use is that of strongly heterogeneous
systems e.g. [15], i.e. when equation coefficients are much smaller in some parts
of a system than in others. These three cases can be combined in many ways
leading to a broad variety of configurations and models. In addition, it is possible
to take into account several nested scales and the asymptotic characteristics can
be different at each scale: thin structures to a scale, periodic structures to another,
e.g. [11], [12], [13], [46], etc. It is also possible to cover cases where the asymptotic
phenomena happen only in certain regions or even are localized to the boundary.
Moreover, different physical phenomena can be taken into account: heat trans-
fer, solid deformations, fluid flow, fluid-structure interaction or electromagnetics.
In each model, the coefficients can be random or deterministic. Finally, different
operating regimes can be considered as the static or the dynamic regimes, or the
associated spectral problems. Today, there exists a vast literature covering an
impressive variety of configurations.

Asymptotic methods, enjoy a number of advantages. The resulting models are
generally much faster (often by several order of magnitude — depending on the
kind of model simplification —) to simulate than the original one and are fully pa-
rameterized, which is not the case with other model order reduction approaches.
In addition, they do not require any long numerical calculation for building them,
so they can be inserted into identification and optimization loops of a design pro-
cess. Finally, they are of general use and they can be rigorously applied whenever
a model depends on one or several small parameters and the error between their
solution and nominal model solution can be estimated.

There is a vast literature on asymptotic methods for PDEs both in applied
mathematics and in many modeling areas. Many reference books have been pub-
lished, and there are several journal devoted to them. (STAM: Multi-scale Modeling
and Simulation, Asymptotic Analysis, Networks and Heterogeneous Media, Inter-
national Journal for Multi-scale Computational Engineering, Journal of Multi-scale
Modeling, International Journal of Theoretical and Applied Multi-scale Mechanics



1. Micro-system arrays, asymptotic methods

etc...).

Two-scale convergence. For periodic homogenization, several methods have
been emerging over the years. In this thesis, we focus on the two-scale conver-
gence. In 1989 in [52], the notion of two-scale convergence was introduced for
periodic homogenization problems and this method was further developed in [1].
Independently, in 1990, the reference |3| introduced a dilation operation to study
homogenization for a periodic medium with double porosity. This technique was
used again in [16], [2] and [50]. M. Lenczner with his co-workers in [45]-[49] used
the same idea to develop a complete framework yielding similar results for periodic
homogenization as the two-scale convergence method. They introduced this new
technique to address homogenization of spatially periodic analog electronic circuits
in view of their application in arrays of MEMS. Then, J. Casado Diaz et al. |23],
[24]-|25] combined it with the two-scale convergence to study perforated domains
and thin structures. Then, the same concept was called periodic unfolding method
by D. Cioranescu, A. Damlamian and G. Griso who have developed a number
of their properties, including error estimates, in [25], [28], [37] [38] and [39]. This
technique has been extensively developed by many other authors in a variety of ap-
plications. In particular, it has been applied to find models of complex structures
combining other asymptotic features, as thin structure or strong heterogeneity of
coefficients, with the periodic homogenization, see among others [11], [12], [13], or
[46]. We notice that in [47|, an attention has been paid to formulate the proofs of
model derivation as a sequence of algebraic calculation without relying on abstract
arguments.

Ezxisting FEM simulation software and homogenization software. FEM
simulation software packages have been developed and applied in a lot of fields
in the recent decades. The comercial finite element analysis software packages
ABAQUS, ANSYS, COMSOL and CONVENTOR are the most famous and widely used
among the software simulation packages. They are used in the simulation of
multi-physics, and in particular, CONVENTOR is specialized in the simulation of
the micro-system arrays. On the other hand, free finite element analysis software
packages, such as Code Aster, FreeFem++, have also been developed. Such soft-
ware implement very limited number of multi-scale models. However, a number of
homogenization software packages also exist. For example, Helius from Firehole,
MAC/GMC from NASA, CZone from Engenuity, and DIGIMAT from eXstream Engi-
neering. Helius and DIGIMAT are specialized in the analysis of the properties of
composite materials by using different homogenization methods. The Multicontin-
uum Technology is used in Helius, and the Mean-Field homogenization method
is used in DIGIMAT. In these homogenization software packages, the homogenized
models are pre-computed case-by-case. They can cover a limited number of pos-
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sible models, which remains a tiny fraction of possible cases, with regards to the
wide variety of possible physical features and geometrical configurations.

Drawbacks of the asymptotic methods, motivation of the thesis. Com-
mercial software already available on the market, such as MDS, DIGIMAT, Firehole,
Czone mentioned above, are well connected with classical finite element software
and their efficiency is clearly established. Of course, the homogenized models be-
ing implemented are specific to a physical field, and new models might be derived
if another physics has to be taken into account. Other asymptotic features, as
for instance those considered in this paper, are not used in the above-mentionned
software. To take them into account would considerably multiply the number of
possible models and render ineffective a model-by-model approach.

In addition to the problem of the number of possible models generated by
combining various asymptotic methods, another limitation to their dissemination
in engineering software is that each new configuration requires new long hand-
made calculations that may be based on several techniques. In the literature,
each published paper focuses on a special case regarding geometry or physics,
and no academic work is oriented in an effort to deal with a more general picture.
Moreover, even if a large number of models combining various features have already
been derived, the set of already addressed problems represents only a tiny fraction
of these could be derived from all possible asymptotic feature combinations based
on existing techniques.

Summing up, we can say that on the one hand, periodic homogenization mod-
els are well disseminated in some engineering communities, and that on the other
hand transfering, in software for engineers, models built from combination of sev-
eral asymptotic methods is not yet done, and seems to be not achievable in a
model-by-model approach. We consider that this challenge can be formulated as
a scientific problem that deserves to be posed and we propose first components of
solution. Namely, we establish a mathematical framework for combining asymp-
totic methods of different natures and thus for producing, aided by a computer,
a wide variety of complex models. The proposed solution combines principles of
asymptotic model derivations, also called proofs, and rewriting methods issued
from computer science.

2 Contributions of the thesis

Contrary to the approach followed in the homogenization software packages, our
approach is more general: we rely on a systematic application of asymptotic meth-



2. Contributions of the thesis

ods, and we aim to implement them in a software package, called MEMSALab?,
that constructs approximated models. The architecture of MEMSALab is shown
in Figure 2. It is designed to complement a FEM software package that has an
internal formal representation of PDEs as COMSOL or FreeFEM++. It envisionned
functioning consists in three steps completed with an optimization tool. The first
step, by the FEM software/ MEMSA Lab interface, is a transfer, from a FEM soft-
ware package, of a PDE (or a system of PDEs) and its translation in the grammar
of the symbolic computation language used in the kernel of MEMSALab. In the
second step, the multi-scale model (MSM) is symbolically derived and the result is
saved. In the third step, by the MEMSALab / FEM Software interface, the MSM
is translated back to the format of the FEM software package and its simulation
is launched. The parameter updating and optimization tool is interfaced with the
FEM software package.

This thesis, contributes only to some of these aspects, namely, the kernel of
MEMSALab i.e. the MSM constructor is highlighted by yellow color in Figure 2
as described in Section 2.1, and the optimization tools for the application of MSM,
introduced in Section 2.2. The latter has been done for an application to a class
of systems governed by thermoelectroelasticity equations ie for scanning probes
used in thermal microscopy. Moreover, an asymptotic model has been built that
has indeed a wider range of applications as explained in Section 2.2. Its derivation
follows the rules for being implemented in MEMSA Lab.

2.1 MEMSALab software design

Underlying principles of MEMSALab. Our design methodology consists of
three aspects.

1. The first one is to establish a general mathematical theoretical framework
for the multi-scale model derivations. In this unified framework, the deriva-
tions — in a setting of different physical features and geometries — could be
different, in details, but the skeleton of the derivations remains "the same".
The mathematical proofs underling the model derivations are written in an
algebraic way, few abstract reasoning is used. The algebraic nature of the
proofs is crucial, since it allows implementation of the proofs as symbolic
transformations.

2. The second aspect is the design and the implementation of a symbolic trans-
formation tool to implement the multi-scale model derivations. The designer
formulates the mathematical properties as well the elementary derivations
(i.e. the skeleton proofs) with this tool.

2For MEMS Arrays
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3. Since only the elementary derivations of the general framework are imple-
mented in MEMSALab, the third aspect of our design methodology consists
in developing an extension mechanism allowing the combination of the al-
ready implemented derivations. This is a systematic way to build complex

models by reusing and combining already existing proofs.

Mawn steps of model derivation. The mathematical framework is this de-
veloped in [47] based on the two-scale transform also called the periodic unfolding
operator. We think that it has the potential to be adapted to a large number of
configurations without major change in the flow of the proofs, but we are aware
that a lot of specific steps have to be changed /added. Basically, the model deriva-
tion by this approach has the three following steps commonly shared by most of

the asymptotic methods:

1. Asymptotic expansions of the solutions, in a two-scale sense in our work, are
assumed with regards to norm estimates, which are admitted in the current
state. Then, weak limits of two-scale transforms of first-order derivatives are

derived.
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Figure 3: An extension of the reference proof (top) to the 3-dimensional setting
(left) and to the thinness setting (right). The combination of these two extensions
is depicted on the bottom.

2. The model derivation starts from weak formulations where test functions are
chosen according to the asymptotic analysis to be carried out. An asymptotic
two-scale is derived by using Step 1.

3. Elimination of micro-scale fields of the two scale model yields the reduced
asymptotic model.

Principle of model derivation by extension-combination. In order to
carry on a systematic approach for the derivation of multi-scale models that al-
lows to cover a variety of physical features and geometries, we develop a method
called "by extension-combination”. Figure 3 illustrates the idea behind this method
through an example. This method relies on three key principles.

1. Firstly, we introduce a reference model, also called skeleton model, together
with its derivation. This derivation is called the reference proof. The ref-
erence model is the periodic homogenization model of a scalar second-order
elliptic equation posed in a one-dimensional domain, with Dirichlet boundary
conditions. Its derivation is based on the technique of the two-scale transform
introduced in |3], and reused in [17]. Here, we follow the model derivation

7
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approach of [47| which relies on algebraic reasoning only. Although the ref-
erence model covers a very simple case, its proof is expressed in a sufficiently
general way. A number of basic algebraic properties are formulated as trans-
formation rules, they are considered as the building blocks of the proofs.
The full derivation of the model is formulated as a sequence of applications
of these rules. The proof of some properties is also performed by a sequence
of applications of mathematical rules when the others are admitted e.g. the
Green rule.

2. Then, an elementary extension (also called elementary generalization) is ob-
tained by an application of an elementary transformation to the reference
proof. Such elementary transformation covers a particular feature. More
generally, many elementary transformations can be applied simultaneously
to the reference proof, where each transformation covers a distinct feature.
We notice that, in practice, when a single feature is taken into account, only
a small change occurs in a relatively long proof. In other words, while con-
sidering an elementary extension, most of the existing rules could be reused
by operating a small change on them, and, on the other hand, only a small
number of new rules has to be manually introduced. From this empirical
observation, it follows that the extension of the existing proofs to cover a
new feature can be generated almost automatically.

3. Finally, we make possible the combination of two initial extensions to pro-
duce a new extension that takes into account the features covered by each
initial extension. By iterating this process, many elementary extensions can
be combined together. The use of the mechanism of the combination of
several existing elementary extensions instead of the development of new
extension transformations has the advantage of reducing the development
effort by avoiding doing complex changes manually. Thus, the "by extension-
combination” method is a reasonable one since it facilitates the implemen-
tation of the two-scale methods.

Rewriting-based principles used in the extension-combination method.
We rely on a theoretical tool from computer science, called term rewriting. The
reason is that equational reasoning can naturally be described by rewriting rules,
see [4] for a classical reference. Roughly speaking, an equation ¢ = u can be turned
into two rewriting rules ¢ — v and v — t, where ¢ and u are rewriting terms con-
sisting of function symbols and rewriting variables. The rule ¢ — u states that
every occurrence of ¢ has to be transformed into u. Rules can have conditions and
can be combined by specifying strategies that determine how to apply the rules,
see e.g. [56, 32, 31, 14, 33].

8
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The mathematical objects, such as geometric domains, variables defined on
these domains, functions of many variables, operators (e.g. derivatives, integrals,
two-scale transform, etc.), are common in the field of partial differential equa-
tions. The precise description of these objects is given by a grammar. In other
words, mathematical expressions need a precise description since they carry all
the information required in the formulation of the multi-scale models and their
derivations.

Some of the rewriting rules require the computation of the set of mathematical
variables on which an expression depends. For instance, in order to establish the
linearity rule L(Aa) — AL(«), where L is a linear operator and A is a scalar, one
needs to compute the variables on which A depends in order to decide whether it
is a scalar. For this purpose, we develop a wvariable dependency analyzer. Within
this framework, a proof is a sequence of rewriting rules. In order to carry on
the extension of the proofs and their combination (i.e."extension-combination"
mechanism), we rely on the second-order rewriting rules which are applied to the
(first-order) rewriting rules in order to extend them.

Implementation of model derivations and of the composition of ex-
tensions. We use the symbolic transformation language symbtrans, proposed in
[6], to implement the proofs and their extensions as rewriting strategies. This
language supports the rewriting modulo associativity and commutativity of the
operations +, x,U and N. It is implemented with the scientific computing lan-
guage Maple. Since, the rewriting strategies in symbtrans are Maple expressions,
it is possible to apply the symbtrans strategies to themselves. This allowed us to
implement the extension of the proofs (each proof is given as a symbtrans strat-
egy) by means of symbtrans strategies. A proof is decomposed into blocks, each
block is a series of applications of rewriting rules and strategies. Each rewriting
rule corresponds to a mathematical property e.g. Green rule, linearity of certain
operators, properties of the two-scale operators. The blocks can be grounded into
a strategy that is applied to an initial expression that corresponds to the input
PDE. Under some assumption®, the combination of two extensions, each of which
is a symbtrans strategy, is nothing but their sequential composition. This result
can be found in [59] and it is detailed in Chapter 1 of this thesis.

Although, the combination of extensions as a sequential composition was useful
for some situations, one could see its limitation. This motivates our next point.

A framework for the combination of extensions. It turns out that it is
not easy to study the combination of extensions if these extensions are formulated
as strategies, as presented in Chapter 1. To solve this problem, we refine the

3Namely, when there is not conflict between the extensions, i.e. when they operate on different
parts of the initial proof.
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notion of extension. Firstly, a rewriting rule is transformed into a more general
rule such that they remain mathematically equivalent. Secondly, the second rule
is generalized by means of a parametrization that consists in the replacement of
some terms by rewriting variables. For example, consider the rule s:

s 1= 0p(uv) — VO u + ud,v

that represents the derivative of a product of two functions in the 1-dimensional
setting. We want to build the rule s”:

§" = 0, (uv) — VO, u + udy,v

which is the counterpart of the rule s in the n-dimensional setting. We proceed in
two steps. In a first step, we transform s to s':

§" = Oy (uv) = VO, u + ud,, v.

We notice that s and s’ are mathematically equivalent and, in some sense, s’ is
more general than s. In a second step, we replace the constant 1 by the variable 7
and we get s”.

In Chapter 2 we establish a framework allowing the definition of the notion of
generalization and parametrization and their combination.

2.2 Multiscale model and optimization of a thermoelectrome-
chanical system

Since this work has been partially supported by the NANOHEAT project?, a
modelling and optimization activity has been developped for scaning thermal mi-
croscopy. We notice that

Motivations of the Scanning Thermal Microscopy. Modern technology
of micro/nanoelectronic components, sensors and MEMS/NEMS (Micro/Nano-
Electro-Mechanical-Systems) requires increasingly the control of materials at the
sub-micrometer down to the nanometer scale. Additionally, the heat transfer phe-
nomena, including e.g. phonon heat conduction mechanism in micro- and nanos-
tructures, may differ significantly from that on the macroscale. Therefore, micro-
and nanometer resolution is required for most of the experiments.

Scanning Thermal Microscopy (SThM) is a versatile scanning probe technique
allowing for high resolution mapping of the thermal properties and temperature
of various substrates. SThM, as every AFM (Atomic Force Microscopy) related

4http://www.nanoheat-project.eu/

10



2. Contributions of the thesis

technique enables study at micro- and nanoscale which allows designers to a better
understanding of heat transport in micro- and nanoelectronic devices.

The invention of the scanning tunneling microscope (STM) [10] and the atomic
force microscope (AFM) [9] have allowed sub-micrometer and, at times, atomic
scale spatially resolved imaging of surfaces. The spatial resolution of these near-
field techniques is only limited by the active area of the sensor (which in the case
of STM may only be a few atoms at the end of a metal wire). As described by Din-
widdie and Pylkki in 1994, first scanning thermal microscopy (SThM) probes em-
ployed resistance thermometry to measure thermal properties [34]. These probes
were fashioned and made from Wollaston process wire consisting of a thin plat-
inum core (ca. 5 pum in diameter) surrounded by a thick silver sheath (ca. 75 pum).
Because of its high endurance, Wollaston probe is attractive for microsystem di-
agnostics , however the active area in the range of a few micrometers does not
allow quantitative thermal investigations at the nano-scale. Then, a new thermal
probe has been designed in the framework of the NANOHEAT project to achieve
quantitative measurement in the range of few tenths nanometers.

The probe design This novel type of nanosensor is equipped with sharp,
conductive tip, an integrated deflection sensor, and an actuation system. It is in-
tegrated with deflection detection, which will significantly improve the system ver-
satility and will enable new applications. As it is free of the bulk and complicated
optical deflection sensors, it can be used in small chambers. The described SThM

<— thermal panoutip —_

Tip gaps Tip

beam structure

Piezoresistive Wheatstone bridge \ R
'

(a) Schematic view of NANOHEAT SThm (b) First design of the cantilever
probe

Figure 4: NANOHEAT SThM probe

nanoprobes are designed to operate in two modes: a) as a passive thermosensing
element or b) as an active heat flux meter. In the latter case, a larger current is
passed through the resistive tip probe. The power that is required to maintain
a constant temperature gradient between the tip and the sample corresponds to

11
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the local thermal conductivity of the sample. During active measurements tem-
perature of the tip is increased by 20 — 30 K above room temperature. In order
to perform quantitative measurements of heat transport between the tip and the
surface several crucial criteria have to be met:

-low thermal mass of the microtip allowing for AC thermal measurements (e.g.
in the range of 10 kHz)

-high mechanical stiffness of the microtip. This ensures high endurance of the
thermal sensor, which is brought into contact while surface scanning.

-low stiffness of the SThM cantilever, which is brought in contact with the
investigated surface. The low stiffness of the SThM cantilever will enable surface
measurements with relatively low load forces. As a consequence the tip wear is
reduced and the sample is not modified.

-high thermal resistance of the SThM cantilever and tip’s support. The high
thermal resistance of the cantilever will reduce the heat transfer from the thermal
tip to the cantilever supporting body. The effective thermal mass of the SThM
sensor will be reduced, and its influence on the thermal behavior of the investigated
structure will be minimized.

Moreover, the heat transferred from the tip to the cantilever base causes par-
asitic deflection of the sensor. First results of modeling and simulations exhibit
significant parasitic, 200 nm deflection of the cantilever due to tip’s heating by 11
degrees above the room temperature.

According to the applications, developed SThM nanoprobe will enable surface
measurements in contact scanning probe microscopy mode at load force ranging
from 10 nN up to 1 microN. The load force will be detected with the resolution of
10 pN in the bandwidth of 100 Hz. The low load forces as well as sub-nanometer
vertical spatial resolution in the range will be needed in investigations of graphene
and molecular samples, whereas the high force will be applied in investigations of
high-k insulators.

Modelling of a NANOHEAT probe. A thin plate model model of the ther-
moelectromechanical SThM probe [43] has been derived. The device is composed
of a thin cantilever equipped with a sharp conductive tip, an integrated deflection
sensor, and an actuation system, see Figure 4(b). It might be useful to reduce the
simulation time and so to facilitate the probe optimization. The derivation of the
model is done following the steps of the reference proof. To this end, the probe is
considered to have a periodic and thin structure, and to the end of the derivation,
the model can be simplified taking into account the fact that the coefficients are
constant instead of periodic which allows for elimination of the microscale variables
in the in-plane direction. Evidently, the proof is much more complex than the one
for the thin elastic plate model, and help has been found in existing papers, with
different techniques, namely [18] for thin periodic elastic plates and [20], [21], [22]

12
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for thin periodic piezoelectric plates with periodic distributed electric circuits. A
byproduct of this approach is a model of periodic homogenization of multi-layered
thermoelectromechanical systems that can be used, with little or no changes, in
other applications in the field of microsystem arrays as for bolometers or arrays of
cantilevers with thermal actuation e.g. the millipede from IBM. From the point
of view of its implementation in MEMSA Lab, the model includes several special
features compared to the reference model and we expect to formulate it using the
extension-combination method.

Coupling SIMBAD and COMSOL and applications. The software SIMBAD
provides a generic simulation-based design tool for investigating the behaviour of
complex modeled systems. A MATLAB link has been set between COMSOL, which
is then considered as FEM software in our approach, and SIMBAD so that COMSOL
models may be used as an input for a design under SIMBAD. It includes the defi-
nition of the optimization problem: the initial value of parameters, the parameter
relative ranges, the objective features and the constraints for geometry and objec-
tive features. It serves to transmit current parameters between the two software
packages. For the application to the NANOHEAT probe, three objective optimization
results are reported, namely to decrease the thermo-mechanical tip deflection, to
increase the Joule heating effect in the tip and to increase the sensitivity of the
piezoresistive sensor. Three SIMBAD toolboxes have been used. The design sensi-
tivity and effects analysis toolbox is used to quantify the impact of design variable
modifications on the design objective of interest. It allows the design space to be
reduced to the subset of influential variables. The multi-objective performance
optimization toolbox is used to obtain an approximation of the Pareto front for
the different design objectives. It provides the analyst with a useful indicator on
the trade-offs between the objectives of interest. Finally, the model validation
and uncertainty quantification is used to quantify the impact of both aleatory and
epistemic (lack of knowledge) uncertainties in the design variables and system en-
vironment on the design objectives and constraints. A very complete analysis has
been carried out to explain the interactions between concurrent phenomena and
to conclude to design guidelines.

3 Organization of the thesis

The thesis is organized as follows:

e In Chapter 1 we introduce a framework for computer-aided derivation of
multi-scale models. It relies on a combination of an asymptotic method used
in the field of partial differential equations with term rewriting techniques.

13
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In this framework, a multi-scale model derivation is characterized by the fea-
tures taken into account in the asymptotic analysis. Its formulation consists
in a derivation of a reference model associated to an elementary reference
model, and in a set of transformations to apply to this proof until it takes
into account the wanted features. We apply the method to generate a fam-
ily of homogenized models for second order elliptic equations with periodic
coefficients that could be posed in multi-dimensional domains, with possibly
multi-domains and/or thin domains.

In Chapter 2 we address the problem of the combination of the extensions
of the proofs related to the multi-scale model derivations. For this purpose,
we develop further extension mechanisms that refine the ones introduced in
Chapter 1. We elaborate necessary conditions under which these mechanisms
can be correctly combined giving rise to rich extensions. We apply these
extension mechanisms to many examples, namely to the derivation of the
linear operator associated to the microscopic problem in the reference proof.
Thus the results of this Chapter significantly improve the results of Chapter 1
since it is not possible, at least in a straightforward way, to provide necessary
conditions so that the extension mechanisms established in Chapter 1 can
be combined.

The model of thin multilayer periodic thermoelectromechanical system is
derived in Chapter 3. It follows strictly the reference proof excepted a change
that has been introduced for the sake of simplification: in some step we
prefer to use the two-scale convergence of Nguetseng and Allaire instead of
this based on the two-scale transform. All necessary properties and proof
are updated.

The last chapter focuses on the optimization results obtained by coupling
SIMBAD to COMSOL through MATLAB. The complete analysis is detailed in-
cluding the sensitivity analysis, the reduction of the number of active opti-
mization variables and the multi-criteria optimization. General conclusions
are drawn in view of helping future SThM probe designers.



Chapter 1

A Rewriting Framework For
Computer-Aided Derivation Of
Multi-Scale Models

Abstract. In this Chapter we introduce the first part of a framework for computer-
aided derivation of multi-scale models. It relies on a combination of an asymptotic
method used in the field of partial differential equations with term rewriting tech-
niques coming from computer science. In our approach, a multi-scale model deriva-
tion is characterized by the features taken into account in the asymptotic analysis.
Its formulation consists in a derivation of a reference model associated to an el-
ementary nominal model, and in a set of transformations to apply to this proof
until it takes into account the wanted features. In addition to the reference model
proof, the framework includes first order rewriting principles designed for asymp-
totic model derivations, second order rewriting principles dedicated to elementary
extensions of model derivations and their combinations. The latter point is only
briefly sketched and will be detailed in another work. We report implementation
results regarding three simple extensions of the reference proof. The results of this
Chapter were the subject of the publication [59].

1.1 Introduction

In this Chapter we introduce a method called "by extension-combination”. It
consists of three principles.

1. A reference model is introduced together with its derivation. It covers a very
simple case but its proof is expressed in a sufficiently general form.
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2. Then, elementary extensions (also called generalizations) are built by ele-
mentary transformations of the reference derivation, each of them covering
a different feature.

3. Finally, elementary transformations are combined resulting in a complex
transformation.

The latter is in turn applied to the reference proof to generate a complex model
including all features of the elementary extensions.

The present Chapter focuses on the two first steps when the last one, i.e.
combination of transformations, will be detailed in Chapter 2.

We select as the reference problem that of the periodic homogenization of a
scalar second order elliptic equation posed in a one-dimension domain and with
Dirichlet boundary conditions. Its derivation is based on the use of the two-scale
transform operator introduced in [3], and reused in [17]. We quote that homoge-
nization of various problems using this transformation was performed according to
different techniques in [45, 48, 47, 23, 27, 29]. Here, we follow [47], so a number of
basic properties coming from this paper are stated and considered as the building
blocks of the proofs. The complete derivation of the model is organized into seven
lemmas, it is performed by a sequence of applications of these properties. Their
extension to another problem requires generalization of some of the properties,
which is assumed to be made independently. It may also require changes in the
path of the proof, and even adding new lemmas. Regarding the level of detail in
the representation of mathematical objects, on the one hand it has enough preci-
sion to cover a fairly wide range of models and on the other hand the calculations
are reasonably sized. Moreover, the way the generalizations are made is important
so that they could be formulated in a single framework.

The computational framework used to express the method is based on the
theory of rewriting. The required mathematical concepts are common in the field
of partial differential equations: geometric domains, variables defined on these
domains, functions of several variables, operators (e.g. derivatives, integrals, two-
scale transform, etc.). The proofs of Lemmas are designed to be realizable by
rewriting. Precisely, each property is expressed as a rewrite rule that can be
conditional, so that it can be applied or not according to a given logical formula. A
step in a lemma proof is realized by a strategy that expresses how the rule applies.
The complete proof of a lemma is then a sequence of such strategies. Ones we use
have been developed in a previous work |6| that is implemented in Maple. Here we
provide its formalization. To allow the successful application of rewriting strategies
to an expression that contains associative and/or commutative operations, such
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as +, *, U, N, etc, we use the concept of rewriting modulo an equational theory |4,
§11|. Without such concept one needs to duplicate the rewriting rules.

Rewriting operates on expressions whose level of abstraction accurately reflects
the mathematical framework. Concrete description of geometric domains, func-
tions or operators are not provided. Their description follows a grammar that
has been defined in order that they carry enough information allowing for the
design of the rewriting rules and the strategies. In some conditions of rewriting
rules, the set of variables on which an expression depends is required. This is for
example the case for the linearity property of the integral. Rather than introduc-
ing a typing system, which would be cumbersome and restrictive, we introduced
a specific functionality in the form of a A-term (i.e. a program). The language
of strategy allows this use. Put together all these concepts can express a lemma
proof as a strategy, i.e. a first order strategy, and therefore provide a framework of
symbolic computation. The concept of generalization of a proof is introduced as
second order rewrite strategies, made with second order rewriting rules, operating
on first order strategies. They can transform first order rewrite rules and strate-
gies and, where appropriate, remove or add new ones. This framework has been
implemented in the software Maple. We present its application to the complete
proof of the reference problem and also to the generalizations of the first lemma,
by applying second order strategies, to multi-dimensional geometrical domains,
multi-dimensional thin domains and multi-domains.

1.1.1 Organization of the Chapter

This Chapter is organized as follows. The complete method, of extension-combination,
is sketched through an example in Section 1.2. Section 1.3 is devoted to all mathe-
matical aspects. This includes all definitions and properties, the lemmas and their
proof. The principles of rewrite rules and strategies are formulated in Section 1.4.
Section 1.5 is devoted to the theoretical framework that allows to derive a model
and its generalizations. Implementation results are described in Section 1.7.

1.2 Illustration of the method of extension-composition

The extension-combination method is illustrated on a model of the mechanical
behavior of an array of thin elastic periodic cantilevers supported by an elastic
base. It has been established in [47] and later studied in [41], [46] and [42]. The
derivation in |47| only partially fits with the reference derivation of this Chapter.
The difference is that it is done in two steps, first a thin elastic plate model is
obtained, using a different technique, by only assuming small thickness of the
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whole structure. Second, the periodicity assumption is combined with a special
ratio between the thicknesses of the base and the cantilevers. Through a technique
of periodic homogenization for strongly heterogeneous media fitting well with the
scheme of the reference proof, this yields the final model.

The same model can be obtained by a one-step proof transforming the three-
dimensional nominal model into an homogenized two-dimensional model. Such
derivation combines the same features as the two-step proof but is consistent with
the reference proof. It requires three orders of magnitude listed in decreasing order:
for the period, the base thickness and the cantilever thickness. This forms part of
an ongoing work.

The goal of the extension-combination method, as mentioned in page 7, is to
build such one-step derivation as a transformation of the reference derivation by
a combination of elementary transformations. Figure 3 represents the derivations
and the transformations to be applied to derivations as big and little parchments
respectively. The reference proof is denoted by Ref. The transformation II; yields
a derivation of a three-dimensional homogenized model of a periodic single-layered
elastic media. The periodic cell is pierced by a large hole. The transformation II,
is for the derivation of a periodic thin elastic plate model i.e. a model where the
thickness is another small parameter. Then, there are many possible combinations,
all denoted by II; 411, for the sake of simplicity, of the two transformations so that
the final model inherits their features. The bottom left and right sketches represent
two final homogenized models. The first is for a thick periodic layer made with a
pierced periodic cell whose hole is partly occupied by a clamped thin moving plate.
The second is similar except that the whole structure is thin instead of beeing
thick; it corresponds precisely to the model established in [47]. The framework
developed in the rest of this Chapter is for expressing model derivations, as those
represented by big parchments, and transformations of model derivations as II;
and II,. Formulating combinations of transformations of model derivations, such
as II; + II,, is another big part of the solution will be presented in Chapter 2.

1.3 Skeleton of two-scale modeling

We recall the framework of the two-scale convergence as presented in [47], and
the proof of the reference model whose implementation and extension under the
form of algorithms of symbolic computation are discussed in Section 1.7. The
presentation is divided into three subsections. The first one is devoted to basic
definitions and properties, stated as Propositions. The latter are admitted without
proof because they are assumed to be prerequisites, or building blocks, in the
proofs. They are used as elementary steps in the two other sections detailing
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the proof of the convergence of the two-scale transform of a derivative, and the
homogenized model derivation. The main statements of these two subsections
are also stated as Propositions and their proofs are split into numbered blocks
called lemmas. Each lemma is decomposed into steps refering to the definitions
and propositions. All components of the reference model derivation, namely the
definitions, the propositions, the lemmas and the proof steps are designed so that
to be easily implemented and also to be generalized for more complex models. We
quote that a number of elementary properties are used in the proof but are not
explicitely stated nor cited.

1.3.1 Notations, Definitions and Propositions

Note that the functional framework used in this section is not as precise as it should
be for a usual mathematical work. The reason is that the functional analysis is
not covered by our symbolic computation. So, precise mathematical statements
and justifications are not in the focus of this work.

In the sequel, A C R"™ is a bounded open set, with measure |A|, having a "suf-
ficiently" regular boundary 0A and with unit outward normal denoted by nga.
We shall use the set L'(A) of integrable functions and the set LP(A), for any
p > 0, of functions f such that f? € L'(A), with norm ||v|[pay = ([, 0[P
dz)'/P. The Sobolev space H'(A) is the set of functions f € L?*(A) whose gra-
dient Vf € L?*(A)™. The set of p times differentiable functions on A is denoted by
CP(A), where p can be any integer or co. Its subset C§(A) is composed of functions
whose partial derivatives are vanishing on the boundary 0A of A until the order
p. For any integers p and ¢, C1(A) C LP(A). When A = (0,a;) X ... x (0,a,) is
a cuboid (or rectangular parallelepiped) we say that a function v defined in R™ is
A-periodic if for any ¢ € Z", v(y + Y i, lia;e;) = v(y) where ¢; is the i vector of
the canonical basis of R”. The set of A-periodic functions which are C* is denoted
by Cg°(A) and those which are in H'(A) is denoted by H,(A). The operator tr
(we say trace) can be defined as the restriction operator from functions defined on
the closure of A to functions defined on its boundary 0A. Finally, we say that a
sequence (u).~o € L?(A) converges strongly in L*(A) towards u’ € L?(A) when ¢
tends to zero if lim._,q [|u® — u°|[;2(4) = 0. The convergence is said to be weak if
lim. o [, (u® —u”)v do = 0 for all v € L*(A). We write u® = u® 4 O,(e) (respec-
tively O,(€)), where O;(e) (respectively O, (¢)) represents a sequence tending to
zero strongly (respectively weakly) in L?(A). Moreover, the simple notation O(g)
refers to a sequence of numbers which simply tends to zero. We do not detail the
related usual computation rules.
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Proposition 1 [Interpretation of a weak equality] For u € L*(A) and for
any v € C°(A),

if /Au(x) v(z) dx =0 then u =0

in the sense of L*(A) functions.

Proposition 2 [Interpretation of a periodic boundary condition] For u €

H'(A) and for any v € C* (A),

if u(x) v(z) nga(z) dr =0 then u € Hﬁ1 (A).
0A

Proposition 3 [Weak convergence of product] For sequence u,, — u strongly,
v, — v weakly, then the product u,v, — uv weakly.

This proposition is followed in mathematical proof but not in the programme.
The reference proof proposed in this chapter is a simulation of the programme, so
this proposition is not refered explictly.

In the remainder of this section, only the dimension n = 1 is considered, the
general definitions being used for the generalizations discussed in Section 1.7.

Notation 4 [Physical and microscopic Domains| We consider an interval
N(e)

Q= U QL CR divided into N(e) periodic cells (or intervals) QL¢, of size e > 0,
c=1

indexed by c, and with center x.. The translation and magnification (Q°—x.)/e is

called the unit cell and is denoted by Q*. The variables in Q and in Q' are denoted

by 2° and x*.

The two-scale transform 7' is an operator mapping functions defined in the physical
domain € to functions defined in the two-scale domain Qf x Q' where for the
reference model 2* = Q. In the following, we shall denote by I', I'* and I'! the
boundaries of €, QO and Q.

An example of the configuration of physical domain, macroscopic domain and
microscopic domain is given in the following.

Definition 5 [Two-Scale Transform| The two-scale transform T is the linear
operator defined by
(Tu)(ze, 2") = u(zw. + ext) (1.1)

and then by extension T(u)(z*, 21) = u(z. + ex') for all z* € QL and each c in
L,..,N(e).
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1.3. Skeleton of two-scale modeling

- 0
L
X

‘_'.Q1

1

(a) 1D

Notation 6 [Measure of Domains] x° =
The operator T' enjoys the following properties.
Proposition 7 [Product Rule] For two functions u, v defined in §2,

T(uv) = (Tu)(Tv). (1.2)

Proposition 8 [Derivative Rule] If u and its derivative are defined in ) then

, <du) _10(Tw) L3

dr) e Ox!

Proposition 9 [Integral Rule] If a function u € L'(Q2) then Tu € L*(2* x Q1)
and

mo/u dx = Hl/ (Tw) da’da’. (1.4)
Q Qix Q!
The next two properties are corollaries of the previous ones.

Proposition 10 [Inner Product Rule] For two functions u, v € L*(Q),
Iio/ uwvdr = Iil/ (Tw) (Tv) do*ds". (1.5)
Q QFxQ!

Proposition 11 [Norm Rule] For a function u € L*(Q),

2 2
K’ ||U”L2(Q) = r' ||TUHL2(mx91) : (1.6)
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Chapter 1. A Rewriting framework for asymptotic modeling

Definition 12 [Two-Scale Convergence] A sequence u® € L*() is said to be
two-scale strongly (respect. weakly) convergent in L*(QF x Q1) to a limit u®(2*, 2?)
if Tu® is strongly (respect. weakly) convergent towards u® in L*(QF x Q).

Definition 13 [Adjoint or Dual of T] As T is a linear operator from L*(Q) to
L2(QF x QY), its adjoint T* is a linear operator from L*(QF x Q) to L*(Q) defined
by

K / T"v u dv = 51/ v Tu da*dx’. (1.7)
Q QfxQ!

The expression of T* can be explicited, it maps regular functions in Q% x Q' to
piecewise-constant functions in €2. The next definition introduces an operator used
as a smooth approximation of 7.

Definition 14 [Regularization of T*] The operator B is the linear continuous
operator defined from L?(F x Q) to L*(Q) by

). (1.8)

Bv = v(z, z
£

The nullity condition of a function v(z¥, z) on the boundary 9Q% x Q! is transferred
to the range Bv as follows.

Proposition 15 [Boundary Conditions of Bv] If v € C°(QF;C(QY)) then
Bv € C5°(92).

Proposition 16 [Derivation Rule for B] If v and its partial derivatives are
defined on Q2 x Q' and they are smooth enough, then

d(Bv) B( v Jv )
de — Oxt oxt”
The next proposition states that the operator B is actually an approximation of

the operator T for Q'-periodic functions. This property is only used for the test
functions so that v could be regular enough.

) +e ' B( (1.9)

Proposition 17 [Approzrimation between T* and B] If v(z*,x') is continu-
ous, continuously differentiable in x* and Q'-periodic in x' then

o

T"v = Bv — EB(Ilaxﬁ) +e04(e). (1.10)
Conversely,
Bv=T*(v) + €T*(Il%) +€05(e). (1.11)
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1.3. Skeleton of two-scale modeling

The proof of this proposition is detailed in Appendix 3 of reference |47|.

Remark 18 Operators T, T* and B depend on the small parameter , but we do
not write it explictly just for simplification of notations.

Next, the formula of integration by parts is stated in a form compatible with the
Green formula used in some extensions. The boundary I' is composed of the two
end points of the interval 2, and the unit outward normal nr defined on I' is equal
to —1 and +1 at the left- and right-endpoints respectively.

Proposition 19 [Green Rule] If u, v € H'(Q) then the traces of u and v on T
are well defined and

/Qu% dz = /Ftr(u) tr(v) nr ds(z) —/QUZ—Z dz. (1.12)

The last proposition is stated as a building block of the homogenized model deriva-
tion.

Proposition 20 [The linear operator associated to the Microscopic prob-
lem| For pn € R, there exist 0" € Hﬁl(Ql) solutions to the linear weak formulation

00" Ow ow
0 1_ 0 1 00 (Ol
/Qlaﬁﬁdx——p/ﬂla%dx for all w € C°(2°), (1.13)
m
and % 15 unique. Since the mapping p — Ee from R to L*(Q') is linear then
00" olis
o Fa (1.14)

Moreover, this relation can be extended to any p € L*(QF).

1.3.2 Two-Scale Approximation of a Derivative

Here we detail the reference computation of the weak two-scale limit n = lim,_, T(%)
in L2(* x Q') when

du®
dx

<C, (1.15)

()

]2y amd \

C being a constant independent of €. To simplify the proof, we further assume
that there exist u”, u' € L*(QF x Q') such that

T(uf) = u® + eu' + 0, (e),
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Le.
/ (T(uf) — u’ — eu)v dafde' = eO(e) for all v € L*(F x Q). (1.16)
Qfx QL

We quote that Assumption (1.16) is not necessary, it is introduced to simplify
the proof since it avoids some non-equational steps. The statement proved in the
remaining of the subsection is the following.

Proposition 21 [Two-scale Limit of a Derivative] If u® is a sequence bounded
as in (1.15) and satisfying (1.16), then u° is independent of x,

it =u' — 2'0,u’ (1.17)
defined in QF x Q' is Q'-periodic and

ou®  out
n= ot + FE (1.18)

Moreover, if vt =0 on I then u® = 0 on I'%.

The proof is split into four Lemmas corresponding to the first four blocks discussed
in Section 1.7, the other three being detailed in subsection 1.3.3.

Lemma 22 [First Block: Constraint on u’] u° is independent of z'.
Proof. We introduce

dE
\Ifze,%o/tidx
de

with v € C°(Q%C(Q)). From the Cauchy-Schwartz inequality and (1.15),
111’115_}0 \Ij - 0.

e Step 1. The Green formula (1.12) and Proposition 15 =

U = —5/{0/UEM dz.
e dl‘

e Step 2. Proposition 16 —

v
_,.0 €
e Step 3. Proposition 17 =

o D0
\y:ﬁﬁ/ﬂuT(%) dz + O(e).
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1.3. Skeleton of two-scale modeling

Step 4. Definition 13 —

Jv
U =g T(u")=— dx +
K /Qﬁle (u) o1 dx + O(e).

Step 5. Assumption (1.16) and passing to the limit when ¢ — 0 =

/4,1/ u® 6’_ dz = 0.
Qf xO1 (9:171

Step 6. The Green formula (1.12) and v = 0 on O x 'l =

/{1/ aivdm—O
Qix Ol 8x

Step 7. Proposition 1 =—

ou’

gt 0

|
Lemma 23 [Second Block: Two-Scale Limit of the Derivative] n= 24

Proof. We choose v € C5°(Q%; Cg°(02Y)) in

d 5
U= 51/ T( " Yo datdat, (1.19)
QfxO1 dx

e Step 1. Definition 13 —

d 15
\If:no/iT*v dzx.
QO dl'

e Step 2. Proposition 17 (to approximate 7* by B), the Green formula (1.12),
the linearity of integrals, and again Proposition 17 (to approximate B by 1)
—

ey OV KO ey OV e, 0%
m_ﬂi/ Tgm)x—?KkJWEEMMﬂi/ W (5 ) drO(e).

e Step 3. Definition 13 —-

ov Kl ov
U = —5! T(uf)— defdat — — T(uf)— datdr!
" [)ﬁle ( )axﬁ v 9 Qi xO1 ( )81’1 var

0%
1 eyl g1
K /mel T(u)x ERE: da*dz” 4+ O(e).
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e Step 4. Assumption (1.16) =

ov Kl ov ov
U = —/fl/ w— dafda' — — uo—l datdat — /11/ ul—1 datdax!
Qi xQl ¢ € Jarxal €z QixQl Zz
9%v
—/il/ uw———1'+ O(e).
Qi xO1 (9x (9xﬁ

e Step 5. The Green formula (1.12), Lemma 22, and passing to the limit
when ¢ -+ 0 =

ou’ ou*
I{l/ n v detdet = Kl/ — v dafdat + Kl/ v detda?t,
Qi xQl Qixqr Ot Of sl O

e Step 6. Proposition 1 =

o ow
”_axﬁ oxl’

Lemma 24 [Third Block: Microscopic Boundary Condition] @' is Q'-
periodic.

Proof. 1In (1.19), we choose v € C5°(Q% Coo(Q1)).

e Step 1. The steps 1-5 of the second block —-

Oud 0w’ oul
Iil/ nu dxﬁdxl—/fl/ (ul—xli)v nri dxudacl—fil/ (i—i-i)v datdx' =
QFx Q1 QfxT1 oz Qi x Ol Oxt  Ox?
e Step 2. Lemma 23 —
oud
/ (ut — xli)v np detds(z') = 0. (1.20)
Qi x1? al’ﬁ
e Step 3. Definition (1.17) of @' and Proposition 2 =
@' is Q'-periodic. (1.21)

Lemma 25 [Fourth Block: Macroscopic Boundary Condition] u® vanishes
on T'*.
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Proof. We choose v € C5°(9),

e Step 1. The steps 1-5 of the second block and u* =0 on [' =
/ u®v nps ds(a*)dxt = 0.
rExQl

e Step 2. Proposition 1 =

u’ =0 on I'.

1.3.3 Homogenized Model Derivation

Here we provide the reference proof of the homogenized model derivation. It uses
Proposition 21 as an intermediary result. Let u®, the solution of a linear boundary
value problem posed in €2,

d, _ o du(z), .
{ —ﬁ(a (x) T )= finQ (1.22)

u®=0on I,

where the right-hand side f € L?(Q), the coefficient a® € C>(Q) is eQ'-periodic,
and there exist two positive constants « and [ independent € such that

0<a<a(z)<p. (1.23)

The weak formulation is obtained by multiplication of the differential equation by
a test function v € C§°(§2) and application of the Green formula,

0 o, du® dv 0
K /Qa () T dr =K /Qf(x)v(x) dzx. (1.24)

It is known that its unique solution u® is bounded as in (1.15). Moreover, we
assume that for some functions a®(z!) and fO(z*),

T(af) = a” and T(f) = fO(z%) + Oy le). (1.25)

The next proposition states the homogenized model and is the main result of the
reference proof. For 6! a solution to the microscopic problem (1.13) with p = 1,
the homogenized coefficient and right-hand side are defined by

00"\ *
a? :/ A (1+—) daz'and f¥ = [ f°ds" (1.26)
Ol ox! Ol
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Proposition 26 [Homogenized Model] The limit u° is solution to the weak

formulation
du® d®
H f_ H,0 7.1
——— dx* = d 1.27
/ma il /mfv x (1.27)
for all v° € C§°(QF).
The proof is split into three lemmas.

Lemma 27 [Fifth Block: Two-Scale Model] The couple (u°, ") is solution
to the two-scale weak formulation

ou’ out\ o vl
N5z + 75 — + — bl = 0,0 7..87..1

for any 0 € C3°(¥) and v' € C (¥, C5o(Q1Y)).
Proof. We choose the test functions v° € C5°(QF), v € Cg°(Q*, C°(Q)).
e Step 1 Posing v = B(v” 4 ev') in (1.24) and Proposition 15 =

duf dB(v° !
22 Mdzzmo/]‘B(Uo—i—avl) dx.
Q

B 5 (2 0
UECO()andﬁ/Qa o o

e Step 2 Propositions 16 and 17 =

du® o ot
0 5 * .0 x7 0
K /Qa de <—axﬁ+—ax1)da:—/§ /QfT(v Jdx + O(e).

e Step 3 Definition 13 and Proposition 7 —

duc (O Ot
1 T(aST(—) [ =— + = t 7.1 _ 1/ T 0 7491 .
) /mxgl (@) (dfb’) <0xﬁ i 8x1> e = Qf x0! (f) v do*da+0(e)
(1.29)

e Step 4 Definitions (1.25), Lemma 21, and passing to the limit when ¢ — 0
=

o’ out o’ Ovt
0 d ﬁd 1 :/ 0,0 d ﬁd 1
/mxﬂl “ (8J:ﬁ + axl) (Gﬂ * 81’1> rar Qfl Jrot detde

which is the expected result.
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Lemma 28 [Sizth Block: Microscopic Problem] u' is solution to (1.13) with
o’ p
I o

out o 96"

oxrl Ozt oxl’

Proof. We choose v? = 0 and v*(z*, 21) = w(z!)p(2*) in (1.28) with p € C°(Q¥)
and w' € C°(Q).

e Step 1 Proposition 1, Lemma 22, and the linearity of the integral —

1
G I gt = -2 iy 1.
Dt ot oxt Jon R da (1.30)

/ 00Ut Ow? drt — oul o Ow'!
Ql

0
u

e Step 2 Proposition 20 with yu = e —
X

ou' B oul 96"
oxr!  Oxt Ot

as announced.
|
Lemma 29 [Seventh Block: Macroscopic Problem] u is solution to (1.27).

ov° 96!

Proof. We choose v° € Cgo(Qﬁ) and v! = 31 g

€ C (¥, C(QY)) in (1.28).

e Step 1 Lemma 28 —

o’ 90 oul\ /o 99t o
’ —_—t —— g7l — 0,0 7.47.1
/mxszla (f%fﬁ i Ox? 8%) (aggﬂ + Ol &Cﬁ) dr*dx /mmlf v° dxfdr.

(1.31)

e Step 2 Factorizing and definitions (1.26) =

ou’ o’
gouw ove s H,0 7.4
/Qﬁa 52t Dk dx mfv dx”*.
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Chapter 1. A Rewriting framework for asymptotic modeling

1.4 Rewriting strategies

In this section we recall the rudiments of rewriting, namely, the definitions of terms
over a signature, of substitution and of rewriting rules. We introduce a strategy
language: its syntax and semantics in terms of partial functions. This language
will allow us to express most of the useful rewriting strategies.

1.4.1 Term, substitution and rewriting rule.

We start with an example of rewriting rule. We define a set of rewriting variables
X ={z,y} and a set of function symbols X = {f, g,a,b,c}. A term is a combina-
tion of elements of XUY, for instance f(z) or f(a). The rewriting rule f(x) ~ g(z)
applied to a term f(a) is a two-step operation. First, it consists in matching the
left term f(x) with the input term f(a) by matching the two occurences of the
function symbol f, and by matching the rewriting variable x with the function
symbol a. Then, the result g(a) of the rewriting operation is obtained by replacing
the rewriting variable z occuring in the right hand side g(x) by the subterm a that
have been associated to x. In case where a substitution is not possible, as in the
application of f(b) — g(z) to f(a), we say that the rewriting rule fails.

Definition 30 Let X be a countable set of function symbols, each symbol f € 3
is associated with a non-negative integer n, its arity ar(f) i.e. the number of
arguments of f. Let X be a countable set of variables such that X N X = 0. The
set of terms, denoted by T (X, X), is inductively defined by

o XY CT(X,X) (ie. every rewriting variable is a term),

o for all f € X of arity n, and all ty,...,t, € T(X,X), the expression
f(tr, .. tn) € T(X,X) (i.e. the application of function symbols to terms
gives rise to terms).

We denote by Y, the subset of X of the function symbols of arity n. For instance in
the example f and g belong to ; while a and b belong to ¥j. Two other common
examples of terms are the expressions Integral(S), f(x),z) and diff (f(z),z) which

d
represent the expressions [, f(z) dz and % Notice that Integral € X3, diff €
T

Yo, f €31 and x,Q € ¥y. For the sake of simplicity we often keep the symbolic
mathematical notation to express the rewriting rules. In the following we see a
term as an oriented, ranked and rooted tree as it is usual in symbolic computation.
We recall that in a ranked tree the child order is important. For instance the tree
associated to the term Integral(, f(x), x) has Integral as its root which has three
children in the order €2, f, x and f has one child z.
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1.4. Rewriting strategies

Definition 31 A substitution is a function o : X — T (3, X) such that o(z) # x
for x € X. The set of variables that o does not map to themselves is called the
domain of o, i.e. Dom(c) ={z € X |o(x) #x}. If Dom(c) = {x1,--- ,2,} then
we might write 0 as 0 = {xy — t1,...,z, — t,} for some terms ty,...t,. Any
substitution o can be extended to a mapping T (X, X) — T (3, X) as follows: for
r € X, o(x) =o0(x), and for any non-variable term s = f(s1,---,$,), we define
d(s) = f(6(s1), -+ ,0(sn)). To simplify the notation we do not distinguish between
a substitution o : X — T (X, X) and its extension ¢ : T(X,X) — T (X, X).

The application of a substitution o to a term t, denoted by o(t), simultaneously
replaces all occurrences of variables in t by their o-images.

For instance, the maping o defined by o(x) = a is a substitution and its extension
o maps f(z) and g(z) into f(a) and g(a).

A rewriting rule, is a pair (I,7) where [ and r are terms in 7 (3, X); it will also
be denoted by [ ~» r. We observe that for any two terms s,¢, there exists at
most one substitution o such that o(s) = t. We mention that a rewriting rule
stands for the rule application at the top position. It is more useful to be able
to apply a rule at arbitrary position, and more generally to specify the way rules
are applied. For this purpose we next present a strategy language that allows
to built strategies out of basic constructors. To this end, we introduce strategy
constructor symbols ;,~», @, u, etc that do not belong to > U X. Informally, the
constructor ”;” stands for the composition, ” @ 7 for the left choice, Some for
the application of a strategy to the immediate subterms of the input term, n(x)
for the fail as identity constructor, Child(j,s) applies the strategy s to the ;'
immediate subterm, X is a fixed-point variable, and p is the fixed-point or the
iterator constructor, its purpose is to define recursive strategies. For example, the
strategy pX.(s; X) stands for s;s;. .., that is, it is the iteration of the application
of s until a fixed-point is reached. The precise semantics of these constructors is
given in Definition 33.

Definition 32 (Strategy) Let F be a finite set of fized-point variables. A strategy
is inductively defined by the following grammar:

su=l~r | s5s | s@s | n(s) | Some(s) | Child(j,s) | X | pX.s (1.32)

where 5 € N and X € F. The set of strategies defined from a set of rewriting rules
in T(X,X) x T(3,X) is denoted by St.

We denote by F the failing result of a strategy and 7*(X,X) = T (X, X) UTF.
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Definition 33 (Semantics of a strategy) The semantics of a strategy is a func-
tion [.] : Sremay = (THE,X) — TH(X, X)) defined by its application to each
grammar component:

[s](F) - F
_Jolr) ifo(l) =
[~ i) = {IF otherwise
[s15 82 (t) = [s2] ([51](¢))
[ [s1](t)  if [s1](t) # F
]

1@ s](t) = [so](t)  otherwise
t if [s](t) =
[n(s)}(®) [s[(t) otherwise
F if ar(t) =0
[Some(s) f(n n(s)(tn))  ift= f(ti,...,tn) and Fi € [1.n] s.t. [s](t;) #
]F otherwise
[Child(j. ) _ F ifar(t)=0, ort= f(t1,...,t,) and j >n

f(tl,.. t] 1, [[S]](tj),tj+1,...,tn) th:f(t1,7tn) and] STL
The semantics of the fixed-point constructor is more subtle. One would write:
[uX.s] = [s[X/uX.s]] (1.33)

but this equation cannot be directly used to define [X.s], since the right-hand
side contains as a subphrase the phrase whose denotation we are trying to define.
Notice that the equation (1.33) amounts to saying that [X.s] should be the least
fixed-point of the operator F'

F(X) = AX T EX)=T () [T @) T (2.)
Let D =T*(3,X) — T*(3,X) and define C a partial order on D as follows:
w C w' iff graph(w) C graph(w').
Let L be the function of empty graph, and let

FOZJ_
F,=F(F,_,).

One can show, using Knaster-Tarsky fixed-point theorem [55|, that F, is the least
fixed-point of the operator F', that is

Flw)=w = Fy Cw.
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Such fixed point equations arise very often in giving denotational semantics to
languages with recursive features, for instance the semantics of the loop “while" of
the programming languages [53, §9, §10].

Example 34 Out of the basic constructors of strategies given in Definition 32,
we built up some useful strategies. The strateqy OuterMost(s) applies the strategy
s to an input term t in a top down way starting from the root, it stops when it
succeeds. That is, if the strateqy s succeeds on some subterm t' of t, then it is
not applied to the proper subterms of t'. The strategy TopDown(s) behaves exactly
like OuterMost(s) apart that if the strateqy s succeeds on some subterm t' of t,
then it is also applied to the proper subterms of t'. The strateqy InnerMost(s)
(resp. BottomUp(s)) behaves like InnerMost(s) (resp. BottomUp(s)) but in the
opposite direction, i.e. it traverses a term t starting from the leafs. The strategy
Normalizer(s) iterates the application of s until a fized-point is reached. The
formal definition of these strategies follows:

OuterMost(s) = uX.(s & Some(OuterMost(X))),
TopDown(s) := uX.(s; Some(TopDown(X))),
InnerMost(s) = uX.(Some(InnerMost(X)) @ s),
BottomUp(s) := pX.(Some(BottomUp(X)); s),
Normalizer(s) := uX.(s; X).

Example 35 Let the variable set X = {y,z,t,w} and the partition ¥ = ¥y U
Y1 U Xy of the set of function symbols with respect to their arity with g =
{x, 2!, 2%, 00,0}, X1 = {u,v,n,0, B}, ¥y = {derivative}, X3 = {Integral}.
We present the strategy that rewrites the expression

%(3(0@1,:&))) dz + 0(),

v :/ u(z) n(z) B(v(zt,2?)) dox — / u(x)
o0 Q

taking into account that B(v) vanishes on the boundary 0. This term is written
under mathematical form for simplicity, but in practice it is written from the above
defined symbol of functions. Remark that the expression B(v(z',x?)) is a function
of the variable x but this does not appear explicitly in this formulation. Such a
case cannot appear when the grammar for terms introduced in the next section is
used. We need the two rewriting rules

rl::/wdtw w dt,
o0 o0
ro = B(v(z,y)) ~ 0,
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and the strateqy Outer Most already defined. Notice that the rule r1 has no effect
but to detect the presence of the integral over the boundary. Finally, the desired
strateqy, denoted by F', is:

F := Outer Most(ry; Outer Most(rs)),

and the result 18

%(B(v(xl,ﬁ))) dr + O(e).

[F](V) = /BQ u(x) n(x) B(0) do — / u(z) 7

Q

1.4.2 Rewriting modulo equational theories

So far the semantics of strategies does not take into account the properties of
some function symbols, e.g. associativity and commutativity equalities of "+". In
particular the application of the rule a + b ~+ f(a,b) to the term (a + c) + b fails.
More generally we next consider the rewriting modulo an equational theory, i.e. a
theory that is axiomatized by a set of equalities.

For the sake of illustration, we consider the commutativity and associativity theory
of +, E={os+y=y+z,(x+y) +2 =2ax+ (y+ 2)} and the rewrite rule
f(x+y)~ f(x)+ f(y) applying the linearity rule of a function f. Its application
to the term f((a + b) + ¢) modulo E yields the set of terms {f(a+b) + f(c),
fla)+ f(b+c), f(b) + f(a+ c)}. In the following, we define part of the semantics
of a strategy modulo a theory, we use the notation P(7 (X, X)) to denote the set
of subsets of T (X, X).

Definition 36 (Semantics of a strategy modulo) Let be E be a finitary equa-
tional theory, the semantics of a strateqy modulo E is a function [[]]E :Srzx) —

(P(T(2,X)) = P(T"(X,X))) that is defined by
51 ({1, ta}) = U [s1°()
[ () = {50} if B = o0 = 1,
s sl °(0) = 2] (1)
o1 @ 5.]7(1) = {[[ 10 7110 £ F)

[s2]E(t)  otherwise

{t} if [s]” () = {F}

[s]E(t) otherwise.

[n()]"(t) = {

The semantics of Some and Child is more complex and we do not detail it here.
The semantics of the fixed-point operator is similar to the one given in the rewriting
modulo an empty theory.
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1.4.3 Conditional rewriting

Rewriting with conditional rules, also known as conditional rewriting, extends the
basic rewriting with the notion of condition. A conditional rewrite rule is a triplet:

(I,r,c)

where ¢ is a constraint expressed in some logic. The semantics of the rule applica-
tion is given by

Uj{oj(r)} if the formula o;(c) can be derived from E,

F otherwise.

[t 0l (1) = {

The set of strategies defined over rewriting rules (I,r,¢) € T x T x 7. is denoted
by ST Te-

1.4.4 Rewriting with memory

Some definitions or computations require storing the history of the transformations
of some terms. To carry on, we introduce a particular function symbol M € >,
of arity two to represent the memory. Intuitively the term M(t1, ) represents
the term ¢, besides the additional information that ¢5 was transformed to t; at
an early stage. From this consideration if follows that any strategy applied to
M(¢1, t2) should only be applied to t;. Formally, we define the semantics of strategy
application taking into account the memory as a partial function: [[]]M :Srmx) —
(T2, X) = T*(X, X)) so that:

[s]m(t) = M([s]m(t1), t2) if t = M(ty,t2), and behaves like [.], otherwise. That

[
[ o(r)y ifo(l)=t
F otherwise
[51; s2lna(t) = [s2]na([s1]ma())
ﬂ [s1laa(®) if [s1]ma(t) # F
t [s2]m(t) otherwise

1.5 A Symbolic Computation Framework for Model
Derivation

In this section we propose a framework for the two-scale model proofs. As in
Example 35, the latter are formulated as rewriting strategies. We notice that the
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Chapter 1. A Rewriting framework for asymptotic modeling

following framework differs from that used in Example 35 in that it allows for the
complete representation of the data. It does not rely on external structures such
as hash tables. To this end, we define the syntax of the mathematical expressions
by means of a grammar G.

1.5.1 A Grammar for Mathematical Expressions

The grammar includes four rules to built terms for mathematical functions &,
regions R, mathematical variables V, and boundary conditions €. It involves
Y Regy 2Var, 2Funs 20per, and Xcons Which are sets of names of regions, variables,
functions, operators, and constants so subsets of Y,. Empty expressions in g,
and X gy, are denoted by L and L. The set of usual algebraic operations Y, =
{+,—, %, /, " }is asubset of ¥y. The elements of X7, = { Unknown, Test, Known,
Lrype} C o, Lrype denoting the empty expression, are to specify the nature of a
function, namely an unknown function (as u®, u°, u! in the proof), a test function
(as v, v°, v!) in a weak formulation or another known function (as a®, f¢, a®, f° or
nri). The boundary conditions satisfied by a function are specified by the elements
of Xpo = {d,n,pd,apd,t} C Xy to express that it satisfies Dirichlet, Neuman,
periodic, anti-periodic or transmission conditions. The grammar also involve the
symbols of functions Reg, Fun, IndexedFun, IndexedReg, IndexedVar, Oper, Var,
and BC that define regions, mathematical functions, indexed functions or regions
or variables, operators, mathematical variables and boundary conditions. The
grammar reads as

Fo=@(F,5) [ d|V |
Fun(f,[V,...,V],[C,...,C],K) |
IndexedFun(F,V) |
Oper(A,[F,....F],[V,....,V,[V,...,V],[d,...,d]) |
—LiT | M(&r’)g:')?

R ::=Reg(,[d,....d,{R,..., R}, R, F) |
IndexedReg(F,V) |
Lz | M(R,R),
V ::=Var(z,R) | IndexedVar(V,V) | M(V,V),
C:=BC(¢,R,F) | M(C,0),
where the symbols €2, d, ®, f, K, A, x and ¢ hold for any function symbols in
Y Reg, 2Conss 20p, 2Fun, 2Types 20pers 2var, and Xpc. The arguments of a region
term are its region name, the list of its space directions (e.g. [1,3] for a plane in

the variables (x1,x3)), the (possibly empty) set of subregions, the boundary and
the outward unit normal. Those of a function term are its function name, the

36



1.5. A Symbolic Computation Framework for Model Derivation

list of the mathematical variables that range over its domain, its list of boundary
conditions, and its nature. Those for an indexed region or variable or function term
are its function or variable term and its index (which should be discrete). For an
operator term these are its name, the list of its arguments, the list of mathematical
variable terms that it depends, the list of mathematical variable terms of its co-
domain (useful e.g. for 7" when the image cannot be deduced from the initial set),
and a list of parameters. Finally, the arguments of a boundary condition term
are its type, the boundary where it applies and an imposed function if there is
one. For example, the imposed function is set to 0 for an homogeneous Dirichlet
condition and there is no imposed function in a periodicity condition. We shall
denote by Tx(3,0), T5(%,0), Tv(X,0), and Te(X,0) the set of terms generated by
the grammar starting from the non-terminal R, F, V, and C. The set of all terms
generated by the grammar (i.e. starting from R, F, V, or €) is denoted by Tg(%, 0).
Finally, we also define the set of terms 7Tg(X, X) where each non-terminal R, F,
V, and C can be replaced by a rewriting variable in X. Equivalently, it can be
generated by the extension of G obtained by adding " | z" with x € X in the
definition of each non-terminal term. Or, by adding N ::= z, with x € X for each
non-terminal N.

Example 37 Throughout this Chapter, an underlined symbol represents a short-
cut whose name corresponds to the term name. For instance,

Q =Reg(Q,[2],0,,n), where I =Reg(T,[],0, Lg, Lg),
n = Fun(n, [2], [], Known), 2’ = Var(z,Q') and Q' = Reg(Q,[2],0,T, L7)
represents a region-term a one-dimensional domain named €2, oriented in the di-

rection T, with boundary I' and with outward unit normal n. The shortcut T s
also for a region term representing the boundary named T

Dirichlet boundary condition u(x) =0 on L is represented by the function-term,

Example 38 An unknown function u(x) defined on Q satisfying homogeneous

u(x) = Fun(u, [z],BC(d,I',0), Unknown) where x = Var(z, ().

1.5.2 Short-cut Terms

For the sake of conciseness, we introduce shortcut terms that are constantly used
in the end of the Chapter: Q € Tx(3, X), x € Ty(X, X) defined in Q, I € Tg(X, X)
used for (discrete) indices, i € Ty(3, X') used as an index defined in I, u € T5(2, X)
or u(z) € T5(3, X) to express that it depends on the variable z and w,; the indexed-
term of the function u indexed by i. Similar definitions can be given for the other
notations used in the proof as Q, z#, Q', z', @, 2/, v(z!, ') etc. The operators
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necessary for the proof are the integral, the derivative, the two-scale transform T,
its adjoint 7™, and B. In addition, for some extensions of the reference proof we
shall use the discrete sum.

Instead of writing operator-terms as defined in the grammar, we prefer to use the
usual mathematical expressions. The table below establishes the correspondance
between the two formulations.

/gdg = Oper(Integral, u,[z],[],[]),

24 — oper(Partial, u, [z]. ], ).
tr(u, z)(z') = Oper(Restriction, u, [z], [2], []),
T(u, z)(af,2') = Oper(T, u, [z], [2%, ], [¢]),
T*(v, [2%,2"))(z) = Oper (T™, v, [aF, '], [2], [¢]),
B(v, [¢*, 2'])(z) = Oper(B, v, [2%,2"], [z], [¢]),
> u; = Oper(Sum, u;, [i], |, [])

The multiplication and exponentiation involving two terms f and g are written fg
and f9 as usual in mathematics. All these conventions have been introduced for
terms in 7 (3, (). For terms in 7 (X, X) as those encoutered in rewriting rules, the
rewriting variables can replace any of the above short cut terms.

Example 39 The rewriting rule associated to the Green rule (1.12) reads

ou ov ,
(9_@1} dx ~ —/ua—£ dg—i—/tr(u) tr(v) n dz'.

with the short-cuts T = Reg(T',d1,0, Ly, L5), Q = Reg(Q,d2,0,L',n), x = Var(z, Q)
and ' = Var(z,T'). The other symbols u, v, x, Q, T, d1, d2, n are rewriting vari-
ables, and for instance

ou
Ox
Applying this rule according to an appropriate strateqy, say the top down strategy,

to a term in T (3,0) like
df(2)
‘1’—/ 02 g(2) dz,

for a given variable term z and function terms f, g. As expected, the result is

dg
—/f—‘der/fgndi
_ag 4 L

with evident notations for n and 2.

= Oper(Partial,u,x,[],[]).
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1.5.3 A Variable Dependency Analyzer

The variable dependency analyzer © is related to effect systems in computer science
[51]. Tt is a function from T5(X, () to the set P(Ty(X, D)) of the parts of Ty(X, D).
When applied to a term ¢ € T#(3, (), it returns the set of mathematical variables
on which ¢ depends. The analyzer © is used in the condition part of some rewriting
rules and is inductively defined by

O(d) = 0 for d € Seoms,

O(z) = {z} for z € Tv(,0),

O(®(u,v)) = O(u) UO(v) for u,v € T#(X,0) and & € Xp,,

O(Ls) =0,

O(u(z!, ., 2")) = {zl, .,a"} for u € T3(%,0) and !, .., 2" € Ty(%,0),
O(u;) = O(u) for u € Ty(3,0) and i € Tv(%,0),

Ol . u']) = OW) U - VO for ', u" € To(S,0).

ou u) i z) C O(u
o oo
O(tr(u,z)(z')) = O(z),
O(T (u, z)(2%, 2")) = (B(u) \ O(x)) UO([2f,z")) if O(z) N O(u) # 0,
(T (v, [2%, 2')(z)) = (B(v) \ O([z%, 2'))) U B(z) if O, z']) N O(v) # 0,
O(B(u, [zf,2')(z))) = (O(u) \ O([zf,z"])) U O(z) if O([z",z']) NO(v) # 0,
®<Zﬂ;) = U@@g)

We observe that these definitions are not very general, but they are sufficient for
the applications of this Chapter. To complete the definition of O, it remains to
define it on memory terms,

Example 40 For

v(ah, ot
= /m[/gl T(Q(&),E)(ﬁ,gl)%a@l}d&ﬁ € T, 0),
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the set O(V) of mathematical variables on which \Il depends is hence inductively

computed a%’foll(wl)g O(u(z)) = {z}, O(T(u(z), z)(z* ') = {zf,2'}, O(v(2%,2")) =
{af, 2}, @(8““” ) = (a2}, BT (u(e). ) (af.2') 2EED) = (a1},

O(Jop T(u(z), z)(a, ") %ﬁ;&l)dgl) = {2*}, and O(V) = 0, that is, ¥ is a con-
stant funm‘?(m

1.5.4 Formulation of the Symbolic Framework for Model
Derivation

Now we are ready to define the framework for two-scale model derivation by
rewriting. To do so, the rewriting rules are restricted to left and right terms
(I,r) € Tg(X, X) x T¢(X, X). Their conditions ¢ are formulas generated by a gram-
mar, not explicited here, combining terms in Tg(X, X') with the usual logical oper-
ators in A = {V, A, ], €}. Tt also involves operations with the dependency analyzer
©. The set of terms generated by this grammar is denoted by 7; (%, X, G, O, A).

It remains to argue that, given a strategy s in S7;(z x),7,(z.x.5.0,4), the set of

terms Tg(3, () is closed under the application of s. It is sufficient to show that
for each rewriting 7 rule in s, the application of r to any term ¢ € 7g(X, ) at any
position yields a term in Tg(3, ). As an example, 7¢(X, D) is not closed under the
application of the rule z ~~ , where x is a variable. But it is closed under the
application of the linearity rule fz f+gdx ~~ fz f dx—l—fz g dz at any position, where
f,g,x, z are rewriting variables. The argument is, since fz f+gdr € T#(Z,0), then
f+g € T3(X,0), and hence f,g € T#(%,0). Thus, [, fde+[, gdz € T3(X,0). That
is, a term in 75(3, ) is replaced by a another term in 75(X, (). A more general
setting that deals with the closure of regular languages under specific rewriting
strategies can be found in [35].
A model derivation is divided into several intermediary lemmas. Each of them is
intended to produce a new property that can be expressed as one or few rewriting
rules to be applied in another part of the derivation. Since dynamical creation of
rules is not allowed, a strategy is covering one lemma only and is operating with a
fixed set of rewriting rules. The conversion of a result of a strategy to a new set of
rewriting rules is done by an elementary external operation that is not a limitation
for generalizations of proofs. The following definition summarizes the framework
of symbolic computation developed in this Chapter.

Definition 41 The components of the quintuplet = = (X, X, E,G,0) provide a
framework for symbolic computation to derive multi-scale models. A two-scale
model derivation s expressed as a strateqy ™ € SE(E,X),TL(XX,S@,A) for which the

semantics []” is applicable to an initial expression U € T (2, 0).
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In the end of this section we argue that this framework is in the same time relatively
simple, it covers the reference model derivation and it allows for the extensions
presented in the next section.

The grammar of terms is designed to cover all mathematical expressions occuring
in the proof of the reference model as well as of their generalizations. A term that
follows the grammar includes locally all useful information. This avoids the use
of external tables and facilitates design of rewriting rules, in particular to take
into account the context of subterms to be transformed. It allows also for local
definitions, for instance a same name of variable x can be used in different parts
of a same term with different meaning, which is useful for instance in integrals.
A limitation regarding generalizations presented in the next section, is that the
grammar must cover by anticipation all needed features.

Each step in the proof consists in replacing parts of an expression according to
a known mathematical property. This is well done, possibly recursively, using
rewriting rules together with strategies allowing for precise localization. Some steps
need simplifications and often use the second linearity rule of a linear operator,
A(Au) = MAu when A is a scalar (or is independent of the variables in the initial
set of A). So variable dependency of each subterm should be determined, this
is precisely what ©, the wariable dependency analyzer, is producing. The other
simplifications do not require the use of ©. In addition to the grammar G, the
analyzer © must be upgraded in view of each new extension.

In all symbolic computation based on the grammar G, it is implicitely assumed
that the derivatives, the integrals and the traces (i.e. restriction of a function to
the boundary) are well defined since the regularity of functions is not encoded.

Due to the algebraic nature of the mathematical proofs, this framework has been
formulated by considering these proofs as a calculus rather than formal proofs
that can be formalized and checked with a proof assistant |8, 57|. Indeed, this
is far simpler and allows, from a very small set of tools, for building significant
mathematical derivation. To cover broader proofs, the framework must be changed
by extending the grammar and the variable dependency analyzer only. Yet, the
language Tom [5] does not provide a complete environment for the implementation
of our framework since it does not support the transformation of rewriting rules,
despite it provides a rich strategy language and a module for the specification of
the grammar.
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Chapter 1. A Rewriting framework for asymptotic modeling

1.6 Transformation of Strategies as Second Order
Strategies

For a given rewriting strategy representing a model proof, one would like to trans-
form it to obtain a derivation of more complex models. Transforming a strategy
m € Sr(x,x) is achieved by applying strategies to the strategy 7 itself. For this
purpose, we consider two levels of strategies: the first order ones Sz(s x) as defined
in Definition 32, and the strategies of second order in such a way that second order
strategies can be applied to first order ones. That is, the second order strategies
are considered as terms in a set 7 (X, X) of terms where ¥ and X remain to be
defined. Given a set of strategies Sz x) that comes with a set of fixed-point
variables F, we pose ¥ D X U {~,;,®, Some, Child,n, u} UF. Let X be a set
of second order rewriting variables such that X N (X UX) = (. Notice that first
order rewriting variables and fixed-point variables are considered as constants in
T(X,X), i.e. function symbols in ¥g. Notice also that the arity of the function
symbols ~»; @, C'hild, p is two, and the arity of Some and 7 is one. In particular,
the rule [ ~ r can be viewed as the term ~- ({,7) with the symbol ~~ at the root,
and the strategy uX.s viewed as the term (X, s). This allows us to define second
order strategies 37-@?) by the grammar

Su=lwr | §5 | 5®5 | 7(s) | Some(s) | Child(j,s) | X | pX.5 (1.34)

Again we assume that the symbols ~,3, @, ... of the second order strategies do no
belong to 3. The semantics of the strategies in 37—@;) are similar to the seman-
tics of first order strategies. In addition, we assume that second order strategies
transform first order strategies, to which they are applied, into first order strate-
gies. Composing several second order strategies and applying such composition to
a given first order strategy s provide successive transformations of s.

51

S2 53

523

Figure 1.2: An example of the composition of transformations of strategies.
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In the following example we illustrate the extension of an elementary strategy
which is a rewriting rule.

Example 42 For the set X = {i,j,x,xﬁ,xl,u, e} we define s1, so, 3, and sa3 four
rewriting rules,

81 1= T(%ax)(xﬁaiﬁl) éﬁT(u,;;(lxﬁ,xl) for z € Q and (2%, 2%) € QF x Q,

82 1= T(S_ZJ)(iUﬁJl) ~ é@T(u,gigxﬁ,xl) for x € Q and (2%, 2%) € QF x Q,
S3 1= T(%,x)(mﬁ,xl) ~ é@T(u,gi(lxﬁ,xl) for ¥ € Q; and (2*,2") € Qg x €,
Sa3 1= T(S—Z,x)(xﬂ,xl) ~ é@T(u,gigxﬁ,xl) for © € Q; and (2%, 2") € Qg x €.

The rule sy is encountered in the reference proof, so is a (trivial) generalization
of s1 in the sense that it applies to multi-dimensional regions Q' referenced by
a set of variables (x});, and s3 is a second (trivial) generalization of s; on the
number of sub-regions (€););, (Qg)] and (€0); in Q, QF and Q'. The rule sy3 is a
generalization combining the two previous generalizations. First, we aim at trans-
forming the strateqy s, into the strateqy ss or the strateqy ss. To this end, we
introduce two second order strategies with X = {v,z} and ¥ D {i, j, Q, Qf, QY

Partial, Indexed Fun, IndexedV ar, IndexedReg},

= 0V _ OV
I, == TopDown(aJ»aZ.)

Il := TopDown(Q~Q;); TopDown(Qﬁ«%Qg); TopDown(Ql«EQJl-)

_ _ ov _ 0
Notice that 11, (resp. Ily) applies the rule Aol
0z (9zi

QI«EQ;) at all of the positions 5 of the input first order strateqy so that

(resp. Q€ QﬁQQg, and

Hl(Sl) = S9 and ﬁg(Sl) = S3.
Once I1; and Tly have been defined, they can be composed to produce s :
1:[21:[1(51) = S923 OT 1:[11:[2<81) = S23.

The diagram of Figure 1 illustrates the application of 11, Iy and of their compo-
Sit10Ms.

5Notice the difference with Outer Most which could not apply these rules at any position.
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The next example shows how an extension can not only change rewriting rules
but also to add new ones.

Example 43 To operate simplifications in the reference model, we use the strategy

ox
s1 := Outer Most(— ~- 1).
! <8a: 1)
In the generalization to multi-dimensional regions, it is replaced by two strategies
involving the Kronecker symbol 6, usually defined as 6(i,7) = 1 if i = j and
0(i,7) = 0 otherwise,

ox;

. = OuterMost | = ~ (i, j -
S uterMos (ayj (1,7), = y) ,
s3 : = OuterMost (0(i,j) ~ 1, i =j),
sy : = OuterMost (§(i,j) ~ 0, i # j).

The second order strategy that transforms sy into the strategy Normalizer(sy @
S3 EB 54) 18 B
IT := Outer Most(s1~s9 @ $3 D S4).
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1.7 Implementation and Experiments

The framework presented in Section 1.5.4 has been implemented in Maple®. The
implementation includes the language Symbtrans of strategies already presented in
|6]. The derivation of the reference model presented in Section 1.3 has been fully
implemented. It starts from an input term which is the weak formulation (1.24)
of the physical problem,

a@@ dx = /iy dz, (1.35)

where a = Fun(a, [Q], | |, Known), u = Fun(u, [Q], [Dirichlet|, Unknown),

v = Fun(u, [Q], [Dirichlet], Test), Q = Reg(, [1],0,L,ng), I = Reg(T,[ ],0, Lg,
1), Dirichlet = BC(Dirichlet,I',0) and where the short-cuts of the operators are
those of Section 1.5.2. The information regarding the two-scale transformation
is provided through the test functions. For instance, in the first block the proof
starts with the expression

ou
— = ol
\/ 8£B(Q(I_a z')(z) de,

where the test function B(v(zf, 21)(x) is also an input, with v = Fun(a, [z, 2!], [Dirichlet], Test),
¢ = Var(2f, QY), 2! = Var(x Q QY), QF = Reg(Q, [1],0,T% ng:), I = Reg(T, |

1,0, Ly, Ly), Q" = Reg(Q, [1],0, LY, nen ), It = Reg(I'%, [],0, Lg, Lg), and Dirichlett =
BC(Dirichlett, I'*,0).

The proof is divided into five strategies corresponding to the five blocks of the
proof, each ending by some results transformed into rewriting rules used in the
following blocks. The rewriting rules used in the strategies are FO-rules and can
be classified into the three categories.

e Usual mathematical rules: that represent the properties of the derivation
and integration operators, such as the linearity, the chain rule, the Green
rule, etc,

e Specialized rules: for the properties of the two-scale calculus, as those of the
two-scale transform, the approximation of B by the adjoint T etc,

o Auxiliary tools: for transformations of expressions format that are not related
to operator properties such as the rule which transforms ¢, = ¥, into ¥; —

Py = 0.

45



Chapter 1. A Rewriting framework for asymptotic modeling

Usual Rules | Specialized Rules | Aux. Tools
Skeleton 53 14 28

Table 1.1: The number of first order rules used in the reference model.

The Table 1.1 summarizes the number of first order (FO) rules, used in the refer-
ence model, by categories.

The reference model has been extended to cover three different kinds of configu-
rations. To proceed to an extension, the new model derivation is established in
a form that is as close as possible of the reference proof. The grammar and the
dependency analyzer should be completed. Then, the initial data is determined,
and second order (SO) strategies yielding the generalized model derivation are
found and optimized. As it has been already mentioned, § and © have already
been designed to cover the three extensions.

The first generalization is to cover multi-dimensional regions, i.e. ) C R™ with
n > 1. When n = 2, the initial term is

ZZ/%%% dzz/jydz,

i=1 j=1

where © = Reg(§2,[1,2],0,T,nq), a;; = Indexed(Indexed(a,j),7), i = Var(i,]),
and I = Reg(I,[1,2],0, Ly, Ls) and the choice of the test function is trivially
deduced. Then, the model derivation is very similar to this of the reference model,
see [47], so much so it is obtained simply by applying the SO strategy IT;defined

in Example 42. This extension has been tested on the four first blocks.

The second generalization transforms the reference model into a model with several
adjacent one-dimensional regions (or intervals) (€Q)k—1_m so that € is still an
interval i.e. 2 C R. For m = 2, the initial term is the same as (1.35) but with 2 =
Reg(2, (1], {1, Q}, T na), Q1 = Reg(Q, [1], 0, ', ng,), and Qy = Reg(o, [1],
0, I'y,ng,). The two-scale geometries, all variables, all kind of functions and also
the operators B and T are defined subregion by subregion. All definitions and
properties apply for each subregion, and the proof steps are the same after spliting
the integrals over the complete region {2 into integrals over the subregions. The
only major change is in the fourth step where the equality u{ = uJ at the interface
between 2; and €25 which is encoded as transmission conditions in the boundary
conditions of u{ and u).
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The third extension transforms the multi-dimensional model obtained from the
first generalization to a model related to thin cylindrical regions, in the sense that
the dimension of 2 is in the order of ¢ in some directions 7 € I* and of the order
1 in the others i € I* e.g. © = (0,1) x (0,¢) where I* = {2} and I* = {1}. The
boundary I' is split in two parts, the lateral part I';,; and the other parts I'yper
where the Dirichlet boundary conditions are replaced by homogeneous Neuman
boundary conditions i.e. % = 0. In this special case the integrals of the initial
term are over a region whose size is of the order of € so it is required to multiply
each side of the equality by the factor 1/e to work with expressions of the order of
1. Moreover, the macroscopic region differs from €0, it is equal to Qf = (0,1) when
the microscopic region remains unchanged. In general, the definition of the adjoint
T* is unchanged but (Bv)(x) = v((2;)icst, (v — x%)/e) where 2f is the center of
the ¢ cell in . Tt follows that the approximations (1.10, 1.11) are between T
and eB with Y°,_p, 2} 2% instead of Y., x}%. With these main changes in the

definitions and the preliminary properties, the proof steps may be kept unchanged.

Usual Rules | Specialized Rules | Aux. Tools
Multi-Dimension 6 0 4
Thin-Region 2 0 0
Multi-Region 3 0 0

Table 1.2: The number of first order rules used in the three extensions.

The mathematical formulation of the second and third extensions has been derived.
This allows for the determination of the necessary SO-strategies, but they have
not been implemented nor tested. To summarize the results about the principle of
extension of strategies, we show its benefit through some statistics. In particular
the main concerned is the reusability and the extensibility of existing strategies.
The Table 1.2 shows an estimate of the number of new FO-rules for the three
extensions in each category and for the first four blocks.

Usual Rules | Specialized Rules | Aux. Tools
Multi-Dimension 9 2 3
Thin-Region 0 0 0
Multi-Region 1 0 0

Table 1.3: The number of second order strategies used in the extension of proofs.
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Input model | Resulting model | % Modi. FO-rules | % Modi. FO-strategies
Reference Multi-Dim. 16.6% 5%
Multi-Dim. Thin 0 0
Thin Multi-Reg. 0 2.5%

Table 1.4: The ratio of modified FO-rules and FO-strategies.

The Table 1.3 shows the number of SO-strategies used in each extension. Finally,
the Table 1.4 shows the ratio of the modified FO-rules and the ratio of the modified
FO-strategies. The reusability ratio is high since most of the FO-strategies defined
in the skeleton model are reused. Besides very little number of SO-strategies is used
in the extensions. This systematic way of the generation of proofs is a promising
path that will be further validated within more complex configurations for which

the proofs can not be obtained by hand.

In the future, we plan to introduce

dedicated tools to aid in the design of composition of several extensions.
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Chapter 2

Extension Mechanisms and Their
Combination For Multi-Scale Model
Derivations

Abstract In this Chapter we address the problem of the combination of the exten-
sions of the proofs related to the multi-scale model derivations. For this purpose,
we develop further extension mechanisms which turn to be more rudimentary than
the ones introduced in Chapter 1. The simplicity of these new mechanisms al-
lows us to elaborate necessary conditions under which these mechanisms can be
correctly combined giving rise to rich extensions. We illustrate the application of
these extension mechanisms to many examples, namely to the derivation of the
linear operator associated to the microscopic problem in the reference proof. Thus
the results of this Chapter significantly improve the results of Chapter 1 since it is
not possible, at least in a straightforward way, to provide necessary conditions so
that the extension mechanisms established in Chapter 1 can be combined.

2.1 Introduction

We follow the approach presented in Chapter 1 that consists in formalizing the
multi-scale proofs by means of symbolic transformations. In particular, the math-
ematical properties, lemmas and theorems are represented as rewriting rules; and
the proofs are represented as rewriting strategies.

In this Chapter we address the problem of the generation of complex models
by reusing the proofs and tools used for the generation of simpler models. More
precisely, we address the problem of the combination of the extensions. This
problem can be formulated as follows: Given a reference proof, an extension FEj
(viewed as a transformation) of the reference proof to some general setting (e.g.
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multi-dimensional setting), an extension FE, of the reference proof to an another
general setting (e.g. thinness setting), we would like to construct an extension E’
so that the application of £’ to the reference proof yields a proof that covers both
the two settings.

It turned out that it is not easy to study the combination of extensions if these
extensions are formulated as second-order strategies, as presented in Chapter 1.
To solve this problem, we refine the notion of extension by proposing two extension
mechanisms:

1. Firstly, we follow the approach of Chapter 1 that consists in extending first-
order rules by means of second-order rules. Since, obviously, not every
second-order rule is adequate for this extension, we provide some syntac-
tic requirements under which second-order rules can extend first-order ones.
These syntactic requirements deal with the notions of:

(a) a second-order rule sy being subsumed by a second-order rule s;. This
can be understood as s; being more general than ss, and

(b) the mathematical equivalence between second-order rules. For instance,
we would like to formulate the idea that the two expressions sz a;
and « are mathematically equivalent.

However, it is not clear how to build these second-order rules nor how to
combine them. This leads to the second point.

2. Secondly, we establish a second extension mechanism that consists in defin-
ing rudimentary components, called added terms, allowing, on the hand, to
express the kind of extensions that we want to make, and, on the other hand,
they can be combined to build more complex components. These components
will be inserted at certain positions of a FO-term and a FO-rule. The careful
choice of the added terms as well as the way they are combined ensure the
correctness of the extension.

As a concrete application, we apply the second extension mechanism to extend
one step of the two-scale model derivation of the stationary heat equation (Eq.
(1.22)) to the multi-dimensional and the vector-valued settings as well as their
combination. We plan to implement these extensions mechanisms with the sym-
bolic transformation language if proposed in [6]. It is worth mentioning that if
was successfully used to encode many examples of the multi-scale derivations e.g.

58, 59, 6].
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2.2.  Term rewriting

2.1.1 Organization of the Chapter

The Chapter is organized as follows: Section 2.2 introduces computer science tools
and concepts which will be used to formulate the extension mechanisms for the
multi-scale model derivations. Namely, the notion of term rewriting will be intro-
duced. In section 2.3 we introduce the notion of second-order rewriting rules that
operate on (first-order) rewriting rules and we define a grammar for the mathemat-
ical expressions. In section 2.4 we introduce the first extension mechanism that
consists in the extension of (first-order) rules by means of second-order rules that
fulfill some conditions. In section 2.5 we introduce the second extension mecha-
nism, called the outward growth, for the extension of mathematical expressions. In
order to construct complex extensions by means of outward growths, we define the
operation of combination of outward growths and its properties. In section 2.6 we
formulate the outward growth mechanism as second-order rewriting rules. Such
outward growths are called second-order outward growth. We define the opera-
tion of combination of second-order outward growths as well as its properties. In
section 2.7 we introduce the mechanism of parametrization that can be composed
with the mechanism of outward growth. In section 2.8 we apply the mechanism
of the outward growth to extend one step in the two-scale model derivation of
the stationary heat equation. In section 2.9 we conclude the Chapter with several
remarques and perspectives, namely we will discuss the formulation of the outward
growths and the parametrization and their combination by means of strategies.

2.2 Term rewriting

In this section we introduce some computer science concepts and tools which will be
used to formulate the extension mechanisms for the multi-scale model derivations.
In particular, we shall introduce the notion of term rewriting. Before we formally
introducing it, we firstly give the main ideas behind it.

The set of rewriting terms, denoted by T (F,X), is built up as a combination
of function symbols in a set F and rewriting variables in a set X. Besides, each
function symbol in F comes with a fized arity. The arity of a function symbol can
be viewed as the number of its "arguments". Therefore, the function symbols F
can be written as a union F = FyU F;... U F, of function symbols, where F; is
a set of function symbols of arity ¢. In particular, function symbols of zero arity,
i.e. those in Fy, are called constants. We emphasize that function symbols should
not to be confused with mathematical functions, and on the other hand, rewriting
variables should not be confused with mathematical variables. For example, let
X =0 and F = FoUF UF, where Fy = {z,Q}, F; = f and F3 = Integral. Then,
Integral(S), f(x),x) is a term in T (F,X). It corresponds to the mathematical
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Chapter 2. FExtension Mechanisms and Their Combination

expression fQ f(z)dx. Notice that both x and € are function symbols of arity
zero, i.e. they are constants in the rewriting sense while x is a variable in the
mathematical sense. To make clear this distinction, the mathematical variables
will be denoted by the letters z,vy, z,... however the rewriting variables will be
denoted by the capital letters X,Y, Z, ...

A rewriting rule is a pair

(l,r) e T(F,X)x T(F,X)

of terms. It transforms a term [ to the term r. We shall write [ — r instead of
(I,r). For example the equation sin(a)? = 1 — cos(a)? can be turned into two
rewriting rules:

sin(X)? — 1 — cos(X)?, and
1 — cos(X)? — sin(X)?,

where sin, cos, 1, and '—" € F and X € &.

The grammars of mathematical objects such as regions, functions and variables
are discussed. By the grammar, all mathematical information required i.e. the
dimension of the region, the domain of the variables and the variables of the
functions, for the derivation are saved, in fact, this grammar gives the base for the
mathematical derivation.

2.2.1 Terms, positions, substitutions, rewriting rule, term
rewriting

In what follows, let F be a set of function symbols, each symbol having a fixed
arity and let X’ be a set of variables.

Definition 44 (Terms) The syntaz of the terms in T (F,X) is defined by the
following grammar:

t o= X | f(t,...,1)
where X € X, f € F.
Definition 45 (Positions [4]) Let t be a term in T (F,X).

1. The set of positions of the term t, denoted by Pos (t), is a set of strings® of
positive integers such that:

6A string is an element of N* = {¢} UNU (N x N)U (N x N x N)U---. Given two strings
p=p1p2...pn and ¢ = q1G2 - - . Gm, the concatenation of p and q, denoted by p- g or simply pq, is
the string pi1ps .. .Pnq1q2 - . - Gm- Notice that (N¥|-) is a monoid with € as the identity element.
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2.2.  Term rewriting

o I[ft=X € X, then Pos (t) = {e}, where € denotes the empty string.
o Ift=f(ty,....t,) then

Pos (t) = {e} U U {ip | p € Pos(t;)}.

We denote the set of the positions of a subterm r in a term t by Pos (t,r). The
position € is called the root position of term t, and the function or variable
symbol at this position is called root symbol of t.

. The prefiz order defined as
p < q iff there exists p' such that pp’ = q (2.1)

15 a partial order on positions. We say that the position p,q are parallel
(p |l @) iff p and q are incomparable with respect to <. The position p is
above q if p < q. The position p is strictly above q, written p < q iff there
exists p' such that p' # € and pp’ = q.

We define a binary relation T on the positions as follows:
pCq iff (p<qorpllq) (2:2)
Simalarly, we define a binary relation © on the positions as follows:

pCq iff (p<qorplq) (2.3)

3. For p € Pos(t), the subterm of t at position p, denoted by t|,, is defined by

tle = t,
ft,ntn)lig = tilg

Note that, for p = iq,p € Pos (s) implies that t is of the form t = f (t1,...,t,)
with © < n.

The replacement of a term w by a term s in t, denoted by t{u := s|, is defined

tl = 5] = ((@sllp)[5lla) sl where {pr,. . pa} = {p € Pos(t) st t], = u}

. For p € Pos(t), we denote by t[s], the term that is obtained from t by
replacing the subterm at position p by s, i.e.

tls] = s,
Fltronta) sl e = f(tl,...,ti[s]q,...,tn>
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5. By Var (t) we denote the set of variables occurring in t, i.e.
Var (t) = {x € X |3p € Pos (t) : t|, = x}

We call p € Pos (t) a variable position if t|, is a variable.

Example 46 Let t be the term
t = Oper(Integral,Fun(u,Var(z,Reg(2,1))), Var(z,Reg(£2,1)),0) (2.4)

where Var(t) = 0. It represents the norm of a function u in L* (). Its tree
structure as well as the positions of all its subterms are depicted in Figure 2.1.

“Oper

P W

Integral Var 0

WAV

uw Var x Reg

221 / \222 321/ \322
1

x Reg ()
2201 / \2222
Q0 1

Figure 2.1: The tree structure of the term t defined in Eq. (2.4) and the positions
of its subterms.

The set of all the positions of t can be computed as follows. Let t = f (t1,ta,t3,t4),
where tl = tll; t2 = tb, tg == t‘g 5 t4 = t’4, t22 = t’gg == t2’2 == (t|2|2) and
toor = talor = taal1 = ((t|2) |2) |1

FiTStly, notice that Pos (tgl) = Pos (t221> = Pos (t2221) = Pos (t2222) = {6}
Hence, the set of positions Pos (tg), in the second branch of t, can be computed as
follows:

Pos (tae) = {e}U{lp|p € Pos(taw)} U{2p|p € Pos(tan)}
= {,1,2,21,22} .

POS (tggg) = {6} U {].p | P < POS (tgggl)} U {2]? | P c POS (t2222)}
= {67 17 2} )

{e}U{lp|p € Pos(tar)} U{2p | p € Pos (tw)}

{6, 1,2,21,22,221, 222} )

Pos (ts2)
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2.2.  Term rewriting

Secondly, notice that Pos (t31) = Pos (tsa1) = Pos (tse2) = {€}. Hence the set of
positions Pos (t3) in the third branch of t can be computed as follows:

Pos(tza) = {e}U{lp|p € Pos(tzn)} U{2p|p € Pos(tsn)}
= {e 1,2}

Pos (t3) = {e}U{lp|p € Pos(ts1)} U{2p | p € Pos (ts2)}

= {e,1,2,21,22) .

Finally, since Pos (t1) = Pos (t4) = {€}, the set of positions Pos (t) of the term t
s given by:

Pos(t) = {efU{lp|p€Pos(ti)fU{2p|p e Pos(ts)} U{3p|pePos(ts)} U{dp|pe Pos(ts)}
= {e}U{1}U{2,21,22 221,222, 2221,2222} U {3, 31,32, 321,322} U {4} .

The claims in the following Proposition are not hard to prove.

Proposition 47 (See [4, Chapter 1]) Let s,t,r be terms and p,q be strings.
The following hold.

1. If pq € Pos (s), then s|p, = (S|p) |g-

2. If p € Pos(s) and q € Pos (t), then

(s0,) b =l
(s [t]p> ], = s[t [r]q] .

3. If pqg € Pos (s), then

(s1,) 10 = slo
(sltl,) 17, = (s0r1,) [,

Proof. See Annex 2.10.1. W
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Definition 48 (Substitution) A T (F,X)-substitution, or a substitution for short,
is a function o : X — T(F,X) such that o0 (X) # X for only finitely many Xs.
The (finite) set of variables that o does not map to themselves is called the domain
of o:

Dom (o) D {X eX|o(X)#£X).
If Dom (o) = {X3, ..., X,,} then we write o as:
o={X1—~o(Xy),.,Xn—0o(X,)}.

The range of o is Ran () := {0 (X) | X € Dom (o)}, and the variable range of o
consists of the variables occurring in Ran (o) :

VRan (o) e U Var (o (X)) .

A substitution o : X — T(F,X)) uniquely extends to an endomorphism & :
T(F,X) — T(F, X) defined by:

1. 0(X) =0(X) for all X € Dom(o),

2. 0(X) =X for all X & Dom(o),

3. 0(f(tr,...,tn)) = f(@(t1),...,0(tn)) for f € F.

In what follows we do not distinguish between a substitution and its extension. The
set of all T (F,X)—substitutions will be denoted by Sub(T (F, X)) or simply Sub.

The composition oy of two substitutions o and 7y is defined by

for all X € Dom(v).

Now we are ready to define the notions of rewriting rule and rewriting system.

Definition 49 (Rewriting rule, term rewriting system) A rewriting rule over
a signature F is a pair (I,r) € T(F,X) x T(F,X), denoted by | — r, such that

Var(r) C Var(l). (2.5)

Usually, | # x with x € X. Besides, | is called the left-hand side of the rewriting
rule and r the right-hand side.
A term rewriting system (TRS) is a set of rewriting rules.

26



2.2.  Term rewriting

We next define the notion rewriting relation yielded by a rewriting system R.
Intuitively, a term ¢ rewrites into a term wu if there exists a rewriting rule of R
that can be applied to position of ¢ and yields the term u. The formal definition
follows.

Definition 50 (Term rewriting) Given a rewriting system R, we say that t €
T(F,X) rewrites into a term u € T(F,X) w.r.t. R, denoted by t —x u, iff
there exist

(i) a position p € Pos(t),
(i1) a rewrite rule | - r € R, and

(111) a substitution o with Dom(o) = Var(l) such that

tp=o0(l) and u=tlo(r)],

. l—r,o,p .. . L.
We can use the notation t —=" u to make explicit the corresponding rewriting
rule, position and substitution respectively. We denote by —* r the reflexive
transitive closure of the relation —g.

2.2.2 Term unification

We introduce a well known algorithmic process, called wunification. 1t has been
widely used in logic and automated reasoning for solving equations over symbolic
terms. It will be used in Section 2.6 in the extension of first-order rules.

Definition 51 A term wu is subsumed by a term t if there is a substitution o s.t.
o(t) = u. A substitution o is subsumed by a substitution 7y, where Dom(c) =
Dom(7), iff for every variable X € Dom(c), the term o(X) is subsumed by the
term y(X).

Definition 52 (Unification problem, unifier, complete and minimal set of unifiers)
Let t;, u; be terms where it =1,...,n.

o A unification problem E is a set of oriented equations:

E:{tliul,...,tniun}.

o A unifier of E is a substitution o which is a solution of E, i.e. o(l;) = o(t;)
for alli € {1,...,n}. If E admits a solution, then it is called solvable.
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e For a given unification problem E, a (possibly infinite) set S = {o1,09,...}
of unifiers of E is complete iff each solution of E is subsumed by some unifier
o; € S. The set S is minimal if none of its substitutions subsumes another
one.

The existence of a complete and minimal solution of a unification problem is
ensured by the following proposition:

Proposition 53 (See [4]) Fach solvable unification problem E has a complete
and minimal singleton solution set {o}. The solution o is called the most general
unifier of E, and it is denoted by mgu(F).

A unification algorithm. We mention that there is a simple algorithm, see
for instance [4], that computes the most general unifier of a unification prob-
lem F by transforming the equations of E into a set of equations of the form
{X1 =uy,...,X;n = up} where X; are distinct variables and w; are terms so that
none of them contains a variable among {X3,..., X,,}. We reproduce next the
unification algorithm which is specified as a set of reduction rules.

Algorithm 1: Unification
input : A unification problem E = {t; = uy,...,t, = u,}, where t;, u; are
terms.
output: The most general unifier of E if it exists, see Definition 52 and
Proposition 53.

EU{t=t}~E (delete)

EU{f(ty, ..., tn) = flur,...,un)} ~> EU{t1 =y, ... b, = u,}
(decompose)
EU{f(ti,....ty) =g(ur, ..., up)} ~ fail if g# f (conflict)

EU{f(t1,...,tn) =X}~ EU{X = f(t1,...,tn)} (swap)
EU{zx =t} ~ EX =t|]U{X =t}
it X ¢ Var(t) and X € Var(E)
(eliminate)
FU{X = f(Xy,...,X,)} ~ fail if X € Var(f(X1,...,X,))

(recursion)
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2.3. Second-order rules, SA-expressions and short-cut terms

2.3 Second-order rules, SA-expressions and short-
cut terms

In this section we introduce second-order rewriting rules that operate on (first-
order) rewriting rules. Then we define a grammar for the mathematical expres-
sions.

2.3.1 Second-order rules

Given a rewriting strategy representing a a model derivation, we would like to
transform it in order to obtain a derivation of more complex models. This can
be achieved, see e.g. |59|, by transforming first-order strategies by second-order
strategies. Unlike [59], in this Section we only deal with the particular setting in
which only first-order rules are transformed by second-order rules. This particular
setting is powerful enough in practice to extend our two-scale models. Hence, we
need to consider two levels of rules: the first-order ones as defined in Definition 54,
and the second-order one in such a way that second-order rules can be convincingly
applied to first-order ones. More precisely a first-order rule [ — 7 will be considered
the first-order term — (I, r) where "—" is a functional symbol of arity two.

Definition 54 (Second-order rules) Let X° be a set of FO-variables, and F°
be a set of FO-function symbols. Let X' be a set of SO-variables such that the sets
X0 FO XY are pairwise disjoint. Let SConst = {—}.

(i) The set of FO-terms is the set of terms T (F°, X°).
(ii) A FO-rule is a pair of FO-terms in T (F°, X°) x T(F°, X°).
(iii) The set of SO-terms is the set of terms T (F° U X° U SConst, X1).

(iv) A SO-rule is a pair of SO-terms in T(FPUX*USConst, X)) x T(FPUX°U
SConst, X'). A SO-rule will be denoted by | = r.

Item (iii) of Definition 54 states that the variables of the first order become
constants in the second order, and the FO-rule constructor " — " becomes SO-
function symbols. That is, the FO-rules become SO-terms. Item (iv) of the same
definition states that SO-rules operate on SO-terms, in particular they operate on
FO-rules. FO-variables will be denoted by the letter XY, Z, ... and SO-variables
will be denoted by «, 3, .... The semantics of the SO-rules (i.e. rule application
at the top) is defined in the same way as the one of FO-rules.
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2.3.2 A grammar for SA-expressions, short-cut terms

We propose a more precise way to represent the mathematical expressions and
the data used in the formulation of the proofs and their extensions. Such mathe-
matical expressions as well as the data coming with are henceforth called specific
application expressions, or SA-expressions for short. More precisely, instead of
representing the SA-expressions by terms in 7 (F, '), see Definition 44, we repre-
sent them by the sub set of terms in T (F,X) that follow the grammar F defined
afterwards.

Let
MathVar = {x,y, ...} be the set of mathematical variable names,
MathDiscVar = {i, j,...} be the set of discrete mathematical variable names,
MathDiscDom = {1, J,...} be the set of discrete mathematical variable domain
names,
MathFun = {f,g,...} be the set of mathematical function names,
MathFunKind = {known, unknown, test},
MathReg = {Q,T',...} be the set of region names,
MathOper = {Deriv, Integral, Sum,...} be the set of mathematical operator
names,
MathDim = {d;,ds, ...} UN be the set of symbolic/numeric dimensions,
and
® = {+, X, —}. The syntax of SA-expressions is defined by the following grammar:

Fu=V|FoF | F* | Fun(f,[V,---,V],k) | Indexed(F,V) | Oper(o,F,[F,- -

V ::=Var(z,R) | Indexed(F,V) | Index(i,Set(/,{l,d}))
R ::=Reg(Q2,d)

where n € N, f € MathFun, k € MathFunKind, o € MathOper, © €
MathVar, i € MathDiscVar I € MathDiscDom, Q2 € MathReg, and [,d €
MathDim.

For simplicity and to improve the readability, we use the short-cut expres-
sions instead of complete SA-expressions, leading to more concise expressions. An
example of the short-cut terms is given bellow.
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Q) = Reg(Q,d), (2.6)
z = Var(z, 2),
y = Var(y, Q),
¢ = Index(i,Set(/,{1,d})),
J = Index(i,Set(/,{1,d})),
u(z) = Fun(u, [z], unknown),
u(z,y) = Fun(u, [z, y|, unknown),
v(z) = Fun(v, 2], test),
u;(z) = Indexed(u(z), i),
u;;(z) = Indexed (Indexed (u(z),1),j), (2.7)
ML) — dper(poriv u(o). ). 28)
Ou,(z) —~0 .
oz, = Oper(Deriv,u, (z),[z,]), (2.9)

/ u(z) dz = Oper(Integral, u(z), [z]),
/ u(z,y) dz = Oper(Integral, u(z,y), [z]), (2.10)

D wi(x) = Oper (Sum, uy(x), [1]) (2.11)
> uy(x) = Oper (Sum, (). i) (2.12)

The tree structures of the short-cut terms dyu(z), dwz;, [u(z)dz, 37, u(z)
and u(z)? are depicted in Figure 2.2.

d a [ ) A

/\ /\ /\ /\ /\

ulz) = u(z)  z, ulz) =z w(z) i u(z) 2

Figure 2.2: Tree structures of the short-cut terms d,u(x), dwz;, [u(z)dz, Y-, u(z)
and u(z)?.

The following example shows a rewriting rule that uses short-cut terms of SA-
expressions.
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Example 55 The rewrite rule which transforms any function u into its L*-norm
1s defined by

s = u(z) — / (u(x))*dz.

By replacing the short-cut terms with their related full SA-expressions, we get the
rewriting rule:

s := Fun(U, [Var(X, Q)], K) — Oper(Integral, Fun(U, [Var(X, Q)], K) 2, Var(X,Q))

where U, X, K,Q € X° are rewriting variables.

2.4 Extension of first-order rules by second-order
rules

In this section we introduce the first mechanism allowing the extension of FO-rules.
It consists in the extension of FO-rules by means of SO-rules that enjoy certain
properties. More precisely, we provide a set of requirements that the SO-rules
must fulfill so that they can extend FO-rules.

2.4.1 Parametrization of second-order rules

A SO-rewriting rule is called parametrized if its right-hand side part contains FO-
variables which are not in its left-hand side part. The idea behind parametrization
is to build The formal definition of parametrized SO-rules follow.

Definition 56 (Parametrized SO-rule) Let S =1 = r be a SO-rule. The set
of parameters of S, denoted by V°(S), is the set of FO-variables defined by:

VU(S) = Var®(r) \ Var(l)
The SO-rule S is called parametrized iff V°(S) is non-empty.

Example 57 Consider the equation

H (u(x)) = / (d%i(j))de (2.13)

that represents the H' norm of the function u(z), where

{E@@)) = Oper(H',u(z),z), and
x = Var(z,Reg(2, 1))
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are SA-expressions and u,x,Q are function symbols in F°. The equation (2.13)
can be turned into the FO-rule s:

5= Hule) » [(HEd

where

x = Var(z,Reg(2,1)), and
u,x,Q e X°

Let S be the SO-rule:
5o () » [ Bar) = (e - [¥ a%g,)dz’>

where

r= Var(sReg(,1)),
2’ = Var(z,Reg(Q,d)),

u,z,9,d e X°.

The SO-rule S transforms the FO-rule s into its n-dimensional counterpart. If we

denote by ls (resp. rs) the left-hand side (resp. right-hand side) of S, then we
have that

Var®(ls) = {u,z,Q}, and
Var®(rs) = {u,z,Q,d}.

Therefore,
VU(S) = Var®(rs) \ Var®(¢s) = {d} € &°.
Since VO(S) is non-empty, then according to Definition 56, the SO-rule S is
parametrized.
The application of the SO-rule S to the FO-rule s, denoted by S(s), yields the
FO-rule:

5() =1 ute) — [ 30 By

where

2’ = Var(z,Reg(Q,d)), and
u,x,Q,d e X0

The FO-rule S(s) is a generalization of the FO-rule s to the n-dimensional setting.

In the following, the concept of generalization of FO-rules by means of SO-rules
is defined.
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2.4.2 Mathematical equivalence between first-order rules

The notion of the mathematical equivalence between FO-rules, is a crucial ingre-
dient in the formulation of the extension mechanisms by SO-rules. For instance
Z:j B and B are mathematically equivalent, where (3 is an SA-expression. The no-
tion of mathematical equivalence is formulated in Definition 58 bellow by means of
an equational system R, i.e. a set of equations. Two FO-rules are mathematically
equivalent if they are syntactically equal ” modulo the system R.

Definition 58 (Mathematical equivalence) Let s; and s be two FO-rules.
Let R an equational system composed. The rules s; and so are mathematically
equivalent with respect to R, written s1 ~g So, iff they are syntactically equal

modulo R.

Definition 59 (R-semantic conservation SO-rule) Let R be an equational sys-
tem. A SO-rule S is R-semantic conservation iff for all FO-rule s, we have that

S(s) ~x s.
Example 60 Let Sy be the SO-rule:

So= (@) » [y ar) = () — [y ar)

Z’ —L

where
x = Var(z,Reg(f2,1)),
i = Var(i,Reg(l,1)),
z; = Indexed(z,i), and

i, I, u,x,Q € Xt

Notice that the variable i ranges from 1 to 1 in the right-hand side of Sy. Let R
be the equational system.:

R:{Za:a,

II;dexed (a, Index(i, Set(1,{1,...,1}))) = a} (2.14)

The second equation of R states that an expression oy is equal to o if © ranges from
1 to 1. We have that Sy is an R-semantic conservation, since for every FO-rule
s, So(s) is mathematically equivalent to s modulo R.

"The syntactic equality between rewriting rules has always to be done modulo a-equivalence.
Two rewriting rules are a-equivalent if they are syntactically identical up to a renaming of their
variables. For instance, the rules f(z) — g(z) and f(y) — g(y), where x and y are variables, are
a-equivalent. Two strategies are a-equivalent if they are syntactically identical up to a renaming
of the variables of their rewriting rules. For instance, the strategies BottomUp(f(x) — g(x)) and
BottomUp(f(y) — ¢g(y)) are a-equivalent.
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2.4.3 Generalization of first-order rules by admissible pa-
rameterized second-order strategies

Combining the notions of parametrization and mathematical equivalence, defined
respectively in Definitions 56 and 58, we are able to define the notion of general-
iztion of FO-rules.

Definition 61 (Generalization of a parametrized SO-rule) Let S be a parametrized
SO-rule and S" be a SO-rule. We say that S generalizes S" if there exists a mapping
v of the first order variables in V(S) such that

V(S) =5

Example 62 Consider the parametrized SO-rule S of Example 57 and the SO-
rule Sy of Example 60. We have that S is a generalization of Sy, since for the
mapping v = {d — 1}, we get v(S") = S.

Definition 63 (Admissible parametrized SO-rule) Let S be a parametrized
SO-rule and S" be an R-semantic conservation SO-rule for an equational system
R. We say that S is (S'-R)-admissible iff S’ is R-semantic conservation and S
generalizes S'. We shall simply say that S is admissible if it is (S’'-R)-admissible
for some R-semantic conservation strategy S'.

Using the concepts introduced so far, we are ready to define the notion of
generalization of a FO-rule. We notice that the notion of generalization of a FO-
rule has not to be confused with the one of generalization of a parametrized SO-rule
given in Definition 61.

Definition 64 (Generalization of a FO-rule) Let sy and s, be FO-rules. We
say that sy is a generalization of sg iff there exists an admissible parametrized
SO-rule S such that

s1 = S(s0).

And we say that S generalizes sg to sy.

Example 65 Let sy be the FO-rule:

where

z = Var(z,Reg(Q2,1)) and
u,x,Q € X°.
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Let sq be the FO-rule :

where

x = Var(z,Reg(2,d)) and
u,x,Q,d € X% and
ie FO

We shall find an admissible parametrized SO-rule S" that generalizes sg to s1. We
start from the semantic conservation SO-rule Sy:

oo (e~ [(BEY ar) = (wuio) » [ S0y ar),

where

i = Var(i,Reg(/,1)),
u,z,Q € X and
I,ie F°.

By replacing the constant 1 by the variable d € X° in both x and i in the
right-hand side of Sy, we get the SO-rule S':

S = (E(g(g)) E / (d%l(;))? dg) = (H(u(z) — / Z(ags)f dz)a

where x = Var(x,Reg(€,d)), i = Var(i,Reg(I,d)), u,z,Q € X' and I, i € F°. We
have that the SO-rule S’ is (So — R)-admissible, where R is the equational system
given in Eq 2.14. Since S'(sq) = s1, then sy is a generalization of sg.

2.5 Extension of first-order terms by outward growths

In Section 2.4, we have established the first mechanism for the extension of FO-
rules. There, we have defined requirements for SO-rules so that they can correctly
extend FO-rules. However, we did not provide a clear process to build such SO-
rules. To deal with this issue, we elaborate a second mechanism for the extension of
FO-terms (in this section) and of FO-rules (in section 2.6). This second mechanism
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is based on the notion of outward growths that, roughly speaking, consists in the
following: (i) firstly, we need to define rudimentary components, called added
terms, allowing, on one hand, to express the kind of extensions that we want to
make, and, on the other hand can be combined to build more complex components.
(11) Secondly, these components will be inserted at certain positions of a FO-term
and a FO-rule. That is, the positions on which the extension is made.

In fact, these two extension mechanisms are equivalent in the sense that they
have the same effect when applied to the same term. Besides, outward growth
mechanisms can be used to construct semantic preservation as well as admissible

SO-rules.

Definition 66 Let F%4 = FOU {1} where L¢ F°. The set of "added terms",
denoted by T, is defined by T = T (Faodd x0).

Throughout this chapter, we assume that the symbol L occurs only once in an
added term in 7% The position of L in 7 is denoted by ¢(7). In what follows we
use the arrow ’~~’ to denote mappings/reductions rules, not to be confused with
the rewrite rules. We mention that the notion of added terms is close to the one
of context.

2.5.1 Unit outward growths to the root and their composi-
tion
Definition 67 (Unit outward growth to the root) The unit outward growth
with an added term T € T denoted by G., is a mapping from T(F°, X°) to
T(FO, X% defined by:
G, t~ T[t],

The ground outward growth G, is called parametrized if T includes variables from
X0,

The application of a unit outward growth G, to a term ¢ to the root is depicted
in Figure 7?7 bellow.

Example 68 Lett = h(c) be a term where ¢ is a constant. Let 7 = Indexed(L,1)
be an added term. Let G, : t ~» T[t], be an outward growth with the added term .
The application of G, to t yields the term:

The terms t, T and h; are depicted in Figure 2.4.
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t T G- (1)

Figure 2.3: Schematic diagram of the application of a unit outward growth G,
(with an added term 7) to a term ¢ to the root.

t T G (t)

h Indexed Indexed
A\ A
. /oA
c 1 1 h 1
c

Figure 2.4: Application of the unit outward growth G, (of added term 7) to the
term ¢ to the root.

Definition 69 (Composition of added terms) The composition for two added
terms T, 7' € T is defined in the usual sense by

7)) =74 € T

Remark 70 Notice that the composition of added terms is associative but not
commutative.

Example 71 Let 7 and 7’ be the added terms

7 = Indexed(L,?), and

T =2(1)

1

Their composition 7'/ /T = > (Indexed(L,1)) is depicted in Figure 2.5.

l
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,E Indexed b))
/\ /\ / \
] ] Indexed

/\
L i
Figure 2.5: Composition of two added terms.

Notice that the composition T/ /7" = Indexed (> (L),4) has no significance since

2

it does not allow to build a sound SA-expression.

Property 72 (Composition of two unit outward growths to the root) For
any 7,7 € T the composition G.; G of two unit ground outward growths to
the root is the unit ground outward growth with added term 7'//T, i.e.

Gr; G = Grryjr it~ (7] [T) [t g(r )

Since the composition of added terms is not commutative, the composition of
outward growth to the root is not commutative as well.

2.5.2 Unit outward growths to a position and their combi-
nation

We next generalize the definition of unit outward growths to the root to be applied
to any position.

Definition 73 (Unit outward growth to a position) Let G, be unit ground
outward growth and p be a position. The unit outward growth G, , to position p is
a mapping
Grp o 0~ HGr(tp)]p,
which is defined only if p € Pos(t).
If there is no ambiguity, unit outward growths to a position will be simply
called unit outward growths.

The application of a unit outward growth G, , with an added term 7 to a term
t at the position p is depicted in Figure 2.6.
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t ’ Gro(?)

Figure 2.6: Schematic diagram of the application of a unit outward growth G, ,
(with an added term 7) to a term ¢ at the position p.

Example 74 Let t = 0,u(x) be a term and 7 := Indexed(L,1) be an added term.

Let p be the position of x in t, that is, p = 2. The application of the unit outward
growth G, to t yields:

The terms t, T and G, ,(t) are depicted in Figure 2.7.

t T Grp(t)

d indexed d

/ \r /\ /e
u(z) =z o X u(r) indexed

/N
£ i

Figure 2.7: Application of the unit outward growth G, (of added term 7) to the
term ¢ at the position p.
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Property 75 (Composition of two unit outward growths to the same position)
Let G, , and G, be two unit outward growths to the same position p. Their com-
position, denoted by G ,; Gy p, can be expressed as follows:

Grpi Grp = Gryprp 1t~ UG ()]

Example 76 Let t = fg dx be a term and p be the position of a in t. Let T and
7' be the added terms:

7 = Indexed(L,1),
=3 (L1).

i

Let G, and G, ;, be two unit outward growths to the position p. We have

7_///7_ — Z(Indexed(l7i))'

3

Therefore
(Grpi Grrp) () = Grryyr p(t)

:/;gidg.

We define next the composition of outward growths to different positions.

Definition 77 (Composition of two unit outward growths to different positions)
Let G, ,, and G be two unit outward growths to the position p and p', respectively.
Their composition G. ;G is defined if and only if when p' C p.

Notice that if the positions p and p’ are incomparable, i.e. p || p' then
Grp;Grp = G i Grp. On the other hand, we can justify the condition p’ T p
on the positions p and p’ in Definition 77, i.e. p’ < p or p || p/, while composing
unit outward growths as follows. The application of a unit outward growth at a
position p followed by an application of another unit outward growth at a lower
position p’ might lead to an undesired result since the new position at which we
would like to apply the second outward growth might change. This possible change
of the position does not happen when the two positions p and p’ are incomparable
or the position p is lower than p’. As an illustration, see Example 78 bellow.

Example 78 Let t := [(d,u(z))? dz be a term. Let T and 7' be the added terms
7 = Indexed(L,1),
7 =>"(1).

i
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Indexed )

€ , Jl" l .l
YA\ /\ /\
Az 1 i i

/\
g 2
/ \112
u(z) =z

Figure 2.8: The term ¢ = [(d,u(z))? dz and the added terms 7 = Indexed(.L,1)
and 7/ = > (L1).

i

Let G: 112 and G 1 be the outward growths to the positions 112 and 1 respectively,
and associated with the added terms T and 7' respectively. The term t, the positions
1 and 112, and the added terms T and 7' are depicted in Figure 2.8.

Since 1 < 112, the composition Gr112; G 1 is well defined. The result of the
application of G; 112; G 1 to t is depicted in Figure 2.9. This is done in two steps:
firstly we apply G 112 to t, yielding the term t,, then we apply G- 1 to ;.

Howewver, the application of G, 1 followed by the application to t of G; 112 yields
an undesired result as shown in Figure 2.10. Notice that after the application of
Gr1 to t that give the term wy, the position of wy at which we would like to apply
G, has changed. In other words, to obtain the desired result, the outward growth
G, has to be applied at the position 1112 of wy instead of 112.

In order to be able to construct complex outward growths, we slightly generalize
the notion of composition of two unit outward growths given in Definition 77 so
that we can compose two unit outward growths to two positions independently on
their relative order. The generalized composition of unit outward growths is called
combination. Its definition follows.

Definition 79 (Combination of two unit outward growths) The combina-
tion of two unit outward growths G., and G v, denoted by G, ,0G. v, is defined
as follows:

GrpiGrp fPCYP,
GrpiGrp otherwise.

g‘r,pogﬂ-’,p’ = {
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t1=G 11a(t) ta=G.s y(11)

; — t1 =¥ tay = (g'r,ll;!:g'r’_.l)(t}

/ N2 / 112 /\112
u(z) u(z) 9]
/\ F N

[=
| =~
=
1=
| 5
S
—
=]
o
[41]
™
@
jo N

Figure 2.9: The application of the composition G,/ 112; G, 1 to t.

Notice that the combination operation ¢ is associative but not commutative.
However it can be commutative if the positions to witch the outward growths are
applied are distinct as stated in the following Proposition.

Proposition 80 Let 71,79 be two added terms and let q,,qs be two positions. If
Q1 # q2 then

gﬂ,th O gm,qz - gTz,qz ¢ gﬂ,q1'

2.5.3 Outward growths and their combination

Definition 81 (Outward growth) Let 7 = (74,...,7,) be a tuple of n added
terms and let ¢ = (q1, ..., qn) be a tuple of n positions with py > ps > ... > p,. The
outward growth Gz g on the added terms T to the positions ¢ is the composition of
the n unit outward growths G;, ¢, -, Gr,.q.- That is,

Grqa=Griaqs s Grnan

In the following we shall define the operation of combination of two outward
growths Gzz and G o, where 7 = (71,...,7,), §= (q1,-- -, qn), T = (74, ..., 70,)
and ¢ = (¢}, ...,¢,,). This operation generalizes the operation of combination of
unit outward growths at different positions given in Definition 77. Firstly, we need
to perform some treatment on the vectors of positions ¢ and ¢ as well as on their
related vectors of added terms 7 and 7.
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wi=G_s ,(t) wa=G_ 1ya(wy)
t —3 wy — wo = G- 112(G-1(1))

‘ 0
/ \ / \ /\
we) z 2 i

Figure 2.10: The application G, 112(G1(t)) yields an undesired result.

Definition 82 Let 7 = (71,...,7,) and ¥ = (Tpi1, .-, Tuim) be two tuples of
added terms. Let ¢ = (q1,---,qn) and ¢ = (qui1s-- - quem) be two tuples of
positions, where the positions qi,...,Quem are pairwise comparable, i.e. either

¢ <qjorq; <gq foralli,je{l,...,n+m}. Define the mapping f as f(q;) = 7,
for alli e {1,....,n+m}. We define the product (7,q) @ (7',7) as follows.

1. Firstly, sort the tuple (qu,...,qntm) in the descending order. That is, let
(41, Qi) be such that:

Z) {qaw"?qzﬁ-m} - {qla"'a(JTLer}; and
i.) q; < q; iff i <j foralli,je{l,....n+m}.

2. Secondly, delete the redundant positions from (qy, ..., ¢ ). That is, let

7 =, q) (2.15)
be such that {q7,....q'} ={d\, .. .. @i}, and ¢/ > ¢/, foralli € {1,...,r —1}.
This yields a surjective function g : {1,...,n+m} —{1,...,r} s.t. g(i) =J

iff @ = q;-

3. Thirdly, replace all the added terms in (f(q)),- .-, [(¢),+.,)) which are to the
same position by their composition. That is, let

=, (2.16)

be such that: 7, = f(q,)//---//f(a,) iff 97" () = {k1,... ka} and ky <
ky <...<kqgforallic{l,... r}.
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4. Finally, we let

FaeF@.q) < )
where 7" is defined in Eq. (2.16) and §" is defined in Eq. (2.15) above.

The following Proposition is not hard to prove.
Proposition 83 The operation & s associative.

However, the operation ® is not commutative in general, but it can be under
commutative under some assumptions, namely when each position of ¢ is distinct
than each position of II:

Proposition 84 Let 7 and 7' be a two tuples of n added terms. Let §= (q1, ..., q,)
and ¢ = (¢}, ...,q,) be two tuples of n positions with ¢ > g3 > ... > qn and
¢ > ¢ >...>dq,. Then,

ifVi=1,....n, ¢ #q. then (7,9 (7,7)=F,7)® (7
Now we are ready to define the combination of two outward growths.

Definition 85 (Combination of two outward growths) The combination of
two outward growths Gz g and Gz 5 is defined by

de . . )
Grg0Gr g ™ Gan g, where  (7,7") = (7,0 © (7, ).

Proposition 86 The operation { of combination of outward growths is associa-
tive.

Proof. The associativity of { follows from the associativity of the product
operation ®, see Proposition 83. H

The combination operation ¢ is not commutative in general since ® is not
commutative. However, we can generalize the Proposition 80 and claim that the
operation { can be commutative under some conditions:

Proposition 87 Let 7 and 7' be a two tuples of n added terms. Let §= (qi, ..., q,)
and ¢ = (¢}, ...,q,) be two tuples of n positions with ¢ > g > ... > qn and
q1 > q2 > ... > q,. Then,

ifVi=1,....n, ¢#q then GrpOGq = 9= 7090

Proof. The proof follows from Proposition 84. H
The following Proposition relates the outward growths to the unit outward
growths by means of the operation .
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Proposition 88 Let 7 = (71,...,7,) atuple of added terms and let ¢ = (q1, ..., qn)
be a tuple of positions where ¢ > ... > q,. Then,

G740 = Gr1.a Q- OGro 0

Proof. Immediate from the definition of ®, that is, (7, q) = (71, ¢1)®. . . (Tn, ¢n)-
|

Remark 89 Let 71,...,T, be an tuples of added terms, and qi, . .., G, be n tuples
of positions where |T;| = |Gi| for all i € {1,...,n}. From Proposition 86 on the
associativity of the operation O of the combination of outward growths, it follows
that there exist a tuple of added terms T and a tuple of positions ¢ such that

Grqa=Gm.00 - 00z, 4.

Example 90 (Combination of outward growths) Let t be the term

ti= / ad,u(zx) dx

depicted on the top left of Figure 2.11. Consider the following subterms of t with
their related positions:

Consider the added terms T1, T11, T122, Th, Thy and Toy:

T = Z(J—)v

)

T11 — T122 — Indexed(J_, ’l),

=2 (L), and
J
7-/11 — 7"121 = Indexed(l,j)'

Consider the outward growths Gz 5 and Gz 5:

g‘F,ﬁ = g7'122,122 <> g‘f‘u,n <> ng,l? and
gv‘—",ﬁ' = gT'121,121 O gT'll,n <> gﬂ"l,l'
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A straightforward application of Definition 85 gives

7'122,7'11771)7
122,11,1),

7_/121’ 7_/11’ 7_/1)7 and
121,11, 1).

(
(
(
(

SN TERSTRY

Now we shall compute the outward growth Gz 5 :
G = Gz 50 Gz

That is, we need to compute 7' and ' which, according to Definition 85, are

defined by

(7. 0") = (7.p) @ (7. 7).

Notice that 11 > 1 and both the positions 122 and 121 are incomparable with the
positions 11 and 1. Besides, the positions 122 and 121 are incomparable. On the
other hand, p and p' share the positions 11 and 1. Therefore, from Definition 82
it follows that

{ﬁ’ = (122,121,11,1), and

7= (7_1227 7—/12177_11//7_,1177_1//7_,1)

Notice that, from Proposition 88, it follows that the outward growth Gz 7 can
be written as a combination of unit outward growths as follows:

g?”,ﬁ'” - gT122,122 O gT/1217121 O g(Tn//T/H),u O g(‘rl//‘r'l),1 (2'17)

According to Definition 79, the combination of unit outward growths in Eq. (2.17)
can be written as a composition of unit outward growths as follows:

g?//ﬁ” = gT122,122 ; gT/1217121 ; g('ru//f’n),u ; g(-rl//-,-'l),1 (2.18)

Using the formulation of the outward growth Gz given in Eq. (2.18), the
application of Gz 7 to the term t is illustrated in Figure 2.11. It yields the term:

g;”,pw (t) = /ZZQQ&QQJ_’(E) dx.
[
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2.6 Outward growths as second-order rewriting rules

We follow the extension approach established in Section 2.5. In this section we
formulate the outward growths of the previous section as well as their combination
as SO-strategies. For readability, we call them second-order outward growths.

2.6.1 Second-order outward growth

A SO-unit outward growth is a SO-order rule [ = r where its right-hand side term
r is the result of the application of a FO-outward growth to [ at some position, see
Definition 91 bellow. We notice that we only deal with the SO-outward growths
applied to the root since it is enough to consider the application of a SO-outward
growth (i.e. a SO-rule) to a FO-rule to the root. In other words, the left-hand
term [ above is considered as a FO-rule (that possibly contains SO-variables) and
the SO-outward growth I =2 r will be applied to a FO-rule (to the root). The
formal definition of SO-unit outward growth to the root follows.

Definition 91 (Second-order unit outward growth to the root) LetT € T (F, X)
be an added term, p be a position, and | a SO-term. The SO-unit outward growth
to the root gi,p is the SO-rewrite rule:

g “i=g.,0

SO-outward growths to the root can be defined similarly to SO-unit outward
growths to the root.

Definition 92 (Second-order outward growth to the root) Let T be a tuple
of n added terms, p be a tuple of n positions in the decreasing order, and | a SO-
term. The SO-outward growth to the root g;ﬁ 18 the SO-rule:

de
Gy D 1= Gall)
The application of qu_’ﬁ to a SO-term is defined in the usual way.

We recall that the notion of the most general unifier of a unification problem
E, denoted by mgu(F), was given in Definition 52.

2.6.2 Combination of second-order outward growths

The notion of the combination of SO-outward growths to the root can be defined in
a natural way by means of the combination of their related (FO-)outward growths
as follows.
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Definition 93 (Combination of two SO-outward growths) Let G ; and ga, -

be two SO-outward growths where Var'(l) N Var'(l') = 0. Assume that the mgu
of the unification problem {l =1} with respect to the second-order variables is

decidable. The combination Q 4<>g 5 s defined by

g;“,pw = gﬁﬁo g;',p*r, and
I"=0(l) =0(l'), where o =mgu({l =1"}).

def

Qéﬁo Qil/, Qél/ 5 where {
Notice that if Var!(l) N Var!(l') # 0, then one can rename the SO-variables in

both [ and I’ so that Var'(l) N Var!'(I') = 0. Notice also that from Definition 93 it
follows that the combination of two SO-outward growth is a SO-outward growth.

Proposition 94 The combination operation  of SO-outward growths is associa-
tive.

Proof. The claim follows, on the one hand, from the associativity of the com-
position of outward growths, see Proposition 86, and on the other hand from
the fact that mgu({o,y =1"}) = mgu({l = oy »}), where o, = mgu({l =1'}) and
opyp =mgu({l'=10"}). &

Example 95 Let

b =Lu(z) = [v* dz, b =LAu(z) = [ d2,
71 = Indexed(l,i), and To =y (L,1),
p1 = Pos(v,ly), pa = Pos(v',ls),
where

Q = Reg(Q,d),

z = Var(z,Q),

i = Index(i,Set(I,{1,d})),

u(z) = Fun(u, [z], unknown),

and u,x,Q, d,v, z,u, v, ., d v, 2 are SO-variables in X' and i is a constant in

FU. Let Qill p and gl;; 2y be two SO-unit outward growths. A simple computation
yields:

Grip(h) = Li(u(z)) — [(v)* dz,

and

Grom(la) = L(W(2)) — fzijv’ dz.
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where

v; = Indexed(v,1).
Therefore we have:

gill,pl el L= gﬁ,m (ll)
= (Z) > [0 d2) = (Zae) > [erd), @)

and

def
g7l_22p2 = l2:§g7'2p2 12

—>/v dz') = (L (u —>/Zv dz') (2.20)

The tree structure of G& (1) and G2  (l3) is depicted in Figure 2.12 and

Figure 2.13, respectively.
Now we compute the combination QTl plOgg’m, which is defined (see Definition

93) by:

I I, def g 7=0n, 1,01 <>g7’2p27
gT1,p1 <>g7'2,p2 - g 7 where { ( )I ( )7 where o _mgu({ll - 12})

On the one hand, since py > ps, it follows from Definitions 85 and 82 that:

{

On the other hand, we need to compute the substitution o which is the mgu of the

= (p17p2)7 and

= (71,72)

NI

unification problem:

u =
r =ua
1)2 =y
z 2!
We get:
o={uru 2 — z,0 0% 2}
Finally,
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def

l l l
Grips QG = ng

- g (t1 72) P1,P2)
- U(ll) = g‘fl ,72),(P1,p2) (l1)>

D [ i) = (L) - [ >t

2.7 Extension of first-order terms by combining
outward growths and parametrizations

In order to construct richer extensions it is natural to combine the extension tools
that we have at our disposal so far. That is, the combination of outward growths
and parametrizations gives arise to richer mechanism called generalization.

2.7.1 A motivating example

Let €2 be a d dimensional domain, u a scalar function defined on €2, and u =
(uy, ..., u,) a vector function defined on Q. The L? norm of u and u are respectively
defined by:

1/2

lullzz) = (Jo lulP?) "™
N 1/2
il = (35 Jalul?)

Their formulation by means of rewriting rules is given by the FO-rewriting rules
s and §', respectively, as follows:

where

= Fun (u, ),
= Index (i,Set (I,{1,...,n})),

= R D
I
<
oY)
=
~—~
“H
©
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and Q,x,u,I,i are FO-variables in X and d,n are constants in F°. By applying
the notions and techniques developed in Section 2.3, we show next how to build
the FO-rules s and s’ by means of SO-rules. For this purpose, we need the SO-rule
s" and s' defined as follows:

) 1/2
; Jo lu; (z) |2d£> :

1/2
st =L (uy (2) — (Zf |uy (£)|2d£> :

where

i = Index (i,Set (I,{1,...,1})),
¢ = Index (i,Set (I, {1,....,7})),

and 7 is a FO-variable in X°.
We define the SO-rules S° and S! as follows:

SO i=s5=2 50,
St =5 = sk

The following claims are not hard to prove:

Fact 96 The following hold:

1. The SO-rule S° is a semantic conservation SO-rule w.r.t the rewriting system
R defined in Eq (2.14) of Section 2.3.

2. SYis a parametrized SO-rule in the sense of Definition 56 of Section 2.3.
3. The SO-rule S is admissible with respect to S°.

4. The FO-rule s' is a generalization of the FO-rule s in the sense of Definition
61 of Section 2.3.

Item 2 follows from the fact that
VarO(Sl) = Varo(sl) - Varo(s) ={r} #0.
Item 3 follows from the fact that

o (5") =5%  where o = {r—1}.

82



2.7. FExtension of first-order terms by combining outward growths and parametrizations

Item 4 follows from the fact that S! is an admissible SO-rule and that
S'(s) = (modulo a-conversion)

We give next an equivalent formulation of S° and S* in terms of a combina-
tion of outward growths and parametrization, where parametrization means the
replacement of a FO-term by a FO-variable. For this purpose we introduce two
unit outward growths. Let 7; and 79 be the added terms:

71 = Indexed (L, Index (i,Set (I, {1,...,1}))),
7o = Oper (Sum, |, Index (i,Set (I,{1,...,1})),0).

They are depicted in Figure 2.14.
Let py, p2 and p3 be the positions of s defined by:

P = 227
P2 = 327
ps = 32222,

Notice that p; || p2 and p; || ps and ps < p3. The tree structure of s and the related
positions are depicted in Figure 2.15.
We define Gz 5 as follows:

def

gﬁﬁ = g"'l:pl O gfl,ps O gTQJDz
- ngvpl; gﬁ,pa; gT2,P2

= g(T1,T1,T3)7(p17p3,p2)

We have that
g—?—,ﬁ<5) = So-
Let q1, 2 and g3 be the positions in Pos (s°) defined by:

@ = 22222,
G = 322222222,
¢ = 32322.

Notice that ¢; || ¢2 and ¢ || g3 and q; || g3. Let r be a FO-variable in X°. We
define the parametrization P g as follows

def
Pira) = Pl anae.0)

def
- P"’J]l ; 7)7”#12; 7)7"#]3
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where P, ,(t) stands for the replacement of the subterm of ¢ at the position ¢ (i.e.
t|q) by r. Finally we have that

The tree structure of the rules sy and s; are depicted in Figure 2.17 and 2.18.

Discussion. The example 2.7.1 above shows the constant symbols 1 in unit
outward growths upon the added terms 7; and 79, must be repalced by a FO-
variable. Therefore, while combining outward growths and parametrizations, one
has to apply the outward growths first then the parametrizations. In what follows
we shall define the combination of two parametrizations

le#h O Pﬂ?z#h

as well as the composition of outward growth with parametrization

gT,p <> ,P"L',q

2.7.2 Unit parametrizations, parametrizations and their com-
bination

The parametrization consists in replacing a term by a FO-variable at a given
position.

Definition 97 (Unit parametrization) Lett be a term, q a position of t and x
a FO-variable in X°. A unit parametrization Py, : X° — T(F°, X°) is a mapping:

szq:t»—>t[x]q.

A composition of unit parametrizations applied to incomparable positions yields

the notion of parametrization:

Definition 98 (Parametrization) Let ¢ = (q1, - ,qn) be a tuple of n > 1 po-
sitions such that q; || q; for alli,j € {1,...,n} and i # j. Let T = (z1, -+ , ;) be
a tuple of FO-variables in X°. A parametrization Pz is defined by
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Definition 99 (The combination of two parametrizations) Let Pz; and Py g
be two parametrizations, where p'= (p1, -+ ,qn) and ¢ = (q1,* "+ ,qm) are two tu-
ples of positions, and ¥ = (x1,...,2,) and § = (y1,...,Ym) are two tuples of
FO-variables in X°. The combination of Pz and Pygq is defined if and only when

pi |l gj forallie{1,....n} and j € {1,...,m},

as the parametrization Pz :

Pi50 Pgq = Pz

)

<y

2 = (T, Ty Y1y T), and
where < _
T

= (p17"'7pn7q17""qn’L)

2.7.3 Unit generalizations, generalizations and their combi-
nation

The definition of unit generalization follows.

Definition 100 (Unit generalization) Let g and p be two positions. Let T be
an added term and x be a FO-variable in X°. A unit generalization Gh is defined

by

xw_{%me ifpCq

T undefined,  otherwise

where G, , is a unit outward growth (see definition 73) and Py, is a unit parametriza-
tion (see definition 97).

We notice that while composing an outward growth G, , and a parametrization
Prp to build a generalization GTf = G, ; Py, it is, on the one hand more flexible
to start with the application of the outward growth first since this allows, among
other things, to apply the parametrization to the added term. On the hand, the
condition p C ¢ in Definition 100 on the positions ¢ and p (in which the outward
growth and the parametrization are applied respectively) is natural and ensures
that a parametrization can either

i) operate on a proper subterm of t|,, i.e. in this case we have p < ¢, or

ii) operate on a subterm of ¢ that does not overlap with ¢4, i.e. in this case we
have p || q.

Definition 101 (Generalization) Let q = (¢1,--,qn) and 7 = (P1y s D) De
two tuples of positions such that ¢; || ¢; for all i,j € {1,...,n} and i # j, and
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pi || pj foralli,j € {1,...,m} and i # j. Let T = (T1, ..., Tn) be a tuple of added
terms and ¥ = (2, L:E;m) be a tuple of FO-variables in X°.
A generalization GZ7 is defined by

undefined, otherwise

i {g;,(;; Pz ifpi Cq;,Vie{l,...,n} and Vj € {1,...,m}

where Gz g is an outward growth (see Definition 81) and Pz is a parametrization
(see Definition 98).

We generalize the relation T between positions (Item (2) of Definition 45) to
pairs of positions.

Definition 102 Let q1,q2,p1 and ps be positions. Define the binary relation T
between pairs of positions as follows:

(q1,71) T (g2,p2)  iff @1 E g2 and p1 C g2 and p1 T po

Definition 103 (Composition of two unit generalizations) Let G0 and G721

be two unit generalizations. Their composition, denoted by GI1P; GT2P2 is de-
fined as follows:

(le P1 . (3F2:P2

71,91 7 72,492

)(t) = {Gig;g;(@i;;g; ©)  if (q,p1) C (@2,p2)

undefined, otherwise.

We notice that the condition (q1,p1) C (g2, p2) on the positions in Definition 103
are natural since:

i) ¢1 C ¢ ensures that the composition of the outward growths G, , G, 4 can
be done correctly, see Definition 77.

ii) p1 C g2 ensures that the outward growth G,, ,, can not be applied at a position
bellow p; since the subterm at p; has been replaced by a variable by means
of the parametrization Py, ,,.

iii) similarly, p; T po ensures that the parametrization P,, ,, can not be applied
at a position bellow p; since the subterm at p; has been replaced by a variable
by means of the parametrization Py, p, .

Lemma 104 The composition of two unit generalizations is a generalization.
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Proof. Let G™?* and G*2?2 be two unit generalizations with (g1,p1) T (g2, p2)-

71,91 72,92
To prove the Lemma it is enough to compute 7, ¢, &, p' such that

GEP — @rup1 . GF2:P2
7q

T1,q1 7 T T2,G2
This can be achieved by considering many cases depending on the relative position
of p1,p2,q1 and ¢go. W

Definition 105 (Combination of two unit generalizations) Let GI!'t! and

G2 be two unit generalizations. Their combination, denoted by GI1P & G722,

18 defined as follows:

Gaps G2 if (qu,p1) T (qa, p2)
GrrPr () G¥2P2 = { Gr2P2 . (GE1P1 Zf (CIQ,pQ) C (prl)

71,91 72,92 72,92 7 71,41

undefined, otherwise.
Lemma 106 The combination of two unit generalizations is a generalization.

Proof. Follows from Lemma 106 on the composition of two unit generalizations.
|

In order to inductively define the composition of two generalizations, we need
first to consider the composition of a generalization and a unit generalization. Be-
fore that we need to generalize the relation T between pairs of positions (Definition
102).

Definition 107 Let ¢ = (q1,...,q,) and p = (p1,...,pn) be two tuples of posi-
tions. Let q and p be two positions. Define the binary relation T as follows:

(@) C(¢.p) if @wCqandp,Cqandp; Cp, foralli=1,....n

Definition 108 (Composition of a generalization and a unit generalization)
Let Gi’g be a generalization and G7F be a unit generalizations, where

7_'): (Tl,...,Tn)
(7: (q17' .. 7qn)
T=(x1,...,2m)
= (p1,---Pn)
The composition of Gi:g and G7¥, denoted by ngg; Gh, is defined as follows:
. GEP(GLE(t)  if (§,P) E (g,
(Gjﬁ”i ; Gf’é”) () = h(Ge) i (g @. C (¢,p)
4 ’ undefined, otherwise.

Similarly, once can show that the composition of a generalization and a unit
generalization is actually a generalization. Therefore, one can inductively define
the composition /combination of two generalizations as well.
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2.8 Application to the extension of the derivation
of the linear operator associated to the micro-
scopic problem to the multi-dimensional and
the vector-valued setting.

In this section we apply the technique of outward growth and their combination to
extend one step of the two-scale model derivation of the stationary heat equation.
More precisely, we show how to extend the rewriting rule that corresponds to
the derivation of the linear operator associated to the microscopic problem in the
reference proof to the multi-dimensional and the vector-valued settings as well as
their combination. It turns out that such combination is nothing but the derivation
of the linear operator associated to the microscopic problem of elasticity.

The derivation of the linear operator associated to the mi-
croscopic problem in the reference proof as a FO-rewriting
rule.

Let s/ be the FO-rewrite rule used in the reference proof that corresponds to

the derivation of the linear operator associated to the microscopic problem. It is
defined as follows:

el (/Q(?Varphz ow et = 8w df) . (8Varphi _ 6Q>

ozl Ox! 81:1 ox! B M@gl
(2.21)
where
(a = Fun(a, x, known),
Varphi = Fun(Varphi, x, unknown),
w = Fun(w, x, test),
! = Var(z',Q),
Q = Reg(€2,d),
L0 = Fun(0, 2", known),
and

7

{a, x, Varphi,w,xz",Q, d, ;i are FO-variables in X°, and

=70, test , known ,unknown are function symbols in F°.
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Notice that the equality symbol "="in s/ is considered as a function symbol in
FO of arity two. However, we write "t; = t," instead of "= (¢;,t5)", where ¢; and
ty are two terms. The tree structure of the rule s/ is depicted in Figure 2.19,

together with the positions py, ..., p17. These positions will be used next to define
outward growths.

The derivation of the linear operator associated to the mi-
croscopic problem in the multi-dimensional setting as a FO-
rewriting.

Let 5" be the FO-rewriting rule that represents the derivation of the linear op-
erator associated to the microscopic problem in the multi-dimensional setting. It
is the counterpart of the FO-rewriting rule s/ (defined in Eq. (2.21)) in the
multi-dimensional setting. It is defined as follows:

8Varphz 0w

OVarphi
s = Z/@a O} z' = ZMJ/—@J@_‘Z”@ -~ m”_z pal

(2.22)

where

Jes.

= Index (i,Set (I,{1,...,d})),
= Index (j,Set (J,{1,...,d})),
= Index (p,Set (P, {1,...,d})).

S I~.

The derivation of the linear operator associated to the mi-
croscopic problem in the vector-valued setting as a FO-rule.

Let s” be the FO-rewriting rule that represents the the derivation of the linear
operator associated to the microscopic problem in the vector-valued setting. It
is the counterpart of the FO-rewriting rule s/ of Eq. (2.21) in the multi-valued
setting. It is defined as follows:

8Varphz Ow,, 8Varph2

Z/akl axl &L'l _1 Zul/akla 1 d& - 8:1:1 ZU!} axl

(2.23)
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Extension of the FO-rule (i.e. the derivation of the linear op-
erator) of the reference proof to the multi-dimensional setting
by an admissible SO-rule.

We show how to construct the FO-rule " needed in the multi-dimensional setting
(given in Eq. (2.22)) out of the FO-rule s/ used in the reference proof (given
in Eq. (2.21)) by means of an admissible SO-rule. That is, we need to find an
admissible SO-rule 8™ such that

S”d(sref) = 5" (2.24)
Let S™ be the SO-rule:
S = = pnd (2.25)
where
n OVarphi gw w OVarphi
¢l :(faang—;dx:—,ufag—;dx)—)<an:,ua_@,
and
n, - IVarphi gw _ ow OVarphi a6
and
1 = Var(s, [
Varphi = Fun(Varphi,y), o v rg ’ }))’
w = Fun(w, y), and 1= e,
0 = Fun(6, z) p =Var(pD),
B o I =Reg(l,d),
and

a, Varphi,y,w, 1,0 are SO-variables in X!, and
i,7,d are FO-variables in X°, and

p, I are constant symbols in F°.

The following claims can be easily checked:
i.) The SO-rule 8" (defined in Eq. (2.25)) is parametrized in the sense of
Definition 56 since

def

Var®(S™) = Var® (r™) \ Var® (")
= {i,j,d} # 0.
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2.8. Application to the extension of the derivation of the linear operator

ii.) The SO-rule 8§ defined by
St = op?(S™),  where 0% ={d — 1}
1S a semantic conservation.

iii.) Therefore, "¢ is admissible w.r.t Sp?.

iv.) The FO-rule s" is a generalization of the FO-rule s™/ (in the sense of Defi-
nition 64) since S" is admissible and S™¢(s™f) = s,

Extension of the FO-rule (i.e. the derivation of the linear op-
erator) of the reference proof to the multi-dimensional setting
by outward growths.

Now we construct an outward growth G" which have the same effect of the SO-
rule S" (given in E.q (2.25)). In other words, we show how to construct the rule
5" of the multi-dimensional setting (given in Eq. (2.22)) out of the rule s"/ of
the reference model (given in Eq. (2.21)) by means of an outward growth. That
is, we need to construct an outward growth G™ such that

Gri(smel) = s (2.26)

The outward growth G can be constructed as a combination of unit outward
growth by comparing the FO-rules s/ and s"?. That is, this comparison allows
one to enumerate the set of added terms needed in the construction of the unit
outward growths. Let 7%, 7%, 7P, 7%, 77 and 7 be the added terms defined as follows:

(7" = Indexed(L,1)
7/ = Indexed(L, )
P — Indexed(J—vZ_’)

T, =>(L1)
Tg - Z(J—vl)
(70 =>_(L.p)
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Let G, G7,GP and G® be the outward growths defined as follows:

gz < 7,6 O gTi,pn
= Grr).(po.on1) (Definition 85)
and
def

g = 79 ,pa 0 Gri P8 0 Gri P13 0 G P17
= G(r3,79,79,79),(paps:prs.p17) (Definition 85)

and

def
gp g‘l'p D15 <> gTP P17
= G(rv ), (ps.p11) (Definition 85)

and

gs def
— I78,p14

Finally we are ready to define the outward growth G"¢:

G Giogiogroge. (2.27)

Extension of the FO-rule (i.e. the derivation of the linear
operator) of the reference model to the vector-valued setting
by an admissible rule.

We show how to construct the FO-rule ¥ (given in Eq. (2.23)) needed in the
vector-valued setting out of the FO-rule s/ (given in Eq. (2.21)) used in the

reference proof by means of an admissible SO-rule. That is, we need to find an
admissible SO-rule &Y such that

SY(s) = 5" (2.28)
Let 8Y be the SO-rewrite rule:
S'i= "= (2.29)
where
o GVarphz ow Dy — ow i OVarphi 00
.—/a or or T —,u/a% YT o Mo
and

OVarphi, dw w, (9Varphz

r? ::Z/“’“a—x Z,ul/akl Zﬂq 8

kil
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where

|7
H

Var(k, ),
I

1),
d,

~—

= Var

bl

= Var(qg,

(k
(I
(
= Reg(I, d,),
(
(
(0,

I~ I~

<
S
i~
S

= Fun(Varphi, y, unknown),

= Fun(w, y, test),

< |8

= Fun(0, =, known),

,
I

and

a,Varphi,y, v, w, pn € X!,
k. l,d, € X° and
I,qe F°

By substitution o = {d, — 1}, we get S§ = 0(S") which a semantic conservation
SO-tule for s"/ and SV is admissible for Sg.
The following claims can be easily checked:

i.) The SO-rule &Y (defined in Eq. (2.29)) is parametrized in the sense of Defi-
nition 56 since

Var® (8”) “I Var® (r) \ Var®(¢*)
= {k,l,d,} # 0.
ii.) The SO-rule S§ defined by
Sy =03(S8%),  where op={d, — 1}
is a semantic conservation.
iii.) Therefore, S” is admissible w.r.t Sg.
iv.) The FO-rule s is a generalization of the FO-rule s/ (in the sense of Defini-

tion 64) since S? is admissible and S¥(s"/) = s

Extension of the FO-rule (i.e. the derivation of the linear
operator) of the reference proof to the vector-valued setting
by SO-outward growths.

Now we construct an outward growth G* which have the same effect of the SO-rule
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S? (given in E.q (2.29)). In other words, we show how to construct the rule s™ of
multi-dimensional setting (given in Eq. (2.22)) out of the rule s"/ of the reference
model (given in Eq. (2.21)) by means of an outward growth. That is, we need to
construct an outward growth G” such that

GU(s") = s (2.30)

Again, the outward growth G¥ can be constructed as a combination of unit outward
growths. We need to enumerate the set of added terms needed in the construction
of these unit outward growths. Let 7% 7!, 79 7% 7L and 7¢ be the added terms
defined as follows:

(7F = Indexed(L,k)

7! = Indexed(L,I)

79 = Indexed(Ll,q)

. =2(Lk)

. =L

(71 =2(L,9)

Let G*, G', G7 and G* be the outward growths defined as follows:
de
G5 Gty 0 Grt g 0 Gt O Gt g

= g(T’“77’“7Tk77’“)7(p2,p9,p57p1o)

R

(Definition 85)
and

| def
g = p2 Y gr’,pg O Gn 3 O G P8 O ng,pm O G P16

= g(Tl771leleyTl7Tl)7(p2,p97p37p87p127p16)
and

(Definition 85)

def
gq = Y71,p1s <> gquDls
- g(Tquq)v<p157p16)
and

s def
G° = (m5,78),(p1,p7) O g(Té=Té)7(p17p7) O g7(517p14

(Definition 85)

Finally we are ready to define the outward growth G":
def

G''=6"06'0g"0¢". (2.31)

Extension of the FO-rule (i.e. the derivation of the linear
operator) of the reference proof to the elasticity setting.

Thanks to the two outward growths G"? and GV, defined respectively in Eq. (2.27)
and Eq. (2.31), we are able to construct the FO-rewriting rule that corresponds
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2.8. Application to the extension of the derivation of the linear operator

to the derivation of the linear operator associated to the microscopic problem of
elasticity. That is, we able to construct the counterpart of the FO-rule s/, defined
in Eq. (2.21), for the elasticity setting. Consider the outward growth G¢:

g grig g (2.32)
The application of G¢ to s™/ yields the FO-rule:

8Varphz Ow k

e re ka
gl f Z /-z]kl ax 1 a1 1 Z ’uﬂ/—wkla 1

k,l,’L,‘] k7l’7’7]

8Varphz 00 lqp

- Z qu

Example 109 Let s,s',s” and s be the FO-strategies:

du
Si=u— —
CO
/ dgl
si=u, — —
ou’
Ti=ul o
dz;
d
mo.__ .d au—z
"=l o
v Oz

where the underlined shortcut terms have been introduced in (2.12), we repre-
oduce them next:

Index (i,Set (I,{1,...,d;}))

Jj = Index(j,Set(J,{1,...,d;}))
z = Var (z,Reg(f2,1))

u = Fun(u,z)
2’ = Var (2%, Reg(Q,d;))
gd = Fun (u,gd) .

"

Therefore the strateqy s,s’,s” and s can be explicitly rewritten as follows:

s := u — Oper (Deriv, u,z, )
s’ := Indexed (u,i) — Oper (Deriv, Indexed (u,i),z, ()

d)), 1) ,0)

"

s" .= u? — Oper (Derlv,g , Indexed (Var (x,Reg (
s" := Indexed (gd,g) — Oper (Deriv, Indexed (u g
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"

where k,d € X°. The tree structure of the strategies s, s',s" and s" is depicted
in Figures 2.20, 2.21, 2.22 and 2.23.

In fact, the strateqy s corresponds to the derivative of a scalar function defined
on one dimensional domain §2, the application of s yields a scalar. The strategy
s' corresponds to the derivative of a vector function defined on one dimensional
domain S, the result of the applicatuib of s is a vector. The strateqy s” corresponds
to the derivative of a scalar function defined on muti-dimensional domain €2, the
result is a vector. Finally, the strateqy s corresponds to the derivative of a vector
function defined on muti-dimensional domain 2, the result of the application of s”
1S @ matrix.

Give the -strategies S,S',S" such that S (s) = ', S'(s) = s" and S" (s) = s,
in grammar form

S :u — Oper (Deriv,u,x,()) = Indexed (u,i) — Oper (Deriv, Indexed (u,i),x, ()

in which y,v € X, the needed unit outward growth T = Indexed (L, k) which will
apply to position pi1o on the left hand-side and position pi33 on the right hand-side
of strategy s.

S(s) = s |rlshuly] =5 |7 sl

= gT,(p127p132) (8)

P132

S": Fun (u, Var (z,Reg (2, 1)))

— Oper (Deriv, Fun (u, Var (z,Reg (2, 1))), Var (z,Reg (2,1)),0)
=

u’ — Oper (Deriv,u’, Indexed (Var (z,Reg (Q,d)), j) ,0)

a subsitution o’ that can change 1 into d at positions piages on the left hand-side
and p13e22, D13322 on the right hand-side of strategy s (need a grammar for it 77%),
a unit outward growth 7, = Indexed (J_,l') applies to postions pi33 on the right
hand-side of strategy s.

/ .
S (3) = g0'7(1712222,P132227P13322)7 gT’l,p133 (3)

S" can be written as a combination of S and S’

" . .
S (5) - ga’,(p12222,P13222,’p13322)7gT'17p1337gT7(p12,p132) (5)

= 5:5(s)
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2.9 Perspectives

We end up this Chapter with some perspectives and concluding remarks.

2.9.1 Extention mechanisms as strategies: outerward growth,
parametrization and generalization as strategies

In section 2.5 (resp. section 2.7), the outward growths (resp. parameterizations
and generalization) by means of static positions. That is, one needs to specify
the exact positions on which the outward growths and the parameterizations are
applied. Despite the fact that this formulation in terms of positions is useful to
understand many issues related to the composition and the combination of the
outward growths and parameterizations, it has clear drawbacks. Basically, it is
not practical since one has to enumerate the set of all positions on which he would
like to apply the extension. We illustrate another approach that consists in the
formulation of the outward growths and parametrizations in terms of strategies.

More precisely, instead of providing the set of positions on with the outward
growth has to be applied, we provide a pattern on which the outward growth
has to be applied. Then, an adequate traversal strategies, namely the InnerMost
strategy, is used to explore the term and search for the pattern. However, the
formulation of the combination of outward growths and parameterizations in terms
of strategies remains an open problem. It turns out that these two formulations
are not equivalent in general, but it is possible to establish some conditions under
which the two formulations are equivalent. In what follows, u and 7 are FO-terms,
and z is a FO-variable. The outward growth (resp. parametrization) formulated in
terms of a strategy will be denoted by G, ,, (resp. P, ) in order to distinguish them
from the usual outward growth G, , (resp. parametrization P, ,). We shall call
them pattern outward growth and pattern parametrization, or P-outward growth
and P-parametrization for short.

§T,u ©u— (let(L:=w) in 1) (P-Outward Growth at the root

d = ) .
Gru e InnerMost(G,. ) (P-Outward Growth at the inner most positions

—~ d . .
P = (Parametrization at the root

~

)
)
S = BottomUp(gT,u) ("Vectorial" P-Outward Growth from the bottom)
)
)

d ..
P kef InnerMost(P, ) (P-Parametrization
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2.9.2 Second-order pattern matching modulo alpha-conversion
and second-order unification

In Definition 54, Section 2.3, our SO-pattern matching is not done modulo a-
conversion of the FO-order variables. That is, the SO-pattern matching algorithm
considers the FO-variables as constants, while it would be convenient to rename
them. Let us illustrate this idea through an example. Let S be the SO-rule:

Si=(f(z) = flz)) = (f(z) = f(z)),
where x is a FO-variable. Let s be the FO-rule:

s:= f(y) = f(y),

where y is a FO-variable. According to our definition 54, the application S(s) fails
because f(y) — f(y) does not match f(z) — f(z) since x and y are considered
as constants. However, this is a severe limitation since, morally, the SO-rule S
tends to transform a FO-rule f(z) — f(x) to g(z) — g(x) for any FO-variable x.
Therefore, the SO-pattern matching algorithm has to a-convert the FO-variables
if necessary, e.g. by renaming y by x in s. Another problem is that we need
to give syntactic conditions so that the SO-unification modulo a-conversion is
decidable, see e.g. [19]. This is necessary for the computability of the operation
of combination of SO-outward growths given in Definition 93.

2.10 Appendix

2.10.1 Proofs of Section 2.2

Proposition 110 Let s,t,r be terms and p,q be strings. The following hold.
1. If pg € Pos (s), then s|p; = (s],) |q-

2. If p € Pos(s) and q € Pos (t), then

(51,) loa = tha
(s0t1,) 01, = s [t0r1,]

3. If pq € Pos (s), then
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4. If p and q are parallel positions in s (i.e. p || q), then

(s0,) 1o = slo

(st1,) 01, = (s07,) 10,

Proof. A detailed proof can be found in [4], page 37 and 38. We reproduce
here the main arguments. In order to prove (1), we assume that p = 4;...i,,,then

Slpg = Sliring = J (8153 5n1) lireciing = Siligeing = J (Sis15 s Sivny) ligeiing = - =

Sivoinlg = Splg = (8]p) |4 In order to prove (2a),we know that pg € Pos (s tl,)

apply (1), we have <s [t]p> lpg = ((s [t]p> |p> | = t|4- In order to prove (2b), we
denote s' = (s [t]p) r],, and s" = s [t [r]q} . From (1) (2a), §'|,y = $"|py = 7
P

Therefore, we need to compare the structures of s” and s' except positon pg,
the position of 7. Since the remain structures of both s",s' are built from s
and ¢ by changing s|, by ¢, we have s' = s". In order to prove (3a), we de-

! 0)

note s = (5 [t]pq) 8" = (slp) [t], " = s[t],,, we have s = s°|, = s). Since

?1 = 30’i1 = Si [t]p/q' Since Siy [ﬂ g —

0 _
sV =f (51, ey Siy [t]p/q,...,sm> , we have s v

f (sill,...,siliQ [t]p//q,---,3i1n> , we have s, = s¥ |, = si, [t],,,- Continue the
same step, we have s) = s, [t], = (slp), = s". This result leads to if we change
the subterm s°|, actually we will chang the term (s,) [t], which includes ¢, so that
the remain structure of s” keeps the same structure of s except position p. Now

we will prove (4a), since p and ¢ are parallel positions in term s, i.e. p || g or
there is no k such that pk = ¢ or ¢k = p, we denote s' = S[t]p g 8" = $lq
and s° = s [t],. We have Yoo € Pos (s) \ {pj | j € Pos (s]p)} : s°|a = s|o and from
assumption g ¢ {pj | j € Pos (s|,)}, so that so|, = s|, or s; = s,.. This result leads
to the fact that p and ¢ are not in the same branch, so that we can replace s|, or

s|, first without changing the another position, which leads to the property (4b).
|
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Chapter 3

A two-scale model derivation for a
SThM probe

Abstract. In this chapter we state the two-scale model derivation for an SThM
probe developed in the NANOHEAT project. In the derivation, the mathematic
approach proposed in 1 is followed. In the new proof, the features (i) the multi-
dimensional domain, (ii) thin domain, (iii) sub-domains with different physics, (iv)
vector solution and (v) multi-physics are taken into account. By taking into account
these new features, mathematical rules used in the reference proof in 1 are extended
and new steps are added. Then follow the same framework, the homogenized model
for the Joule-heating thermoelasticity is derived.

3.1 Introduction

This chapter is devoted to derive a two-scale model for an SThM probe developed
in the NANOHEAT project. The derivation is presented in the perspective of
its use to enrich extensions of the reference proof introduced in Chapter 1. The
features to be taken into account are: (i) the multi-dimensional domain of R?,
(i) thin domain, (iii) sub-domains with different physics, (iv) vector solution,
(v) multi-physics ie the coupling between thermal effects, elasticity deformations
and the electric current flowing in the conductive parts. Other features are also
taken into account but they are due to technical reason and will appear later. To
put this model in our framework, we consider, in addition to the thinness of the
domain, that the coefficients are periodic and get an homogenized model in a thin
structure as in [18] [21] and [22]. We notice that one of the differences with the
latter references is that the asymptotic behavior regarding the periodicity and the
thinness are taken into account through a single technique, that is the technique
used in the reference proof. Moreover, we bring a simplification of the proofs
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by replacing in some places the two-scale convergence, based on the two-scale
transform (ie this used in the unfolding method) by the two-scale convergence of
G. Nguetseng and G. Allaire.

3.1.1 Organization of the Chapter

The chapter is organized as follows: in Section 3.2, the physical problem is stated.
The rest of the chapter has the structure of the reference proof. In the first part
of Section 3.3, the definitions and properties of two-scale transform operators are
discussed. In the second part, the weak limits of two-scale transform of first order
derivatives of solutions are derived. The last section is focused on the derivation
of the two-scale model and then of the homogenized model.

3.2 Physical model description

The probe is designed as a thin three-layered structure and is located in a domain
denoted by Q. See Figure 4(a) and Figure 4(b). For illustration, we notice that
in the last fabrication Qg; the silicon (Si) supporting layer is 5 pm thin and it is
covered by a 50 nm silicon dioxide (SiO2) insulator layer Qg02. Finally, a 100
nm thick platinum (Pt) track Qp; used for both a heating circuit and a sensing
circuit is deposited. A current source is applied to one end I'j; of the platinum
track, and the other end I'G, is electrically grounded. The conductive tip is heated
through the Joule heating effect and the heat flux through the tip-sample interface
is measured by the sensing circuit through the variation of the tip voltage.

The behavior of the SThM probe is governed by the thermoelasticity equation
with Joule heating. The electric resistivity of the platinum layer affects the Joule
heating effect in the probe. It varies with the temperature. We use C*¢, M®, k*
and a® to denote the elasticity coefficient tensor, the matrix of thermal expansion
coefficients, the matrix of thermal conductivity and the matrix of electric conduc-
tivity. Obviously, C°, M? and k® are piecewise constant functions and we assume
that C¢, k® and a® satisfy the usual ellipticity conditions. We use u® = (u, ug, u3),
0° and ¢° to denote the mechanical displacement vector, the difference of the tem-
perature to the ambient temperature and the electric potential respectively. Since
the SiO2 layer is a good insulator, the electric potential ¢° is only defined in Qpy.
The Joule heating is the only heat source of the probe.
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The thermoelasticity equations with Joule heating are:

—div(o®) = < in Q

—divg® = (V) Ta*Ve© in Qp,
—div qE =0 in QSi U QSiO2
—div (a®*Ve©) = 0 in Qpy,

(3.1)

where o¢ = C®s(u®)+MPF¢° is the tensor of stresses, s(u®) = $(Vu®+(Vu©)T) is
the tensor of strains, £ is the body force load, f = k*V#° is the heat flux, a® =
(1 + M\0°)~tare/< is the electric conductivity, A is the temperature coefficient and
a’/ is the tensor of electric conductivity at ambient temperature. Regarding the
boundary conditions, the cantilever is clamped and with an imposed temperature
on a part I'§ of the boundary, i.e. u® = 0 and 6° = 6y, and is mechanically free
loaded and thermally insulated on the other part I'j, i.e. o°n = g and q°n = 0
where n denotes the outward normal vector to the boundary. Finally, a current
source j° is applied to ['g; ie fFﬁl a*Ven dz® = j°, ['p2 is grounded ie ¢° = 0 and
the other boundaries are electrically insulated ie a*Vp®n = 0 on 02/(Iy U Lpg).

M,e He
9 Y

The weak formulation is obtained by choosing test functions v v and
vP¢ satisfying the boundary conditions v¢ = 0, v7¢ = 0 on 'y and v¥¢ = 0 on
[oe. After some usual calculation, we get the weak form of Equation (3.1) with a
scaling k° = 1/|Q)|,

K0 / (Cs(u®) + M9°)s(vMe) do + K° / k°Vo* Vo' do + " / a“Vy© Vo™ d
Q Q Q

Pt
= KO/ ey Me dy 4 KO/ a*V© Vo© v dr + Hojg/
Q Qpy

,UE,E dl’s—i-/io/ gM,EVM,s dx
Co1 '

with the Dirichlet-like conditions u® = v™¢ = 0 and 6° = v = 0 on T,
©° = v = 0 on I'py. We notice that the boundary condition 6, has been taken
equal to zero for simplicity, and this is also sufficient for the current application.

In the following asymptotic analysis, the whole probe is assumed to be thin, ie
its thickness (which is in the range of a small parameter ¢) is small compared to its
lengths in the two other directions and the coefficients are assumed to be periodic
with period e, which includes the case with constant coefficients. Moreover, the
thermal conductivity in the insulating layer made of silicon dioxide is assumed to
be in the range of €2 when it is the range of 1 in the other components. From the
mathematical point of view, we say that this coefficient is strongly heterogeneous.

For the asymptotic model derivation with respect to the small parameter ¢, we
will assume (without proof) some usual uniform estimates of the data and of the
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solution. To simplify, we introduce the scaled L?-norm for functions defined over

a domain A .
loll? ——/vﬂ dr.
A=A,

We assume that the data are uniformly bounded,
—1 M,
112511 and [[le™" £33
1771
and that the solution u®, #° and ¢° satisfy the a priori estimates, inspired from
[26], |15] and [22],

C (3.2)

<
< C (3.3)

1(W)icaallla < C, [lleuslll < €, sl < € (34)
16111, NIV, < O, [IIVE[llG, < C and [[[eVE[[,,, < C (3.5)
e e, NVEE[llGn, < €. (3.6)

C denoting various constants independent of €. These assumptions take the place
of assumption f € L?*() and assumption (1.15) for unknowns in the reference
proof.

To conclude this section, we list the additional features taken into account in
comparison with those already present in the reference proof:

e it is posed in a multi-dimensional (three-dimensional) domain;
e the domain is thin;

e several subdomains (the three layers where the coefficients are constant) are
distinguished;

e the solution is comprised with several fields u® = (uj, u§, u5), 0° and ¢=;

e the matrix k® has strongly heterogeneous coefficients ie k® ~ &2 in Qgioz
which implies the uniform estimate of ||| V6|3 .

e the scaled field cuj satisfies a uniform L?-estimate.

3.3 The SThM Probe model derivation

3.3.1 Notations, Definitions and Propositions

Notations, definitions and proposition of the reference proof are extended to cover
the present case and new ones are added. All domains and variables are multi-
dimensional without to be explicitely said in each case. Notice that, in the current
status, the propositions are not defined in an optimized manner for further exten-
sions. They are chosen to work for the current application.
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Convention 111 (i) Latin indices and exponents: i,j,h,k, ..., take their values
in the set {1,2,3}, unless otherwise indicated.

(11) Greek indices and exponents: «, (3,0, ..., take their values in the set {1,2},
unless otherwise indicated.

(111) The repeated index summation conventions is systematically used in con-
Junction with rules (i) and (ii).

Notation 112 /Kronecker delta function/
S — Lifi=7,
BT 0ifi A
Notation 113 [Characteristic function]| The characteristic function is denoted

by
X(:B) _ 1ifxeA,
(4) 0 otherwise

where x 1s variable and A is a set or a domain.

Notation 114 [Mean value of integral] §, dz = Iﬁll o dz.

Notation 115 [Strain operator| u is a vector valued function defined in a do-
main A, x is the coordinate variable, then the strain operator with respect to x

s
1
sfj(u) =5 (@ciuj + 8xju,~) )

Property 116 [Integral rule for subdomain/Suppose A = Ay U Ay and Ay N

Ay = @, then
/dz:/ dz+/ dz.
A Al A2

Property 117 [Integral rule for subdomain| Suppose Ay C A and a(z) is a
function defined in Ay, then the integral of a(x) is extended to A by

/a dz:/ ng)l)a(:v) dz.
A A

Property 118 [Interpretation of a weak equality] For v € L*(A) and for
any v € C°(A),

if /Au(:p) v(x) dex =0 then u =0

in the sense of L*(A) functions.
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Property 119 [Interpretation of a periodic boundary condition]| For u €
H'(A) and for any v € C* (A),

if u(z) v(z) ng, (x) de =0 then u is x4-periodic in A,
2A

where ng_, is the a component of the outward normal vector n.

Property 120 Suppose A is a rectangle, u = (uy,us) is a vector valued function
in A, if for o, 8 € {1,2} and v € C{*(A), [5,(Na,us + Nayua)v do =0 then u is
To-periodic in A.

Property 121 For u a periodic function in A and for any v € C® (A), we have

/M wv(z)nga(x) dr = 0.

Property 122 (Linear dependency) For u a function defined in A and x the
coordinate variable, a is any function independent of x, if O,u = a, then

u(z) =za+u
where w is a function independent of w.
Property 123 If u(z) = z,a(z) + b is xo-periodic, then a(x) = 0.

Property 124 Suppose A is a rectangle, u = (uy,us) is an A-periodic vector val-
ued function in A, if for a, B € {1,2}, Op,up + Opytia = 0, then u is a constant in
A.

Property 125 A is a domain and Uy is a part of its boundary with out normal
vector n, u is a scalar function defined in A, if for a € {1,2} and Vv € C* (A) so

that
/ un,v dxr =0,
To

Property 126 u = (u1,us) is a vector valued function defined in A, T'g is a part
of its boundary with out normal vector n =(0,0) for b # 0, if for Vv € C* (A) and
a,f € {1,2}, so that

then uw =0 on I'.

/ (uang + ugng) v de =0,
o

then uy =0 and uy = 0 on I'y.
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Property 127 [Green Rule] If u, v € H'(Q) then the traces of u and v on T
are well defined and

/u&riv dr = /tr(u) tr(v) ng, ds(z)— / 00, u dx.
Q r Q

Property 128 (Introduction of a Kronecker symbol) Fori,j € {1,2,3}, a,f €
{1,2}, then

ao + Zl a; = ZZ ai(1+ 6ia), bap + Zij bij = Zij bij (1 + 0iadjp)-

In the following, the two-scale transform related notations and properties are
introduced.

Notation 129 [Physical and microscopic Domains] We consider an domain
N(e)

Q= | Q° C R divided into N () periodic cells QL<, of size € > 0, indezed by
c=1

¢, and with center x.. The translation and magnification (215 — x.)/e is called the

unit cell and is denoted by Q'. The variables in Q and in Q' are denoted by x°

and x'.

The two-scale transform 7' is an operator mapping functions defined in the physical
domain Q to functions defined in a two-scale domain QFf x Q'. The configuration
of Q, OF and Q! in 1-dimensional and 2-dimensional case have been explaned in
Chapter 1. The same principle is applied in 3-dimensional case also. We notice
that the dimension of QF is less or equal to the dimension of Q and the relation
just depends on the configuration of €.

Notation 130 (Macroscopic domain indices) We denote by I* the set of co-
ordinate indices of variables of the macroscopic domain QU and denote by I the set
of coordinate indices of variables of the physical domain €.

In the SThM probe model, I* = {1,2} and I = {1,2,3}.

Definition 131 [Two-Scale Transform]| The two-scale transform T is the lin-
ear operator defined by
(Tu)(ze, 2') = u(ze + ea) (3.7)

and then by extension T(u)(z°,2') = u(z. + ex') for all 2° € QL and each c in
1,..,N(e).
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The operator T enjoys the following properties.
Property 132 [Product Rule| For two functions u, v defined in €2,

T(uv) =T (u)T(v).

Property 133 [Derivative Rule] If u and its partial derivative are defined in
Q then

for Vi€ I, T (yu) = éazgcr(u). (3.8)

Property 134 [Integral Rule] If a function u € L'(Q) then T'(u) € L' (2 x Q)

and
j[u dx :j{ T(u) dx’dx’.
Q QFx Q!

The next two properties are corollaries of the previous ones.

Property 135 [Inner Product Rule] For two functions u, v € L*(Q),
fu vdr = 7{ T(u) T(v) dz’dx.
Q Qfx Q!

Property 136 [Norm Rule] For a function u € L*(Q),

Il = 1T (w60 (3.9)

Definition 137 [Two-Scale Convergence] A sequence u® € L*(Q) is said to be
two-scale strongly (respect. weakly) convergent in L*(QF x Q) to a limit u®(2°, 2?)

if T'(uf) is strongly (respect. weakly) convergent towards u® in L*(Q2F x Q).

Definition 138 [Adjoint or Dual of T| AsT is a bounded linear operator from
L3(Q) to L*(QF x QY), its adjoint T* is a bounded linear operator from L*(QF x Q)
to L*(QY) defined by

]iT*(v) u dx :]{ v T(u) dx’dx’. (3.10)

QEx Q!
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The expression of T* can be detailed, it maps regular functions in Q% x Q' to
piecewise-constant functions in 2. The next definition introduce an operator used
as a smooth approximation of 1.

Definition 139 [Regularization of T*| The operator B is the linear continuous
operator defined from L*(Q% x Q) to L*(Q) by

Bv :U(x,g). (3.11)

The nullity condition of a function v(z°, z') on the boundary 99 x Q! is transferred
to the range Bv as follows.

Property 140 [Boundary Conditions of Bv] If v € CX(Q%C®(QY)) then
Buv € C(Q).

Property 141 [Derivation Rule for B] If v and its partial derivatives are
defined on 2 x Q' then

fori €I, 8,,(Bv) = X1y (1) B(D,00) + ' B(9,1v). (3.12)

The next proposition states that the operator B is actually an approximation of
the operator T* for Q'-periodic functions.

Property 142 [Approzimation between T* and B] If v(z°, x') is continuous,
continuously differentiable in 2° and Q'-periodic in x' then

T*(v) = B(v—¢ Zie” xilawgv) +€05(e). (3.13)

Conversely,

B(v) T*u+s§: , 7 0,00) +£0,(e). (3.14)

The next two proposition are used for the homogenized model derivation, they are
extension of Proposition 20.
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Chapter 3. A two-scale model derivation for a SThM probe

Proposition 143 [The linear operator associated to the Microscopic prob-
lem H| Here we assume a convention of summation over a from 1 to n. For any

p € R, under ellipticity condition on c°, i.e. there exists o > 0 such that

2

VEER?, )k, > alél

i,7=1

there exist ¢! € H;(Ql) solutions to the linear weak formulation

0 OC! dw 0 Ow
0! 1
/ Cij 8951 835 dx? ua/ Ciagy 1 dzt for all w € C(5Y), (3.15)

with unique derivatives %. Since the mapping p +— V1 C* from R™ to L?(QY)™ is
J

linear,

act 0(1
5 _ e (3.16)
(%]1- 8x]1-

where (. is solution to (3.15) for u, = 1 and g =0 for B # a,

0(’ ow o 0 Ow o
/ ]8x1 a$ dat = / 8 dx” for all w € C;°(2). (3.17)

Moreover, the relation (8.15) can be extended to any p € L*(QF)™.

Proposition 144 [The linear operator associated to the Microscopic prob-
lem M| Here we assume a convention of summation over h, k from 1 to n. Under
usual ellipticity condition of °, i.e. there exists o > 0 such that

3
Z C?jklfijfkl > al¢?,
i,7=1

for p € R™ " there exist "' € Hﬁl(Ql)” solutions to the linear weak formulation

/ O SEL(CM)SE (w) dit = —jupg / 052 (w) da for all w € C*(QL)",
Ol Ol

(3.18)
and S§, (") is unique. Since the mapping p — S&(C*) from R™" to L*(Q1)»>"
18 linear,

Si(€") = Lyghietiyg (3.19)
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3.3. The SThM Probe model derivation

where Lpgn, = Shk(Cpq) and (;q € H'(QY)" is the solution to (3.18) for ji,, = 1,

/Q whkShk(CPq)Sm (w) da' = —/Q quSf; (w) dx' for all w € CQX’(QI)”.

Moreover, the relation (3.19) can be extended to any p € L*(QF)™*".

Proposition 145 Suppose A is a rectangle, I't and I'~ are the top and bottom
surface, T s the lateral boundary, ki; for i,7 € {1,2} is a constant matriz, a
and b are two constants, if a function 0 € H'(A) enjoys

- Zz afcz(zj(kwaivge)) =0in A
(22, KijO;0)nz, = 0 om [Lat
0=aonl*

0=0bonl",

then 0 = aft + b0, where 07 and 6~ are solutions to

-2 awi(zj(kijaxj9+)) =0in A
ki;0p. 0 )0, = 0 on TEt

(Z] J =T ) 9+ . " ]__ur (320)
L 0" =0 onT",
=22 0, (3205 Zaxje ) =0in A
kz T Ny, = 0 on FLat

(Z] J =T ) 0 on FJr (321)
0" =1onl".

\

Proposition 146 Suppose A is a rectangle with a boundary I, I'™ is the bottom
surface of A, ki; fori,j € {1,2} is a constant matriz, a is a constant, if a function

0 € H'(A) enjoys
=221 02,(22(Kij0y,0)) = 0 in A
(>, KijOr,0)ng, =0 on I' = T~
0=aonl~
then 0 = a.

Proposition 147 [Solution to microscopic problem] If (A);_, o 3 is To-periodic
i A and a:]ch)\k = 5ha5k3; then )\k = xgékgéha.

Proposition 148 [Zero solution for free load elasticity| Suppose A is a cu-
bic with elastic coefficient tensor c;jnk, (ui)i:1,2,3 s the displacement filed and is
periodic on the lateral directions, if for ¥V (v;);_; 55 € C5°(A),

{ fA Cijhk O, U0y, v; dx =0
(UZ)

)iz1.23 1S Ta-periodic on OA,

then (u;);_; 55 = 0.
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Chapter 3. A two-scale model derivation for a SThM probe

In the previous part, the general notations, properties and propositions have
been introduced. In the following, we introduce specific notations that are used to
simplify the presentation of the SThM probe model.

Notation 149 [Domain decomposition| The domain Q) is decomposed in parts
with regard to their number of layers: $2s is the two-layered subdomain and Q3 is
the three-layered subdomain. We denote by Q5 and Q502 the silicon layer and the
silicon diozide layer in €y: Qgi = Qg N Qy and ng = Qgioz2 N Qo.  Similarly,
notations Q5 and Q3°% are defined by Q5 = Qg N Q3 and QF9? = Qgi00 N Q3.

The configuration of the probe is shown in Figure 3.1.

Figure 3.1: Configuration of the probe

Notation 150 [Two-scale domains| The subdomains Qo and Q3 are partitioned
in cylindrical cells that intersect the x-y plane by € Xe-squares. The cells are denoted
as Q5 and QS, which after shift by x. and scaling by =" yield the scaled cells 2 and
Q3. Considering the multi-layered structures of Q% and Q3, they are decomposed
into Q) = QL UQL, and Q) = QL UQL,, UQL. The domains 0 and O
are the projections of 29 and Q3 on the x-y plane. Then the two-scale domains
corresponding to Q5 and Q5°% are O x Q& and 04 x Odiog, when those of QF,
Q5192 and Qpy are O x QL Qf x Qoo and Q4 x QL. and those of Qy and Qs are
Qg x Q) and Q% x QL. The projection of Tg and Tog on the z-y plane is denoted
by T% and T%,.
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3.3. The SThM Probe model derivation

Notation 151 [Volume Ratios|/The volume ratios of each component of the
whole probe is denoted by: r5! = ‘le‘ Q" 5102 = |QS‘(32’ Q7" S = ‘QS“ Q™
302 = Q502 |71, PPt = QP Q7Y 1y = |QZ| Q|7 and r3 = [Q3] Q"

3.3.2 Two-Scale Approximation of Derivatives

This section is aimed to compute the two-scale limits of strains and gradients of
temperature and electric potential. This is an extension of Section 1.3.2. Con-
sidering the configuration of the microscopic domains, the physical domain € is
separated to the two-layered subdomain €25 and the three-layered subdomain €23.
The computation of the weak limits of the two-scale transform of sgﬁ(uf), Vo,
eVO° and V© are discussed in 25 and 3 separately because of the different con-
figuration of the microscopic domains. On the other hand, the derivation for each
term on {25 and €23 are very similar, so the discussion is only detailed in 3. In the
following, we introduce assumptions of the two-scale approximations of the fields
u®, 0° and ¢° designed accordingly to the a priori estimates.

Assumption 152 [Two-scale approzimation of u] There exist (u), u}, u?);=1 3,
0°, 0" € L2(Q x Q1) and ¢°, o' € L2(Q4 x Qb,) such that

for i € {1,2,3}, %%y By da —7{ u) v da’dx' = O(e), (3.22)
o Qf xQl

for m € {Si, Si02, Pt}, 0° Bu dx — j{ﬁ 0° v da’drt = O(e),  (3.23)
oy 0 x0l

and
7{ ¢° Bv dx —j{ ©° v dx’dxt = O(e), (3.24)
Qp¢ Q4 x QL

for all v € C(Q4 x QL),
forie{1,2,3}: 8y Bu d:v—% (u) + euj + *u?) v da'dx' = O(e),
Q3 Q4 <0l

(3.25)

for m € {Si,Si02, Pt}, 0° Bv dx — ]{ﬁ (0° +20") v d2’dxt = O(e),
ap Qh %l

(3.26)
and

7{ ©° Bv dx —7{ (¢° 4+ ep") v dx’dx’ = cO(e) (3.27)
Qpt Qi x0l
for all v € D(Qg,Cé’O(Qé))
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Chapter 3. A two-scale model derivation for a SThM probe

In fact, 6° and 0" are functions depending on the microscopic layers. For exam-
ple, 6° S0l 0° . and 6°, _, are three functions, but we do not distinguish
14X V108 x QL 00 |04 x QL

them for simplicity. The followmg Proposition extends Proposition 21.

Proposition 153 [Two-scale Limit of a Derivative] If (uf)acq12}, €us, 6°
and ©° are sequences bounded as in (3.4,3.5,3.6) and satisfying (3.22-3.27), then
(W) aeqi,2y, ug, us, ‘9|Qﬁx91 uQ“le and ¢° are independent of x', (uy)cq1 2y U3,

0,

12 x L, U0 x O, and p' are x —perzodzc and

fora, B €{1,2} : §, Gxau% + Oy, us)Bu dx — fggx% nhsv da’dxt = O(e),
for a € {1,2} : §, (Oryug, + 0y, u5)Bu dr — fggx% nMuv daldx' = O(e),
$, Oru3 Bu do — fngm; nitv daldat = O(e),
$o,, 0z,0°Bu dx — fﬂgxﬂét nHv da’dzt = O(e),
fggi 0,,0°Bv dx — fﬂﬁxﬁéi nHv da’dzt = O(e),
$o0p 000" Bv dr — s ) 7l da’dat = O(e),
$op, Onip"Bu da — fﬂgxgl nPv da'ds' = O(e),
t K Pt
where
77(% = 820 0u3+6ou —|—8xouﬂ+6 Lul +ax1uﬁ mQﬁxﬁé,
77343 = 8ng3 + ax}lug] + 0a:§%< m Qg X Qé,
Mgy = Opus in Qf x QL

= X2y (0)0,00° + 0,10" in QL x Qb
= Xy ()0,00° + 0, 191 in Q% x QL
= 06 in O x O,

N = Xy (0)0,09° + 00" in Qf x Q.

Moreover, if u® = 0, 6° =0 on Ty, o° = 0 on Ty, then u’ = 0 and 6° = 0 on
T4 N0 and ©° =0 on T%,.

The proof of Proposition 153 is decomposed into seven lemmas extending those
of the reference proof, which are proved for each set of assumptions. The new steps
in the extensions are remarked by Substep of the main steps in the reference proof.

Lemma 154 [First Block-1: Constraint of u°] (a) 3xbug+8xéu% =0, (b) ul
is independent of xy, (c) Ogiug + Opous + Opug = 0, (d) ug is independent of x3,
(e) u is independent of x} m 04 % QL (f) 90 is independent ofx m Qf x th, (9)
6" is independent of x' in Q x Q. (h) ¢ is independent x* in Q X O,
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3.3. The SThM Probe model derivation

Proof. a-Source term. For each «, 5 € {1,2}, we set the initial term
U= 5% (Ozpug, + O, uz) B dx
Q3

with v € cg;g(ﬂg;cgg%(%)). From the Cauchy-Schwartz inequality and (3.4),
hms_m v = 0.

We follow Step 1 - Step 5 in the proof of Lemma 22 in Chapter 1. Instead of
using the propositions in Section 1.3.1, we use their extended form posed in Section

3.3.1, and for the assumptions for the two-scale convergence, we use (3.22).

b-Source term. For each o € {1,2}, the initial term is
U = 52% (Opyuis, + Oy u3)Bu dx
Q3

with v € C;?zg (% g?zé(Q%)) The proof is the same as for Lemma 154(a).

c-Source term. For each a € {1, 2}, the initial term is

U= 57{ (Ops 1, + Oy us) B dx (3.28)
Q3
with v € C;?lg(Qg; ggé(Qé)) From the Cauchy-Schwartz inequality and (3.4),
hmg_)o v =0.

e Step c-1. Propositions 127 and 140 —

U= —57{ u;, Oy Bv + u50,, Bu dx.
Q3

e Step c-2. Proposition 141 and the boundness (3.4) —

1
U= j{ u;, BOv 4+ —eu5B(e0,0v + 0,1 v) dx + O(e).
Q3 3 € a @

e Step c-3. Assumption (3.22) and (3.25) =

j{u ugaxév + (uf + eud) (Do v + sflé?xng) dz’dzt = O(e).
QixQL
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Chapter 3. A two-scale model derivation for a SThM probe

e Substep c-3-1. Expand the second term

?{ﬁ (ugaxév + ugamgv + uga_lﬁxav + éuéamgv—i-uéax}lv) dz’dxz' = O(e).
QEx0L

e Step c-4. Proposition 127 and v = 0 on Qg X 00 =

j{u (8xéug + Opous 4+ € O ud + £0p0 ug + Oy ud)v da'dat = Ofe)
Q3xQ3

e Substep c-4-1. Lemma 154(b) =

7{% Ql(ax?{ug + Opoug + 0,0 uy + Oprug)v da’da’ = O(e)
3 X323

Passing to the limit when ¢ - 0 =

(0,11 + Oy uy + Oy uz)v da'da’ =0
Qixai o o

e Step c-5. Proposition 118 —

0 0 1
875}),”(1 + Gxgu?) + ax}lu3 =0.

d-Source term. The initial term is

U= 62% Opsu5 By dx
Q3

with v € Cg?)g(Qg; g&(Q}))) The proof is the same as for Lemma 154(a).

e-Source term. The initial term is

U= 6}( Op,us By dx
Q3

with v € Cg?zg(Qg; g‘;)%(Q%)) The proof is the same as for Lemma 154(c).

f-Source term. The initial term is

U=¢ 0,,6°Bv dx

Qpy,
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3.3. The SThM Probe model derivation

with v € C2, (4 001 (Qpy)). The proof is the same as for Lemma 154(a).
3 Pt

g-Source term. The initial term is

UV=c¢ 0,0°Bvdx
g

with v € Cg?lg(ﬁg; S?z;,i(%))- The proof is the same as for Lemma 154(a).

h-Source term. The initial term is
U= 8]{ Oy, Bu dx
Qpy

with v € C;?ZQ(Q?*; g?zll%(ﬂllgt)). The proof is the same as for Lemma 154(a). W

Lemma 155 [Second Block-1: Two-Scale Limit of the Derivative] (a)
770% = 81%713 + 3mgu% +8I}3ui + 3méu}j, (b) nM = axgué + 8@1@ +axéu§, (c)
ny = Ouud i O X O, (d) 1T = X1y ()00 + 030" in O x U, (e) it =
X{1,2}(i)ax990+ax}91 i nggéi; (f)ni = ax}‘gg i QgXQéiOQ (9)nf = X{1,2}(i)ax?¢0+
Dot in QU x Qb

Proof. a-Source term. The initial term is

U= j{ (Oppug, + Op,uz) B dx (3.29)
Q3

with v € ngg(ﬁg; 5’?2; (Q:la))

The steps are the same as the proof of Lemma 23 in Chapter 1 and we get the
conclusion (a).

b-Source term.
U= j{ (Opsus, + Oy u3) By dx (3.30)
Q3
mmvecwaﬁ;%g%».

i
o0,

e Step b-1. The Green formula (127), Proposition 141 and the linearity of
integrals =

U = _jé uge ' B(0,0) + cuse ' B(Oy00 + ' 9p10) dor
3
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Chapter 3. A two-scale model derivation for a SThM probe

e Step b-2. Assumption 3.25 and 3.25 —

U = jiuml(s—lug +ul)p + (uf + eul + 2ud)e (Dpgv + £ Dy v) dada’ + O(e).
3 3

e Substep b-2-1. Expand and factorizing by exponent of ¢ =—
U = j{ 5_2ugﬁz}lv daldxt + ]{ gt <ug(‘9$év + ugﬁzgv + U%@}ﬂ) daz¥da?
Qfx0l QixQl

+ % (u}l(?mlv + ué&rgv + u%@xév> dz’dzt 4+ O(e).
Qi xql ’

e Step b-3. The Green formula (127) and factorizing =
U = j{ e 20 ujv dx'dz’ + j{ g! <8x1u2 + Opoug + 8xéu§) v dx’dx’
0l xQl Qlxl °

+ % <8x3u§ + Oy uj + Oy ui) v d2'dz' + O(e).
Qi xl ’

e Step b-4. Lemma 154(b) and (c), passing to the limit when ¢ - 0 =

U = 7{ (@cgué + Oy us + 8z1u;> v dz’dx’
Qi xql °

e Step b-5. Proposition 118 =

M __ 1 2 1
Noz = 8x3u3 + Gxéug + axéua.

c-Source term.

v :f OpsusBu dx
3

with v € Cg?]g(ﬂg; 501 (€21)). We follow the steps of the proof of Lemma 23 to find

the conclusion.

d-Source term. The initial term is

U= 0,,0°Bv dx for each i € {1,2,3} (3.31)
Qpy
: o0 ﬁ. o0
with v € Cmg(QS,lel)t
find the conclusion.

(25,)). We follow the steps of the proof of Lemma 23 to
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3.3. The SThM Probe model derivation

e-Source term. The initial term is
U= }I{ 0,,0° Bu dx for each i € {1,2,3}
Q5
with v € Cmu(Qg,Cg?)l (Q4)). We follow the steps of the proof of Lemma 23 to
find the (’on(‘hmon

f-Source term. The initial term is

U= % £0,,0° Bv dx for each i € {1,2,3}, (3.32)
OSio2
with v € CdQ“ (Qh; e 0L (Qéiog)). We follow the steps of the proof of Lemma 23
to find the conclusion.

g-Source term. The initial term is

= j{ Or,0° Bu dx for each i € {1,2,3}, (3.33)
Qpy,

with v € Cmﬁ (Qh; C° o0, (25,)). We follow the steps of the proof of Lemma 23 to

find the conclus10n I

Lemma 156 [Third Block-1: Microscopic Boundary Condition] (a) ul,
(b) ul, (c)ul and (d) v are xl-periodic in QL, (e) 9|Qn <ol is x}-periodic in Q4

(f) QIQ” al, and (g) @ are x-periodic in b, and (h) 0° is continuous in Q3.

Proof. a-Source term. The initial term is

U= f (Ozpug, + O, uz) B dx
Q3

with v € Cam(Qg, 891(Ql)). From the Cauchy-Schwartz inequality and (3.4),

lim,_,o ¥ = 0.

e Step a-1. The Step 1 to Step 3 of the proof of Lemma 154(a)=—

|09

— (0, 1u + O u)v da’da’ + ==
fé)uxfll ’ ‘Ql, O xT1

(Bxéug + O uf)v da’de’ = O(e).
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Chapter 3. A two-scale model derivation for a SThM probe

e Step a-2. Lemma 154 and passing to the limit when ¢ - 0 —
fﬁ (u‘;nxb + u%nxa)v dz’dx' = O(e).
QixIL
e Step a-3. Proposition 120 —-
for a € {1,2} u? is ) -periodic in Q3.

b-Source term. In (3.30), we choose v € C3., (Qg,CQ”(Qé)) The proof is the
3

same as for Lemma 24. In Step 3, we replace Proposition 2 by Proposition 120.

c-Source term. In (3.28), we choose v € C;;g(Qg; Co°(Q3)) and vanish on the

top and bottom surface. We use 'y to denote the lateral boundary of Q.

e Step c-1. The steps 1-4 for the proof of Lemma 154(¢c) =
% (@céug + 8zgu§ + 6_laxéug + é?axgué + &Eéu;)v dz’da?
Qfx QL

Ty e .
1] Py & R0 di i = O(E)

e Step c-2. Lemma 154, Property 121 and passing to the limit when ¢ —
0=
]{ uyn v da’de' = 0.
QgXF;Lw
e Step c-3. Proposition 119 —

for v € {1,2} uy is Q3-periodic.

d-Source term. Choose test function v € C22, (Qg,Cé”(Qé)) and let v vanish
3

on the top and bottom in (3.30).

e Step d-1. Steps b-1 to b-4 in Lemma 155, —

o :}{ (&cgué + O uj + 035,1“:;) v dx’dx!
Qi xql :

! 2 07,1
a ﬁﬁxl—\l,[at (nayus + ngauz) v dade'+O(e).
3 3
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3.3. The SThM Probe model derivation

e Step d-2. Lemma 155, Lemma 156(c), Property 121, passing to the limit

when ¢ — 0, —
—7{ nx}lugv dz’dx' = 0.
Q%XF;”L‘“

e Step d-3. Property 119 —

2 . 1 T 1
us is x,-periodic in (5.

The proofs of (e) (f) and (g) are the same as for the Lemma 24 in Chapter
1.

h-Source term. We choose v € mﬁ (Q; 891(Ql)), the initial term is

€ 0.1 € H 07,1
— v do'det + ——— n; v dz dx
Q4] Q00| Qi xOL, ' || (2500 Q5 x QL '

1

H 07,1
e n; v dz dx
TIOLTIOR Jog o

Si02

° 0,0 Bv dx’dx’

° 8, 0 Bv dx’dx' +

194119800 Jap, 2] Q502! Jos,
1
—_ £0,,0 Bv dx'dz' + O(e)
’Q HQPt| Qsio02

e Step h-1. Follow steps 1-3 of the proof for Lemma 155.

€ €
— ni'v da¥dat + —————— nv da’dx!
Q%] 1928100 Qi xalL, || Q5100 Qi x0l
1
h 0.1
+ —TaT n;v dx’dx
1951 190%¢] Jaz <o,
1 1
—_— 0,10% daldat — = 6°, . npav deldat
|Q | ’Q ‘ .0l d f o (Pl APl 3% QT3
Si021 /23 x8p, Q5 x(IpyMlgi02)
1 1
_ 0,10% daldat — = Q?Qﬁxgl N1V dz’dzt
|Q bel 100 Qi xQl; " Yx(T§MTliog) 0
1 1
_ 0,10° v dadat — = 0|Q,1X91 Ng1U da’dxt
|Q i 10| Q4 xQLi, o A Jaixr MTLio0) 5102
1
0.1
- — 9|quﬂé02n w da'dr + O(e).

A Q4 x(DL,NT 00)
with A = Q4] [0 [Qb,] Q5]
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e Step h-2. Lemma 154, Lemma 155, passing to the limit when ¢ — 0 =

1
0 0.1 0 0.1
1/, Q\ngQ}) ny1v dede” + 1/ 9|ngﬂl'nmév dz’dx
Q3x(CpyMTgi02) ’ Q3x (PN Ei0,) o
1 1
+ — 6, . ngavdaldet + — 6°, . nuvdadet =0.
A Jobrn,nry,) T30S0z A Joixryry,,) [0S0z
3 Pt Si02 3 Si SiO2
e Step h-3. Factorizing by integration domains —
! 0" 0" dz’dz’
Al ixah, — VIkxal,, ) el GUAT
Q5% (TpNTgi02) '
1
0 0 07,1 _
+ A QuX(FI m]_‘*l ) <8|Qﬁ3xgél Q|Qg><ﬂéi02> nl’év dx dx N 0
3 Si SiO2
e Step h-4. Proposition 125=-
0 0 _ 1 1 0 20 _ 1 A7l
9|Q§XQ}1% 0|Q§X9éioz =0 on ['p;Nl'g,0, and elﬁgxﬁéi Qlﬂgx%m =0 on ['g;NI'g00-

Lemma 157 [Fourth Block-1: Macroscopic Boundary Condition] (a) u?,

(b) ul, (c) ui (d) Q?Quml , (e) Q?Quml vanishes on T N 0Q% and (f) ¢° vanishes
3 Si 3 Pt
on FQQ.

Proof. a-Source term. In (3.29), we choose v € cggg_Fg(Qg; 3?25(9%)))

e Step a-1. The steps 1-3 of the proof for Lemma 155 and use u® = 0 on I'y
—

7{ nagv dalds' = j{ (0,2 ug + 05 uf + Opruly + Oprug)v da’da’
0 xql aixar P ° 7

_lo%] 0

7 (ugn,: + u%nxﬁ Y dr’da?
2] Jagnoag)<ay ’
1

+- j{ (0,1 ug + Opr ug)v da’dx’ + O(e).
€ Jaixal 7

e Step a-2. Lemma 154 and lemma 155, passing to the limit when ¢ — 0 =

(T3no0d)x Qb

=)

0 0.1
s + ugn s Jv de'dz .
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3.3. The SThM Probe model derivation

e Step a-3. Proposition 126—=

u® =0 on T N OO,

b-Source term. We choose v € C (Qg, 891(91)), the initial term is

Qﬁ
87{ nMv dadrt = 5% (Opsuis, + Oy, u3) Bu dz 4 O(e).
Q4x0l Qs
e Step b-1. The steps 1-4 of the proof for Lemma 154 and u* =0 on 'y =
z—:]{ v daldst = j{ (8zéug + @Cgug + 5_18$(1xug + 58$gué + 8xau§)v daz da?
QAxQl Qf x0l

109

\Qﬁ| oot Ql(ugnxg +€U:§nl«g)v dedz’ + O(e)
m{ 3 >< 3

e Step b-2. Lemma 154, passing to the limit when ¢ — 0 =

ugngov dz’dx' = 0.
(TEna0%) x 0} °

e Step b-3. Proposition 125 —=
ud = 0 on T N OO,
(2

c-Source term. We choose v € C2¢ 1)), the initial term is

Qﬁ an<

]{ nMv dadrt = f (Opsuis, + Oy, u3) Bu dx 4 O(e).
O xl

Q3

e Step c-1. The steps 1-3 of the proof for Lemma 155, —>
j{ n%v deldzt = ]{ 5_261%1@1) dz’dzt
Qfxl Qi xQl
+j{ et <8m1 ul + Ogouy + O ué) v dx’da’
0l xl : “ “

—I—f (8360 ug + Oprus + aﬂ“i) v da’dx’
Qbxoi v 7 : :

_\afm

8 et (e " udng0 + uingo v dz’da' + Of(e)
(TANoQL)x QL
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Chapter 3. A two-scale model derivation for a SThM probe

e Step c-2. Lemma 154, Lemma 155, Lemma 157(b), passing to the limit
when ¢ -+ 0 =
]{ usngov da’da’ = 0.
(T4no0k)x b

e Step c-3. Proposition 125 —=

ul =0 on T} NOQL.

d-Source term. We choose v € ngg—rg (% g§2§i<9éi>)’ the initial term is

j{ nfv dadat = 74 0,,0°Bv dx + O(e).
QhxQl,

Q5
Follow steps 1-4 in the proof for Lemma 25 in Chapter 1, we get the conclusion.

e-Source term. We choose v € C, ,(Q4:C%, (b)) the initial term is
o051 O

f nfv daldat = 0,,0°Bv dz 4 O(e).
Q5 x QL Qb

Follow steps 1-4 in the proof for Lemma 25 in Chapter |?|, we get the conclusion.

f-Source term. We choose v € C, . (Q4:C, (QL,)) the initial term is
90414, M,

j{ nEv da’dat = ]{ Oy, Bv dx + O(e).
QfxQb,

Pt

Follow steps 1-4 in the proof for Lemma 25 in Chapter 1, we get the conclusion.
|

Lemma 158 [Constraint Reduction] (a) v’ is independent of xl, (b) ul is
independent of x, (c) ud = —xi0z0ul + U0 (2°).

Proof. a-Source term. Lemma 154(a) 01 ug + 6I}3ug = 0 and Lemma 156(b)

0 . 1 . . . 1
u,, is x,-periodic in 3.

e Step a-1. Proposition 124 —

Oyt = 0 for Vo, f € {1,2}.
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3.3. The SThM Probe model derivation

b-Source term. Lemma 154(c) Opiug, + Op0u3 + Opyul = 0.
e Step b-1. Equivalent transformation =
Oprug = — <8xéug + &cgug) :
e Step b-2. Lemma 154, Lemma 158(a), Proposition 122 —>
ul = —z! (améug + Oy ug> +al(2%)

e Step b-3. Property 123 —
Dprul + Ogoul = 0
3 «

and u} independent of z..

c-Source term. 9,u), + Oy ug =0
e Step c-1. Equivalent transformation —-

0 _ 0
Op1tiy = =0y ug.

e Step c-2. Lemma 154, Proposition 122, Lemma 158(a) =

up = —x30,0uf + U (2°).
|

The proofs of Proposition 153 is complete. In the following, according to
another assumptions of two-scale convergence of the solutions on the two-layered
subdomain, a similar proposition is stated for the two-scale limits of strains and
gradient of temperature.

Assumption 159 [Two-scale approzimation of u] There exist (u), u}, u?)i=1 3,
0°, 0 € L2(Q x QL) such that

forie€{1,2,3}: ¢ <°#uS Bu dx —7{ u) v dz’dx' = O(e)
Qo Q4% 0}

for m € {Si, Si02} : 0° Bv dx — 7{11 0" v da’dx' = O(e)
oy Qb xQl,
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for all v e C®(Q4 x Qb),

fori€{1,2,3}: ¢ <*#ui Bu dx —f (ud + euy + &*u?) v da’dx' = O(e)
Qo Q4% 0}

for m € {8Si, 5102} : 6° Bv dx — fﬁ (0° 4+ £60") v d2’dat = O(e)
an 0 xQl,

for all v € D(Qg,ca’o(ﬂé))

Proposition 160 [Two-scale Limit of a Derivative] If (uS)acq12}, €us, 6°
and ¢° are sequences bounded as in (3.4,5.5,3.6) and satisfying (3.22-3.27), then

0,1 1 - 1 ()1 2 1
ac{1,2}, U3, uy and H‘ngﬂéi are independent of x*, (ug)4eqr 0y, U3 and (9|ng%i

()

1 . .
are x-periodic, and

for o, € {1,2}: fQQ(ﬁxau% + Oy ,us)Bu dr — ngXQ% M da®da' = Ofe),

e Yo

where
M 192 0 ~0 ~0 1 1 1
s = —T3050 05 + Doy + Oug Uy + Oyytg, + Oy in Q4 x QO
M 1 2 1, 8 1
Noz = 8xgu3 + axaUS + 8x%ua in €25 X (s,
Mo 2 . Oof 1

0= Xy (0)0:00° + 00" in Q5 x Qg

77? = ax}eo in Qﬁz X QéiOZ'

Moreover, if uf =0, 05 =0 on Ty, then u® =0 and 6° =0 on Fg N oQy.

The proof of this proposition is the same as the proof for Proposition 153. The
next proposition shows that u® and 6° are continuous on the interface 892 N an.

Proposition 161 The weak limit u® and 6° are continuous on dQ N OQL.

Lemma 162 [Continuity of v’ and 0°] (a) (u)),cq10y, (b) 48, (¢) u} and (d)

9?91 are continuous on Oy N AN,
Si
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3.3. The SThM Probe model derivation

Proof. For convenience of the presentation, we denote by Fﬁ% the intersection of
9% and (9(2ﬁ

a-Source term. Choose v? € C>° Q5 ;’E(Qé)) v¥ e 0 Co (Ql))

0} FQB( 0% rg3<

the initial term is
1

M 07,1
I A Nagt dadz
’ 3’ Q2582

M,2 5.0

nM? dadxt +

’ |Qﬁ\ Qfxql
1 1

= — (axau%jLOxﬂua)v dx’dax’ +—
’Qg, §22

(Op,uf + Opyu Vo dalda’
€2 2’ Q3

T Yo

e Step a-1. Follow the Step 1 - Step 4 of the proof of Lemma 155 —

1
IQ§| 0l %0}
—1 0 0 1,2 7071
- |Q§| QﬁXm(axguﬁ + ax%ua + aa:}xug + axkua)v dz"dx
2 2

1
77%112 de’dst + —— 0 | i 7]%113 dzldr!
2

0 o\ 2 01
S — T30 U —i—nou)U da’dx
1251195124 /Fn23x%< 2QUp T M0 Ug
1
+@ Q”xm(azgu% - ax%“gc + Oy s + O g Jv° dadar!

J:OU3+” 01 )v dz da?

m,@ 123 /

e Step a-2. Lemma 155 —

1

|Q51195][Q3] Jrg, oy

. 1
|Q511Q511928] Jrg,xoy

0 0\ ,2 7,071
(nxguﬂ—knxgua)v dz dx

(nz uﬁ—l—n 0 )U da'dx' = 0.

e Step a-3. Let v? € Caﬂ’i (Qﬂ) v® e C>® (%) and v? = v3 = v on 'k,

factoring =

0 0 0 0 0
n.0 (U —Uu +n.o(u —u v dx” = 0.
/Fu ( o (Ugjap ~ Ugjap) + g (o alﬂ§)>
23

80, -Th,

e Step a-4. Proposition 126 —-

for Vo, 8 € {1,2}, u° 0 and v’

— 90 _ #
,3|Qﬁ2 U,mgu g = 0 on F23.

0
— U
a0} o]0}
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Chapter 3. A two-scale model derivation for a SThM probe

b-Source term. Choose v? € Ca

i (5 ()), 0 € Cpy 1y (95O (),

Q-
for each v € {1, 2}, the initial term is

1
¥=e— (Opsus, + Oy, u) Bv? dx—i—e—ﬁ% (Opsus, + Oy, u5) Bv? du,
‘Q | o, €] oy

From the Cauchy-Schwartz inequality and (3.4), lim._,o ¥ = 0.
e Step b-1. Follow the Step c¢-1 to Step ¢-4 in Lemma 154(c) =

1 1
— (Op1ud + Dpoud + Opr ug)v® da’dz’ — ———— ngo ugv? da’dx’
5] Jagxay i [25]1625]1625] Jrg, <3 "
1 1
+— (01l + Ogoul + Opr uj)v® dmodarl—# ngougv® da’dz' =0
5] Jagxay ™ ’ ‘ 2516251623 /r, <4
e Step b-2. Lemma 154(c) =
1 0 1 0
BT ngoujv® da'dz’ ——eren ngoujv® da’dz' = 0.
Q41195 |4 Jr, xa |€05[|€25]1€25 | /g ey
e Step b-3. Let v? € Casz” rg3(Qﬂ) vd e C(,mﬁ ng(Qg) and v2 = v® = v on T,
factoring =—
/n nxg(ugmg - ugmg)v dz® = 0.
F23
e Step b-4. Proposition 125 —
0 0o _ 1
c-Source term. Choose v? € Cmﬁ e, (9 12‘;(9%)) v® e Cmﬁ e, (% ?E’(Qé)),
for each o € {1, 2}, the initial term is
1 1
U=—-¢ (Inug+ Oy, u5) Bv? dx—l——?{ (Opytil, + Oy, ul) Bv® du.
125] Ja 5] Jo,
e Step c-1. Follow the Step b-1 to Step b-4 155 —
1 1
— M v? da’dat 4+ —— n% v da’da!
[€25] /g xay 195 Jogxoy
1
= — (&Egué + O uj + 8x;u}x) v* dadx’ — —ﬁ/ ngougv® da'dz’
[25] /g <oy ’ 1 ||Q 19221 /14, x4
1
+—5 (@cgué + O uj + Qcm(lx) v* da’dat — 7 ﬁ / ngousv® da’dzr’
23] Jatxay ’ 2511821623 Jr, xa)
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3.3. The SThM Probe model derivation

e Step c-2. Lemma 155(b) =

1 1

1.2 7.0 1.3 7071
_— N0 U2V dr dx” — N0 uxv° dr dx = 0.
R o

5112511923 /Fégxﬁé

e Step c-3. Let v? ECam (Qﬁ) v} e C® Q%) and v2 = v® = v on Tk,

factoring —

% rgg(

1
.0 (U — vdax® =0.
/F,j 20 (g0 3|Qﬁ)

23
e Step c-4. Proposition 125 —=

1

T i

d-Source term. Choose v? € Caﬂ’i (Qg, 5oL (Q4)), 0% € Cam (Qg, 5oL, (QL)),

the initial term is
1 1
U= 0,0 Bv da:—l——u?{ 0,,0° Bu dx for each i € {1,2,3}.
’ 3’ oft Q5] Jasi

e Step d-1. Follow the Step 1 to Step 4 in the proof of Lemmal55 —>

1 1
— B9 da®det + — nf v da'da?
0 Jog e, 1051 Jogxay,
1
= m o (X{l,z}(i)ﬁmgﬁ —i—@m%Q) v da’dx’
3 273 0g;
—i—m . (X{lg}(i)azgeo—l—@x}@l) v dada?
2 37345
1

PN E— X
IQ’WIQﬁIIQ il Jrxal,

0 1
| |Qﬁ 1924 |/ X120y oy v dede

(123 (1)1 o@lm o ¥ dx’dx?

e Step d-2. Lemma 155(e) =

1

QSN QK] St <oy,
1

QB Qk] It <oy,

Xq1,23 ()1, oG‘Qu a,V dzdx’

X123 (1)1 OQ‘QuXQéiU dz%dz' = 0.
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Chapter 3. A two-scale model derivation for a SThM probe

e Step d-3. Let v? € Cg‘;zgirgg(Qg), v® e C;‘;zgirgs((lg) and v2 = v® = v on T,

factoring =

. 0 0 0
/ﬁ X{1,2}(Z)nzg(9|ggméi — G\ngﬂéi)v dz’ = 0.

F23
e Step d-4. Proposition 125 —

0 0 _ 1

3.3.3 Homogenized Model Derivation

In the begining of this section, we introduce some assumptions used during the
model derivation. They are assumptions for the boundness and regularity of the
solutions, the scaling of the coefficients and the force loads.

Assumption 163 [Boundness of the Solution] The solutions u®, 0° and ¢°,
force load £° and current source j° of (3.1) satisfies the boundness (3.4)-(3.6) and

(3.2)-(3.3).

Assumption 164 [Strong convergence of two-scale transform of solu-
tions] We assume that ¢° and 0° are reqular enough so that their two-scale trans-
formations T(p°) and T(6%) strongly converge to the reqular function o°(x°, zt)
and 0°(2°, 1) in (3.24) and (3.23).

Assumption 165 [Scaling for the coefficients and source| We assume that
for the scaled functions Cijuk, Kij, a:jef, fi and j, the coefficients and the forced
satisfy the following scaling

Ciink. = Cijhs fo = Ja, 5 =¢f3 1n Q
k’? — kij m th U QSi

0

For some functions Cy, (2'), k(') alj(z') and fP(z* 2'), the two-scale trans-

1,

form of the scaled functions are

T(Cyne) = Ciime(a), T(kyy) = k(") T(ais") = (@), T(f;) = £ and T(j) = j°.

i %

For convenience of the presentation of the following proposition, we introduce
some notations for the homogenized coefficients.
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3.3. The SThM Probe model derivation

Notation 166 /[Homogenized coefficients and force loads/

e FElectric conductivity:

all = f[; (055 + Oy €5 G+ 0 €NT) d!

Pt

where €S is the solution to (3.15) for ¢, = af

o

e Coefficient for elastic tensor: For a,b € {D,S}, p',¢',p,q € {1,2} and
de {2,3}

H,ab d,a
Crapg = X(Q) ]{ Cz]hkL /hkL ngdﬂ?

where L ,hk and L pgij 0r€ defined in  Proposition 144.
e Thermal expansion coefficient: For a,b € {D,S}, p,q € {1,2}, m €
{Si, Pt} and d € {2, 3}

M}?{}b:fg <C]hkL2031+Mij> quwd 1 M3bm :\fé; (Oz]h 39m+Q )qu”d 1

3

where
M. in QL 0 in Q4
Si ! ¥ Pt o
i - 1 = ) !
b= My in Q0o and Qi = M0 in Qg0
0 in Qp,, M in Qpy,

0~ and 0% are solutions of Equation (3.20) and Equation (5.21).

e Thermal conductivity:

S = ks = @ k(058 4 00 CEY) (Bia + 0,:¢5%) dat, KO = kS, 0,10% da!
Ol Lt J

Si Si02

I = R 0aC™ e+ 04CE)

Pt

where Cl S Cl P are solutions to (3.15) with ¢, = k9, T&$, are the top/bottom,

[fe2)
surface of 98102-

e Force load:

=X (@) § TAIIA, J§ = x5y ) §F0da! for d € (2.3).
o} o

d

137



Chapter 3. A two-scale model derivation for a SThM probe

Property 167 |Equation Separation| Weak formula (3.2) is equivalent to

K0 [o(Ces(uf) + M=¢")s(ve) do = k0 [, £MevMe daf 4 K0 fFl gMevMe dx (a)
K0 [ kEVO Vol da® = kP Jop, @VETVEF vt dz (b)

KV fQPt a*Vo© Vob'e dr = kV4° me vEe dr (c)

(3.34)

The following proposition states the homogenized model for the SThM probe.
Its proof is separated into three lemmas.

Proposition 168 [Homogenized Model]
(a) The limit ©° and 6° are solutions of the coupled problems (a.1) and (a.2)
as following:

(a.1)

H
fﬂ o )\003 ogpoaxo vE0 4z dz® = ||Q(: || jovE’O da?,
Q t

for all vE° € C?&(Qg)
(a.2)

rPt ]{ k3pt606|gn o, O vg” da’ 4 150 7{ Ot o, ( }[ kSO dat) vy da”

1
QPt

f;}é eV (055 + 00 &5 (i + 0 €57 da’) D, Dg v da”
1 |Qu

X

for all vy € p (Qh).

(b) The limit 6° is solution to the weak formulation

ry f g 00 0s 1 Oug vy da® =0
QQ

for all v} e Crﬂmam ().

(c) ngﬁ oL is the solution to
Si 3,51 HO ;.0_, .SiO2 Si02,~ 1, HO 7.0 _
5 / ks Ox0 Hlm QL Opov3 " dx”—13 Hﬂﬁxﬂé'(?{l k; dz*) vy dx” =0
4 oy

for all v € €% ).

rinoot (
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3.3. The SThM Probe model derivation

(d) The limit (u),_, 55 and ug satisfy u), = —w30,0us + Uy, Vaug = 0 and
Vaul =0, they are solutions to the weak formulation

p'q'pg = p'd

H,DD H,SD ¢a® (0 2,D
/Qﬁ(cquQD (u3) + Corirg Sy (W) + My 9|quﬂl

+/ﬁ (CHSDDgc ( )+CHSSSz (~0)—|—M250
Q

p'q'pq p'q'pg~p'qd

3,D,Si
P'a'par'd |04 xQL, + M, 0,

_|_/Qu (qu?quDx ( ) CHSDSz (~O) M3DPt6 |QﬁXQ1

p'q'pq p'q'pg~p'd

)
HWW)S
)

)

+/ﬁ (CHSDDx ( )+CHSSS1 (~0)+M35Pt9 o —|—M35516
Qg Pt

=/—ﬁ%ﬁ+ﬁ@+
Qf

|25 x

for all vV € H;g(Qﬁ)Q, v) € HY(QF).

Lemma 169 [Fifth Block: Two-Scale Model] (a) The couples (¢°, ') and

(0°,0") are solutions to the coupled two-scale weak formulations (a.1) and (a.2) as
following

(a.1) The (©°, ') solves

jéﬁ 1+ a)al (v ()08 + 03 ) (X (100" + 00" ) da®da’
X

Lo
|th| rh, xT},

o0 dalda? (3.35)

for any (v¥%);—o, € C

o (O, Cg°(Qpy)) with condition &ElevO =0.
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(a.2) The couple (0°,0") solves
5’17{ kY. (X{1 21(7)0, 09 + 0,10 ) (X{Lz}(i)a 01)2 '+ 0 12}2 ) dz’dx?
Q5 x QL

+r50? 75 k90,160,105 dada!
0l J
Q5xQ

Si02

+ rgij{ kY. (X{l 21(7)0, 09 + 0, 19 ) (X{LZ}(Z')@ ov3 49 2103 1) da’dx?
Q4 x QL

+ rptf kY. (X{l 23(1)0, 09 + 0, 10 ) (X{1 2}(2')83601)5’0 + 8x1vf’1> dz’dx?
Qix0l, ’ ' '

+ T§102]{ k%@mlﬂoﬁxwf’o dz’dzt
Q% x ;0 ’ '
Pt aQ' . 0,7,.1
= —r 7{2“01 . —1—)\6()@ <X{1 2}( )0, ogo +0 1160 ) <x{1,2}(2)3 ov3 49 11)3 ) dz"dx
(3.36)
(Qg,C’g’O(Qé)) with

for any (vi" )1_01 € C>® (Qg,C’E’O(Qé)) and (vi")—o, € C®

90} 0%
condition 0, w =01n Qjj x QL and dvs™® =0 Qjj QL UQE x Qf
2 = Si LUz = 0in §23 X Gdg UL X Qpy.
(b) (u )ae{l o), Uy, ui and ¢' = (ul,u2,u3) are solutions to the two-scale weak
formulation

S foeey (Con (—2ADRL(S) + ST ) + K7 () + sia(<h)) + Mi0" ) -
(—odDy (0f°) + 83 (90) 4+ K5 (vi) + 52 (wih)) da®da!
— Zdrdfmml MO ( 100 vy —i—de) + 270080 daldat
(3.37)
for any T30, v5",v5" € C(Qf), wh = (o, vyt 05?) € C®(0:CR(QY)° for
d € {2,3}, where ij , Sfjo and Kfjo are operators defined by: for Vu & Hz(Qg),
v eHY(QY)? and w e H(QY),
1}0 [3 x 7 ] CEO ~
Dji(u) = XF{1 2}X{1 2}8m020u Sy (v) = Xf{1),2}X~({]1),2}3ij (W), (3.38)
1:0
K& (w) = 51»3;(32}8%210+5j3X{172}ax9w.
Proof. a.l- Source term. Equation (3.34)-(c). We choose test functions
VPO ¢ c;;gmﬁ) vl e Cam(Qg,CgO(ngt)).

e Step a.1-1 Posing v¢ = B(vF0 +ev®!) in (3.34)-(c), Assumption 165 and
Proposition 140 == Bv € Cgg,, (Qpy) and

KO/ (1+>\98)_1a:;f5xjSﬁaaxiB(vE’Oij-:vE’l) dr = HO/ € B el da.
Qpy r

01
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3.3. The SThM Probe model derivation

e Substep a.1-1-1 Equivalent transformation x° [, dz = k" [A] §, dz, =

P

a |QPt’ To1

7{ (14A0°) a0, 070, BwP 0™ da F B 4ev™h) da.
Qpy

e Step a.1-2 Propositions 141 —-

]{ (1 + A@E)*lazfjefaxj SOSB (X{I,Z} (i)@x?’uE’O + 8%1@]5’1) dx
Qpy

T

B |QPt| To1

jEB(vE’O) dx + O(e).

Proposition 142 —

f; (14 X0%) als <0, 0" T (X{LQ}(Z')QC?UE’O + 89311@]5’1) dx
Pt

T

= FET* (vF0) d + O(e).
|QPt| To1

e Step a.1-3 Definition 138 and Proposition 132 —

Fo TN DTT0, ) (0 0050 + 00T da’a?
Qi xql, ! ! ’ : i

(3.39)
_ ‘F01|

Q] ré xT,

T(5%) v da’dz' + O(e).

The boundary T}, is one face of b, with the same out normal vector as I'};.

e Step a.1-4 Assumption 165 and Proposition 153, passing to the limit when
e— 0=

$o @0 (xo (106 + 006) (X (D000 + 00 dd
Q3xQp,

T

— 9 jOUE',O dl’od.’ﬂl
Qo] Jrg wrs,

which is the expected result.

a.2-Source term. Equation (3.34)-(b).
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e Step a.2-1 Property 116 —
K / kfjaxjesaxivﬂf dx + K° / kfjaxjﬁsﬁxivH’E dx
Qgi QgiOQ

kfjaxjﬁsaxiv}[’g dx + /io/ kfjaxﬂs@xivma dx

Qpy

+M/kmwﬁyﬁm+ﬁ/
QS Q

SiO2
3

_ 0 € € e He
=K / 300, 0r, 0% v7° d
Qpy

e Substep a.2-1-1 Proposition 127 on the right side =—
/@0/ kfjaijE(?xivH’g dx + /10/ kfjaxﬁs@xiv}[’s dx + HO/ kfjﬁxjﬁeamivH’E dx
Qgi QgiOQ Qgi

+x° k.0, 0°0, v dx + K° k5.0, 0°0, v dx
QgiOQ 1] J 7 Q 1] J (3

Pt

= —/-zo/ O, (a5;04,9%) ¢ v dr — I{O/ a;; 0z, 0" Oy, 0™ dw
Qpy Q

Pt

+x° / a‘fjgoaaxigoanxij’sdx
0Qpy
e Substep a.2-1-2 Applying Equation (3.1) =
H,O/ kfj(?xﬂeﬁxivmg dx + /10/ kfjaxﬂgﬁxivma dx
Qgi Qgi02

kfj@xjﬁaaxiv}[’a dx + /4;0/ kfjaxjﬁaaxivH’a dx

Qpy,

+M/kmwﬁfﬁm+ﬁ/
Qi Q

SiO2
3

N _KO/ 750, 9" 0,0 dx
Qpy
e Substep a.2-1-3 Assumption 165 —
HO/ kijﬁxﬂg@mivlf’s dx + HO/ 52/%8%958%1)1{’5 dx
Qgi QSiO2

kijaxjesaxivﬂf dx + HO/ 52kl-j81j956?xivH’€ dx

Si02
Q3

+/‘€O/ kijaxjﬁsﬁxivH’E dx + /ﬂ?o/
Q5 Q

Pt

= —/‘60/ (1+ AQE)’la;f;f@xjgpagos Oy, 0™ da
Qpy
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3.3. The SThM Probe model derivation

e Substep a.2-1-4 Choose test functions v’ € €, (5, C= (Vo). va' €

aQ’j

o (5, G (), 0" € Cmu (5, 0= (Qi00)): v5 " € Cagu (25, C7°(23)) and
pose ve = B(vf? 4 ey in Q,, vfe = B(U3 O 4 eudt) in Q, Proposition
140 =

B(vy"") € C33,(22), B(v3™") € C53,, ()
and

0 /QSi kijaﬂﬁje‘saxiB(Uf’o + 51);{’1) dv + HO/Q €2kija$j0€aziB(/U + 81)5{ 1)

Si02
2

Jmo/ KijOu, 070y, B(v"" + cvi” )dx—l—FaO/ ijOu, 070y, B(vs"" + cvi"h)
Q5 Qpy
+5° / %kij0,,0°0,, B(vs™" + evi™)
QSiOQ

:_KO/Q (1 4+ A6) 102 0, 7 070, B + i)
Pt

e Substep a.2-1-3 Equivalent transformation x° [, dz = x°|A| §, dz, =

dx

dx

dx

dx

;f KijO., 070, B(vs™ + evs" )dm+r&02]{ £%kij0,,0°0,, B3 + evy™t) da
QSI Qgi02

7y 7{) iy, 0°0,, B(vs™° + cv3™") da + 1T 7{) ijOu, 070y, B(vs"" + cvi") do
3

Pt

+r§102f %kij0,,0°0,, B(vs"" + evi™') da
Sio2

= _,,,Pt]i (1+ AQE)’la:;fé)z @0y, B(vs"" + cvih
Pt

e Step a.2-2 Propositions 141 —

T;l ff;sl kz]am]@‘s <X{1 2}8 01}2 —|— 0 11}2 ) dx + ,’,.SIOQ%

Si02
Q3!

+7’§i% kij&pj@EB (X{l 2}8 'U +
Q5

Y dx

kij(20,,0°) B (a Lotk 0) dz

0 11151) dx

+7“Pt?£2 ki;0.,0° B (X{1 9y Ot ovs? 4+ 9 11)3 ) dw + 392 ﬁsm kij(£0,,0°) B (8 11}50) dx
Pt 3

— P f (14 00°) a1 0,070 B ({] oy Duovs™ + Oy
Qpt

143

> dx 4 O(e)
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144

Proposition 142 —

TEI% kijO,,0°T" (X{l 230t ovs? + 9 11)2 dm + r8102j{ kij(€0,,0°)T ( |
QSl QSlOQ

—H"gl% kijOp, 0°T" (X{1)2}8 ov3 4o, 1y
QS

U2
—H‘Pt?{) kijOp, 0°T" (X%)Q}ﬁ 0U3 o490 11)3 dac + TS‘OQ 7{25102 15(€0,0°)T < 1113
Pt

= _Tptf (1+ )‘9€>71a§;f8mj90€<)08T* (X{l,z}(i)a 07)3 "+ 0 zt U3 1)
Qpy

e Step a.2-3 Definition 138 and Proposition 132 —>

Tgif T( ) (8%96> (X{l 2}8 gvf’o + azgvf’l
Qf xQl
+r51027iﬁ . T (ki) T (€0, 0)(81115’0

Si02
475! 7{ T (K
Qi<

T (92,0%) (X{ 2y D + D0
+7“Ptf{ T (ki;) T (0,,6%) (X{1 230z ov3 O 4 90!
Qi xal '

+r§i02j{u T (kij) T(£0, 0)(811;570
Q5 x 0L

Si02

1 .
_ Pt 1 rof . N
- fézgxglgt T(l + )\GS)T (aij > T ()T (9n%°) (X{Lz}a 0U3 ° 10, 1

e Step a.2-4 Assumption 165, Assumption 164, Proposition 153 and Propo-

')
")
)

dx’dzt

dx’da?

dx’dax?

da’dxt

dx’dz?

dx dz!

+0(e).



3.3. The SThM Probe model derivation

sition 160, passing to the limit when ¢ — 0 =

i H,
7"5 ﬁ;ﬁxﬂ /{;0 (X{l 2}8 0‘9 +a 9 ) <X{1 2}8 01}2 —1—8 1’02 1) dxodq;l

+ 7‘5‘02?{ k08 008 vfo dx'dz!
Q

5x Q09
+r§i7{ ko (X{1 2}8 00° 4 0, (9 ) <X{1 230z ov3 49 1vfl> dx’dx’
Qi<
+7“Pt]{ k;O <X{1 2}8 0o0° + 0, 19 ) <X{1 230z 0U3 "+ 9 1U3 1) dada?
Q4 x L,

i H
+ 5102 k2.0,10°0,105° da’dx’
Qi x0l R
X

Si02

al. .
= Pt fé}u o 1+ ;\90900 (X?l)z}axg‘)po + ale.@l) (X%) 2}3 OU3 '+ o 11)3 > da®da?
3X3py

which is expected.

b-Source term Equation (3.34)-(a).

e Step b-1. Property 116 —-
KO [ (O st () + MEOT)sE (VM) do + kO [ (O, 57, (0°) + MEOT)sE (VM) da
0 ijhk°hk ij iJ 0 ijhk°hk ij ij
2 3

Me, M Me, M
- /{0/ 050 de + kY 70 da
QQ QS

e Substep b-1-1 Assumption 165 =
/so/Q (Csppsip(u) + M0%)s%(ve) do + ,'4:0/Q (Csippshp(u) + M0%)s?,(vMe) da
2 3
= /go/ fMepMe dy + /ﬂo/ efs fvy"t da + /so/ fMepMe do + K / efaleushe d
Qo Qo Q3
e Step b-2 For d € {2, 3} we choose test functions 20, v vi' € C>®(QF),
()t =~ T80, () € C (0 G, s that
vMe = B0 + eo®t), evs™® = Bui® + ev§! + c20§?) in Q.

(dl d,l d?2

We denote by wh! = (v, vy, v5%), use notation (3.38), we have

s (v1) = B (—abDE (vf°) + 5 (¥10) + K (v*) + 55 (wh)) in Qg
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Z / st (W) + M%) B (—abDE (o)) + 85 (¥10) + K2 (v*)) da
+Z / C5 st (1 +M565)B< f;(wd’l)> dz

=Y fny( b0 vP0 + ~d0)+f§“B( )dm

d Qa
e Substep b-2-1 Equivalent transformation x° [, dz = x°|A| §, dz =
Zrd 7{ C5 s (W) + M567) B (—xéDf;(vg’o) + 52 (¥0) + Kfjo(vd’l)> dz
+ Zm% Clinesh(0%) + M56°)B ( s5; (Wd1)> dx

:Z fMeB (230,003 +92°) + f3'°B <g0> dx
d

Qa4
e Step b-2-2. Proposition 142 —
Zrd% ClinShi(07) + M560°)T™ (‘xéijo( )4‘593 (V%) +Kx (v )) dx
—i—Zrd% Ciinpshp(0®) + M50°)T™ ( fjl (wd’l)) dx
=3 7{ FAeT (230 s + 520) + T (05°) do
d Q4
e Step b-3 Definition 138 and Proposition 132 —
Y ra ]{ T(Cq (s + ME0) (—ah Dy (o) + 55 (799) + K3 (v2) ) dada
+) g }[ T(C5 i (spp0° + MEO7)) st (wht) dalda’!

= zd:rdjé T (f35) ( 03501)3 57‘“)) +T< 3{‘45> V30 da¥dz!
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e Step c-4 Denoting by ¢! = (uf, ul, u3), Assumption 165, Proposition 153,
Proposition 160 and Property 165 —-

Sra o o, (O (—3 DR (S) + STR () + K (u!) + sfi(s1)) + Myy6°) -
(<D ") + S5 90) + K2 (v 4+ ) (i) daPi
_ZdrdeﬁXQlf < ng +Ud0>—|—fM0 d,0 d.TOd,Il

O

Lemma 170 [Sizth Block: Microscopic Problem E]
(a) @' is solution to (3.15) with i, = dy¢°, ¢; = af; and Q' = Qp,, then

81<p —Z&wogo 1Pt

1. . . - 0 _ 7.0
(b) 0~ is solution to (3.15) with u, = axge ; Cij = kijmﬁxgl

and Q' = Q.. then
010" = Zaxoeo 1 Co STin QF x QL.
a=1

(c) 8" is solution to (3.15) with pu, = 0,0 6", ¥ = k° and Q' = QL. then

z]\ﬂuxﬂli

00" = Zamoeo ¢S in O x Q4
a=1

(d) 0" is solution to (3.15) with p, = 0,06°, ¢ = k° 102 <l and Q' = Qi
then "
0,10" = Zaxoeo (e in Qh x Q.
(¢) =2, 0n (k0,1 9|Qﬁ oL, ) 0 and H‘Qu oo, Q‘qugl .
+
(f) _Zz,j am (l{joa 10|Qu 5102> = 0 (]77(] 9|Qu 8102 0|Qﬁ><ﬂl 0 + glﬂuxﬂll)te s

where 07 and 0~ are solutions of Equation (3.20) and Equation (5.21).
(g) Let ¢t = b0 + ¢V + UK 1610 then ¢ ¢V UK and 610 are solutions

to Equation (3.18) for i, = DiZ(ug), Fonke = S,fZ(ﬁO), Hpe = K,f,:(ul) and for
nghk = M;;6;n0;1 and pu,, = 1. We have

Sh;(ng) Z Lpg’hk(Dm (ug))

Shlf(C %) =2 Lp q,hk(Sm (%)) oo
Silelc(gl ) 22:0 (5ha5k30xo u3 T RR2e
Sik( ) Sl(e‘Qﬁ ><Ql )
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Chapter 3. A two-scale model derivation for a SThM probe

(h) Let ' = P 4 gbS 1 UK 4 gl0si 4 ¢lOpe  fhep LD ¢S LK ¢1fs
. . 0 0/~
(m(](; gll’ept are soolutzon.esm Equation (3.18) for pu zoDﬁk, 'uhflf = S7.(W°), . =
K7 (ub), for Cijnr = Q7j0indjk and puy, =1, and for ¢y, = Qijt(;ihéjk and pu,, =1
respectively, where

b= M0 in Qgop  and Qi = ¢ Mi0" in Q00
0 in Qp,, M;; in Qp,,

and 0~ and 0" are solutions to (3.21) and (3.20). We have

siu(s0) =32, Lizghkw;?q/ (u3))
sti(s1%) = 32y Lo (S50 (%))
s8L (M) =37 OnaOraOun i}
sr(6H95) = Lil™ (0s o )
sha(h77) = L™ (0l on )

Ol
in €.

Proof. a-Source term. We choose v = 0 and v&1 (2%, 1) = w(z!)y(2*) in
(3.35) with ¢ € C*(94) and w' € C°(Q},).

e Step a-1 Proposition 1, Lemma 154, and the linearity of the integral —

(1+)\90)_1}I{ a?jax}golé?x%vﬂl de’dat = —(1—}—/\00)_189534,00}{ a?a(‘?xl;vE’l dadx’

Pt QPt

(3.40)

e Step a-1-1 Equivalent transformation —-

1

e Step a-2 Proposition 143 with 11, = 9,0 ¢° =

0 1 El 7,071 _ 0 0 El 7,071
aijﬁx];go 00 dadx ——8xg<pj§ Wi 010" dx”dz

1 1
Pt QPt

2
1 _ 0 1,Pt
D" = Zlazg@ &,

as announced.
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3.3. The SThM Probe model derivation

H,0 H0 H1 H1
b-Source term We choose vy = 0, v3"° = 0, vy = 0 and vy (20, 2') =

w(z")h(2) in (3.36) with ¢ € C(Q4) and w' € Coo(Q4;), the proof is the same
as for Step a-1 to Step a-2.

HO __ H1 __ HO __ H1 __ 1 0
c-Source term We choose v, =0, vy =0, v3° =0, v3 = w(x")P(z)

in Qf x Qb, with ¢ € C*(Q5), w! € C°(Qh,) and vs"' = 0 Qf x (4 U QL) in
(3.36), then the proof is the same as for Step a-1 to Step a-2.

HO _ o H1 _ o  HO _ o  Hl _ | 0
d-Source term. We choose vy =0, vy =0, v3" =0, v3° = w(x")P(z)

in Qf x Q4 with 1 € C=(Q) and w' € C°(Q) and v5"" = 0in Qf x (U, U QL)
in (3.36), then the proof is the same as for Step a-1 to Step a-2.

e-Source term. We denote by Fé’ia and Fé’igg the top/bottom and lateral
boundary of QLq,. We choose vi* = 0, v = w(x)(2°) in Q) x L, with
) € C¥(Q), w € CX 1 (QLq,) in (3.36) =

sios UTsibs
/ k?jﬁmleoax;wl dz’dzt = 0.
QL ! ‘
Si02
e Step e-1. Lemma 156-(g) and Proposition 146 =
0" =0

|25 x Q0 Q5 x4,
HO0 _ HO _ 1 0y ; i 1 ;
f-Source term. We choose v, = 0, v3 " = w(x")P(z?) in QF X Qf;oe with
b € CO(Qf), w € % 1. (o) in (3.36) =

1,L
Lgide

/ k0,10°0,w" da’da’ = 0.
Q ! ‘

5102
e Step f-1. Lemma 156-(g) and Proposition 145 =
0 _ 0 + g0 -
H‘QgXQéim - QIQ?’)XQ%’EQ _'_H‘QgXQéie ’

e Step f-2. Lemma 127 —

—/ Gxg(k?jﬁzﬁo)wl da’dx' = 0.
Q J

1
Si02
e Step f-3. Lemma 118 —
— 0,1 (k(j0,16°) = 0 in QL x Qs
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g-Source term. Let w?! = 4*(20)w?(2!) with ¢*(2°) € CQ’O(Q%)?’X?’, w?(z') €
C*(Q3)?, and let other test functions equal to 0 in (3.37) =

o, (O (DR + ST KT+ 74(61) + M) 7' ) i =0
e Step g-1 Equivalent transformation —
/ thkShk Sm (w?) da'! = /Q C]th}fk( )Sgc (w?) dz'
5
- [, oSSy ) i

/ thkth:( I)Sfjl(WQ) dz'

_ / Miy0°8% (w?) da’
o

o Step g-2 Let ¢! = ¢MP + ¢V + ¢UK 4 ¢19 and separate equation =

{ fgl z;hkzshk( 1D)Sx (w ) dr' = fg; 5U3Oghk hk(UB)Sx (w ) dx!

¢bP s xl-periodic in Q4

¢\ is zl-periodic in 2,

{fgl Jhkshk 15)596( ?) dat = fm ik NO)Sx( %) dat

I is wl-periodic in Q1

{ le zghkshk< 1K>Sx (w?) da' = fgl ]thhk )Sfjl(wQ) dz’
and

1,0 ;

le ]hkshk 10)517 (w?) dat = fgl M; GOSZE ?) dat
L (3.41)
¢Mis xl perlodlc in 5.

e Substep g-2-1. Proposition 116 Equation (3.41) =

/ Ozjhkshk< 10)Sx( / ij |Qﬁ oL, x( )dﬂﬂl

/ Myl o S5 () do’

Si02
SlO2
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3.3. The SThM Probe model derivation

e Substep g-2-2. Lemma 170-(e) =

/ Ciings st(s IG)SI (w? /91 ij \Qﬁxgl ’Z( ?) da!

/Q o Myl o St (w?) da’!

Si02

e Substep g-2-3. Proposition 117 —
0\ oz ;t
/ Czoghkzshk ! )Szg / ij |Qﬁxgl ( )dﬂfl

e Step g-3 Lemma 154, Proposition 144 —

Shllc( D)= quLisﬁhk(Dm /(u3))
D qu/hk(Sx ,(u%))

sp(st ) =32, 'q qu’hk(Kx (u'))
(¢

) iQLkSl(emﬁXQl )

Ol
in €25.

h-Source term. Let w! = 4*(20)w?(2?) with ¢*(2) € C5°(Q5)>3, w?(2!) €
C°(823)%, and let other test functions equal to 0 in (3.37) =

" 7{ (GO (—2AD5 () + S E0) + Kl (') + s7u(6Y)) + Myyf”) S5 (w?) da' =0,

L) and sfi (6%

1)

The proofs of the linear relation for s%, (¢"P), 5%, (s are the same
as in the proof of (g). We detailed the linear relation for sﬁlk(g in the following.
We start from the (3.41) and use the same notations for the steps.

e Step h-2

{fgl jhkshk (s"9)S5 (w?) da' = me 0785 (w?) da’

¢ is xl perlodlc in Q.

e Substep h-2-1. Proposition 116 Equation (3.41) =

/Cghkshk 19)52( / ij |Qﬂ oL x( ) da!
—/Ql MijQ?Qﬁ al Sw ( ) dl’l

Si02

_/Ql Mty or S () da’
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e Substep h-2-2. Lemma 170-(f) =

[, Gt ) ast = = [ My g 57 )
— / MwefQu ot S (w?) da!
Qéi02
- / Mijflg . o 0785 (w?) da'
ion et

—/1 Mijfls o, S5 (w?) da!
Q
e Substep h-2-3. Proposition 117 =

/ zjhkshk 19)Sx( ) ! /QU Q% x QL ( )dl‘ _/ themuxgl Sm( ) da’

with
Mij in Qél 0 in Qél
Si _ . 1 Pt + 1
i sze 1111 QSiOQ and Q’L] — M’Lje. IHIQSiOZ
0 in Qp, M;j in Qpq

e Substep h-2-3-1. Let ¢!¥ = ¢l'¥si - ¢1frt and separate equation =
:rl 1
le ]hkshk HOsi )S'Lj (UJB le QS Q‘Qﬁxgl ij ( ) dz!
Z‘l €T
fﬂé zyhkshk(gl GPE)Sij (wS le themﬁxgl SZ] ( ) dQJ
e Step h-3 Lemma 154, Proposition 144 —

shi(sh) = 2551(9@ L, ) and s, (s17%) = Li;f“(%u ) in Q3.
|
Lemma 171 Lospr = —0padr3 and shk( Y =37 Onalk3Ouo us

Proof. Source term
O SE(CPIN S (w) dat = — 52 (w) dz* for all w € C(Q1)"
o ijhk™~ hk iJ o1 z]pq ] f ’

e Step 1. Equivalent transformation =
/ whk@ L¢P 1 W; dz’ —/ c?quﬁm%wj dx'.
QL foX!
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3.3. The SThM Probe model derivation

Step 2. Choose p=a, ¢ =3 —

0 3,1 1 _ 0 1
QL Ot

Step 3. Proposition 128 and factoring =

/Q1 c?jhk (%C??”l + 5ha5k3> axgwj dz' = 0.

Step 4. Let (7;),_; 55 to be the solution of 8‘,,:}117'1C = 0palp3. factoring =

/ c?jhk:ax}l (C‘,f”l +7k) Dprw; dz' = 0.
ol

Step 5. Proposition 147 and Proposition 148 —

)\k = x36h015k3 and Ca3 ! + T = 0.

e Step 6. Equivalent transformation —
o = O halks.

Step 7. Proposition 144 —

Lasik = —0nadrs and sy, (") Z5ha5k33x0 ug

Lemma 172 [Seventh Block: Macroscopic Problem]
(a) ©° and 6° are solutions to the coupled weak equations:

(a.1)

Q4 xQL,

CLH 0 B0 7.0 _ |F01| 0. E0 7.0
7{u+w°a°¢a v dx ]v’ dz”,
Q

(a.2)

Pt 3,Pt sio2 Si02,* 5 1\ HO ;0
r fﬁ ks O 09\9” al, 19) 303 O dz® +r ]{u glﬁnxﬁ}pt(% ks dx*) vy dx
o Q Ql

Si02

0
— P ?{ —a”’ f 5 +alg“3t Oia + 01 E5FY) dzt) 0,0 0 @ 00 20 da®
Qf 1+A9lﬂuml ( Q})t( 7 ) o) dT) Ong o
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0 . .
(b) Qlﬁgxﬂéi is the solution to
rgi% k2 Sla 9|Qn oL &covz dz® =0

(c) Q?ngﬂé. is the solution to

Si 3,51 HO ;.0 SiO2 Si02,~ ; 1y, HO ;.0 _
3 /Q k. 809|m a, Oy dx”—r3 ]{ QQuXQéi(ji k; dr') vy dx” =0
3

1
Si02

(d) (Ua) 4o and ug are the solutions to

H,DD 1z H,SD ga® (0 2,D
/Qﬁ (Cpqqu ((u )+Cpqpqqu( )+ My, 9|Q"x91

2

v'q'pq 'qd'pg=p'q

)P
+/Q,j (OHSDDac (u )_I_OHSSSx (@) + M2S€|Qﬁ><gl> S
) D

Jr/N ((JHDDD‘” (ug) + CIP S5 (@) + MEPPY
Q3

p'd'pq p'q'pg =P’ q

3,D,Si
Q4 xQL, + M Qm‘ixgl

3,9,8i 29 (=0 0
P'd'pa P'a'pa”p'd |04 xQL, + My, 0|Q‘i ) Spq(v ) dx

+/ (CHSDDz (u )+CHSSSx () + M3SPt9
o4
_ 0 0
—/ —qaﬁmgvg—i-f 113+ o ada:
ot

Proof. a.l1-Source term. We choose v € C*°, () and vP! = 9,0 vPO9L"" €

Co(Qf, C2°(Qh,)) in (3.35).

0

e Step a.1-1 Lemma 170 =

al.
K 0 1,Pt (4) E.0 B0 1Pt 01
ﬁﬁx%t 1+ A\ <X{1 2}8 0§0 +0 20 P 0, f > ( X{1, 2}8 0V + Oy v %fa ) dzldx

(3.42)
T
Qe Jr

F00E 040 dat

01 xDgy

e Step a.1-2 Proposition 128

0
al.
(5,54 OpE"" Oi + 0, 17Pt5x Oax B0 120 o
figmlgtl—i—)\eo(m nés ) L8 Dag 0,070 dada

T

‘th’ 01><F(1)1

jOUE,O dxodlfl
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3.3. The SThM Probe model derivation

e Step a.1-3 Factoring and definitions (166) =

H
CL
7{ 1+ )\908 0900310 vE0 dadat dax® ||QOI|| jOUE,o d:cﬂdxl,
% Pt

with G ‘?gQ1 a j[j +0 161 Pt)(dia + axllg(ll,f)t) dx!

a.2-Source term. Choose vy =0, vi"' =0, vi"0 € C@Qﬁ (Qg;C;’izégt(Qéim))
and vi"! = awgv?{ﬁog;ﬂ in Q4 x QL, in (3.36), where D45% is the lateral boundary
of Qgi0a-

e Step a.2-1. Lemma 170(f) =
TPt fé;ﬁ Ql ]{jo (X{l 2}8 090 + a 908 Cl Pt> (X?I)Q}a O’US + az Oale <(1);Pt) dxodxl
X

+7’§’102 k%@nyOZ?z;vH’O dx dzt
Q4 %0l ’ !

Si02

0,50
— Pt @i 0 1Pt 1o - -
= —r ]igxn}% YL (X{l 20000" + 00 0° 01 (5 ) (X{l 0003 + O v3 0,1 ¢ ) dx’dx

e Step a.2-2. Proposition 128 —
rptj[n ko (05 + 0, 1(1 P (850 + O, Cl 70,0 6°0, ov Y daldat
QxQL,

i H
—H‘?OQ]{ k:-ojaxlé’oaxw?) Y dada!
Q4 x QL ! '

8102
= Tptf —ijgp 5 ((5 s+ 0 151 Pt)((;m + 811521%)810 (poazo Ugi’o dadaxt
aixal, 1+ A0 : s *
e Substep a.2-2-1. Lemma 127 —

rptj{ﬁ k9 (5j5+alg“’t)(5m+a 167 gcoeoaov?) dz’dz’
QExOL,

—ri02 0,1 (k?j@xle()) 0 420dxt + 502 k%@xﬁonxlvf’o da da?
Qbxal, g aixrks g °

Si02 Si02

0
= Pt fé;ﬁ o ﬁ(@g +0 151 Pt)(5ia + 896%53’“)6 Oaxo U3, O da®dxt
3730y
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e Substep a.2-2-2. Lemma 170(f) =

Pt j{u kY (5j5+a1g1Pt)(5m+ax1c;’Pt) eoamwg da’da!
Q4 xQl !

373 py
Si02 0 + 0
+1 ji Oy 00070 dada

8102

a0 0
= %ﬁ %(53,8 +0 151 Pt)(éza +0 151 Pt)a 09008:1:0 U3g d:vodx
ofxaL, 1+ 1% <,

e Step a.2-3. Choose v3"’ € C>,(€2) and factoring —>

aﬂﬁ (

Pt 3,Pt 5102 Sio2,* H,0 ; 0

r fﬁ ks O 09\9” aL, 8mov3 da® +r j{n H‘qu%tk:,, vy dx
Q4 Q

0

a;

= TPt% +<5J5 + B 151 Pt)<5ia + Qtlfi’Pt)axO 8009008900 U;{;O dl’odxl
anﬂl ]._’_Ae'QuXQllDt i B a

with

oy = ]il k(055015 ) (Biat0, (57" dart and k3'O%F zf k0,107 da'.

1,+
Pt FSiOQ

b-Source term. Choose vs® = 0, vi"' = 0, v}° € CdQﬁ (Q4; L Lat(QSIOQ))
and vi"! = 8xgv 0¢cLSiin O x QL in (3.36), where Félé’g is the lateral boundary
of Q0

e Step b-1 Lemma 170 =
T;i f;zn o k (X{l 2}( )3 09 -+ a 80 }CESi) (X{LQ}(Z)& 0/02 + (9xo’02 8 Cl Sl) dxodx1
2 X3 g4

i H,0
+r5i02 ]{ k0,16°0,00, " da’dat =0
J 2
Q5 x QL

Si02

e Step b-2. Proposition 128 —
Tglj{ k (5Jﬁ + 0 1C1 Sl)<5ia + (%1{(11&)81,0 908 0’02 d:l:‘od33
0fx 0l ' °

—H"Slmf 8 1«908 v * dx’dat =0
Q5 x QL

Si02
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3.3. The SThM Probe model derivation

e Substep b-2-1. Lemma 127 —

74 R 00 B+ 0,y CL) 0,00, st
Q5 xQd '

i H
— 502 Oy <k9-8x1_90> v daldat
Ohx0ly, N

Si02

i H
45102 Nyl (k‘g-@xﬁo) vy dx’dzt =0
Q'i <DLE N 7

Si02

e Substep b-2-2. Lemma 170(e) =

7S jau 1k; (i + 0, 4151)(5m+a glsl)axoeoawz da’da' =0
Rl

e Step b-3. Choose v3"” € C>, (%) and factoring —>

o0k
Si 2,Si

r k.5 Oy (9 0000 dz® =0
2 fé;ﬁ |Qﬁ Ql To Y2

with
5 = R G3n+ 0yCy B+ D CE)

Si

c-Source term. Choose v2 = 0, Hl = 0, HO € CaQ” (Qé, 1Lat<QsloQ>>

and vi"' = 9,0 vf O¢LStin QF x QL in (3.36). Follow the same steps as the proof

for (c), we get “the conclusion
Si 3,51 HO 0 S102 8102,’ H,0 07.1
s / k.5 00 0|Q“ Qi Oyo V3" 7{ 9|Qn vy dxtdrt =0

with

kS = 7{ 1 k(05 + 0y (00 + 0,1CLY) dat and K5OPT = ]f k350,10 da'.

Si Fé162
d-Source term. We choose 10,03, v € C®(QF), for d € {2,3}, let
paij paij*pq

ST (W) = T D2 (09) + Loy Sin (V) 4+ 3 8i5050,0 05 in ) x Q)
B
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Chapter 3. A two-scale model derivation for a SThM probe

e Step d-1. Lemma 170, Proposition 128 and Lemma 171 —
IEO NQ’S :EO —~ 9 i
To fé;ﬁ o (Cz_yhk: < ’thp’q’(ug) + Lp/q/hksp, ( 0) + L2 Si (0|Qﬁ Ql )) + quO) .
2 X329

Pqij = pg
1:0 ~3 7 33 ~
3 ]{ (OO (T D (u8) + TS () + M) -
QixQl

(L CDE ) + L S (F 0)) dz0dz!

(L WD’” (v3) + L ® e (v 0)) da’dx?

pqij~ pq
+T3]{ (nghk ( 3031(‘9‘qu91 )+ Ly, ept(emuxm )) + Mij90> ‘
QixQl

(L DY) + Lo ST(¥ 0)) dz°dz!

Pqijtpq

_Zrd]{ I (o0 4 0) + A0 data
e Step d-2. Lemma 170(e) and (f), factoring and definitions 166 =

p'q'pg~p'd

H,DD H,SD qz° [~ ,D 20
/Qﬁ (Opqu () + CSD g (70) 4 M2 emméi).z)pq(vg) dz
2

H,SD H,55 ga® (0 g 0 ~0n 10
+/Qii <Cp‘”"1D (uz) + Cpqmqu( )+ M2 H\Qﬁx91>.qu(v)dw

p'q'pg =p'q’

+ \/Qﬁ <C;:Iqu§)Dac ( )_|_ CHSDSx (~0) + ]\43DP(’,9‘Qﬁ <o, +M3D819‘Qﬁ><9éi> . D;g(vg) da
3

H,SD H,55 ga® (30 3,5,Pt 0 3,5,8i z9 (50 0
Jr/Qu (CP‘H"ID /(u )+Cpqpq5pq( ) + My~ 0|Q’*x9113t + My ‘9|Qﬁx9éi> S (V7) du
3
_ 0 0
_/ _QQamgUS+f U3+ ala d[E
Qi

for a,b € {D,S} and m € {Si, Pt} the homogenized coefficients are defined
~d,a

H,ab 2 9 i
by Cp q'pq X(Qri le JhkLp q’hkquwd‘r M2D fﬂl ( z]hk ¥+ Mu) quzjdx

MES = fo (CouLin® + M )Lmd:c and M3 = fo (CuLit” Qm) L.dat,
MO 0 M0
the homogenized force loads are ¢° = X(Qd) fg}i i fM0 ot 9 = (Qd) §Qé fa

dz! and f9 = X(QZ)(:BO) f% £a10 dgt.
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3.4 Appendix I: The Reference Proof

This chapter follows the same reference proof as introduced in chapter 1 Section
1.3 with some modifications corresponding to the new approach. In the previous
approach, the weak expansion of two-scale transform i.e T'(u®) = u® + cu® is ap-
plied. The difficulty of this approach is that eu' is non-periodic. In this approach,
Assumption (152) which allows a periodic eu! is applied. This reduces much of
the proof.

Only different proof steps between this approach and the previous one is dis-
cussed here.

Assumption 173 [Two-scale approzimation of u] There exist u®, ut € L*(QFx
QY such that

K / u® Bu dx — Iil/ u’ v dx’dzt = O(e) for all v € C(F x Q) (3.43)
Q QFxQ!

and /10/ u® Bv dx — :‘il/ (u® + eu'yv dz’dz' = €O(e) for all v € D(QF;C°(QY)).
Q QFxQ!
(3.44)

In this assumption, we can prove that u' is periodic.

Proposition 174 [Two-scale Limit of a Derivative] If u® is a sequence bounded
as in (1.15) and satisfying (5.44), then u° is independent of x' and

K / O, uBv dx — /il/ nv dz’dzt = O(e) for all v € C(F x Q)
Q QfxQ!

where 0 ol
U U
n= @ + % (345)

Moreover, if v =0 on I then u® =0 on T'%.
The proof is split into four Lemmas.
Lemma 175 [First Block: Constraint on u°] u" is independent of x'.

The proof is the same as for that of Lemma 22. In step 2, instead of using
operator 1™, we use two-scale approximation (3.43) directly. The other part of the
proof keeps the same.

Lemma 176 [Second Block: Two-Scale Limit of the Derivative] n = g—gj+

out
ozl
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Chapter 3. A two-scale model derivation for a SThM probe

Proof. This proof starts from the source term

du®
U =g’ Bud 3.46
li/Qdm vdx (3.46)

with v € C (% C ().

e Step 1. Green formula (1.12), Proposition 16 and the linearity of integrals
—

Jv KY Jv
— _ .0 eR(—__ _ ER(——
U=—k /QUB(ﬁxﬁ)dx 5/QUB(8ail)dx+O(6)'
e Step 2. Assumption (3.43) in the first term and (3.44) in the second one
—

0 ! 0 0
U= —Iil/ W02 da0drt - uo—vl dxodxl—/fl/ ul—vl dx’dz'+0(g).
QExO! Oz € Jaixnt ox QfxO1 ox

e The following steps are the same as Step 4 to Step 6 of proof of Lemma 3.46,
we get
o’ N oul
1= 00 T ot

Lemma 177 [Third Block: Microscopic Boundary Condition] u' is Q'-
periodic.

Proof. Source term. In (3.46), we choose v € C23 (0% C°(2)).

e Step 1. The steps 1-3 of the second block =

ou® k! ou®
/il/ nu dadx’ — ml/ —v d2dat — —/ U da dx?
QFxO1! QfxOL axﬁ g Jaixnl ox

oul
_,il/ —— dz’dzt — /@1/ u'v np de'dat + O(e).
aixar O QfxT!

e Step 2. Lemma 175, and passing to the limit when € — 0 and Lemma 176
—

/ urv np da’ds(xt) = O(e). (3.47)
QixIt

e Step 3. Proposition 2 —-

u' is Q'-periodic. (3.48)
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Lemma 178 [Fourth Block: Macroscopic Boundary Condition] u® van-
ishes on T'%.

Proof. Source term. In (3.46), we choose v € C>(Q% CX(Q1)),

e Step 1. The steps 1-3 of the second block and u* =0 on [' =

0

ou® K1 ou
ml/ n v da’det = Iil/ —v da’dxt + —/ U dz’dx!
QfxO1! Qi xO1 81’11 € Joixnl ox

) 1
—1—1{1/ ilv da’dx' — ﬁl/ wWvng: ds(z*)dz' + O(e).
Qi xQl ox TExOL

e Step 2. Lemma 175, passing to the limit when ¢ — 0, and using Lemma
176 =

51/ uCvng: ds(zh)dz' = 0.
IxQl

e Step 3. Proposition 1 =

u’ =0 on I'.
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Chapter 4

Optimization for the SThM probe

Abstract. In this chapter we introduce an optimization tool and discuss its appli-
cation to the optimization of SThM probe developed in the NANOHEAT project.
This tool combines the house-made optimization software package SIMBAD with
COMSOL-MATLAB simulation. The parametrization of the probe and the sim-
ulation conditions are given first. Then the contribution of each parameters are
analyzed independently and some influential ones are selected. In this step, the
optimization principles which could be used in the similar design are summarized.
Next, the optimization of parameters for the identified tradeoffs are implemented
and the results are shown by the pareto front plot.

4.1 Introduction

This chapter is devoted to design an optimization tool for the application of the
model from MEMSLab. Since this part of work is supported by the NANOHEAT
project, this tool is applied for the optimization of the SThM probe developed
in this project. This tool is a combination of the house made optimization soft-
ware package SIMBAD and the COMSOL-MATLAB simulation. The application
of this tool for the optimization of the SThM probe contributes in two aspects.
The first one is the general optimization principle for the design and the second
one is obtaining an optimal design which improved much the performance than
the original design. The first contribution comes from the general analysis for
each parameter and the second one comes from the trade-off optimization for the
influential parameters.
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Chapter 4. Optimization for the SThM probe

4.1.1 Organization of the Chapter

This chapter is organized as follows: In Section 4.2, the optimization problem for
the SThM probe is described. It includes the description of the probe structure, the
physical functioning of each component, critical phenomena should be considered
in the design and the design goal of the probe. In addition, the limitation of the
optimization without using a specialised tool is illustrated. In Section 4.3, the
parametrization of the SThM probe has been done but only the figure and values
are reported. In Section 4.4, a single simulation used in the optimization loop
and some useful features are discussed. In Section 4.5, The house-made software
package Simbad is briefly illustrated. Then in Section 4.6.1, the discussion of the
influences of each parameter is detailed and design rules are summarized. In the
Section 4.6.2, trade-offs of some influential parameters are found by SIMBAD and
an optimal design is reported.

4.2 Statement of the design problem

The SThM probes used in NANOHEAT project, see [43], as shown in Figure 4.1,
are designed as three-layered structures. A thick Silicon cantilever is at the bottom
layer to support the whole structure and a Si02 layer is deposited on it to serve as
an electric insulator layer. A thin Platinum trail consisting of four legs and a sharp
tip is deposited on the top layer. The internal two legs are used to form a heating
circuit and the external ones are for tip voltage sensing. The piezo-resistive sensor
which is used to measure the tip displacement under a force is embedded in the
silicon layer, covered by the SiO2 layer and located at the bottom of the middle
part.

One can see that

the metal lines are
off-center and have
different thickness

(a) Samples of the SThM probe (b) Tip

Figure 4.1: Samples of SThM probes
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4.3.  Parametrization of the probe

Two critical phenomena are considered in the design. They are bimetallic due to
the differences of the thermal expansion coefficients in each layer and dependence
of the tip-sample interface resistance on the contact pressure, see |36][40] and [54].

In view of the application, the following design objectives should be achieved.
First, a flexible cantilever is needed to prevent the damage of the the fragile tip
when the tip-sample contact force exceeds some limit. Second, the tip displace-
ment caused by the bimetallic effect should be reduced. Third, a high efficient
resistive tip is needed. Last, the piezo-resistive sensor should be sensitive to the
tip displacement at least for the photographic measurement. These design goals
are characterized by some features in the simulation which will be introduced later.

Some efforts has been tried for optimization of this probe by trial and error
method. As shown in Figure 4.1(a), a lot of samples are designed and fabricated,
then the best one will be selected according to their experimental performances.
It is time consuming and expensive. In addition, they could not understand the
main optimization rules which might be useful for future works. On the other
hand, the objective features could be predicted by numerical simulations which
is much faster and cheaper than experiments. The simulation could be used by
optimization software packages to find the design rules.

We observe that each sample in Figure 4.1(a) contains a Platinum trail, a
small tip, see Figure 4.1(b), some gaps near the tip and some gaps at the bottom.
So instead of studying these samples one by one, we introduce a parametrization
which more or less can covers all these samples and the analysis is done for this
abstract probe.

4.3 Parametrization of the probe

The parametrization of the geometry is the first step for optimization. It includes
the parameterized diagram, the initial values and limits of each parameter and the
geometry constraints between them. In this part, the discussion of the complex
constraints are not reported.

The parameterized figure of the probe is shown in Figure 4.2(a) and the detailed
figure of the tip is shown in Figure 4.2(b). The red dotted line shows the watching
points in the heater and these points are indexed increasingly from bottom to the
top An additional parametrization of the tip is done for studying the influence
of a non-regular shaped tip. Tts graphical expression is shown in Figure 4.2(c).
The initial values and limitations of parameters is reported in Table 4.1. The
parameters SiTh, SiO2Th, PtTh and PiezoTh correspond to the silicon, SiO2 and
Platinum layer thicknesses and the piezoresistive sensor thickness.
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Twh2

NCb Wg1Whb |

(a) Cantilever (b) Tip (c) Test Tip

Figure 4.2: Parametrization of the first probe design

4.4 Simulation

This section is focused on the implementation of the simulation which is used in
the optimization. First we describe the boundary conditions. Then we explain the
COMSOL-MATLAB modules used in the simulation and objective features that
are used in the optimization presented in the following section. The simulation is
written in a COMSOL-MATLAB script so that to be combined with SIMBAD.
This work takes a long time and we close this section by illustrating the difficulties
met during its development.

The simulation is done for the left-half part of the probe thanks to its symmetry
property. A symmetric boundary condition is thus imposed on the symmetric axis.
The probe is clamped at its bottom where a 300K room temperature is imposed.

Two COMSOL modules are applied independently to extract the needed ob-
jective features. Joule-heating thermoelasticity module is the first one used to
simulate the Joule-heating and the bimetallic effects. An electric source is im-
posed on the inner leg of the metal trail and the right end of the tip is grounded.
Six objective features are extracted from this module: the maximum absolute value
W of displacements generated by bimetallic effect; the maximum temperature 7T
of the tip; the heat flux Flux crossing the interface between the heater and the
trail; the difference T'd between the mean temperature in the tip and that in the
heater; the voltage drop SV on the sensing leg when a —5uW heat flux load is
imposed to the tip; the heat distribution in heater is another objective feature, it
can only be expressed through a graph.

The second module is a solid mechanic which are used twice with two different
loads to extract two objective features: the maximum absolute value D of dis-
placements for a 1uN force imposed to the tip; the mean value S of Von-Mises
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4.4. Simulation

Name | L H1 rl H2 12 r3 H d2
Initial | 203 407 103 125 71.5 | 11.5 555 3

Limit | - - - - - - - -

Name | d1 Web Wu hf Whb | Wgl d3 Wg2
Initial | 3 10 5.87 9.4 20 D 9 150
Limit | - 2710 275.87 2714 | 2720 | 25710 | - 1287160
Name | Wb HJn Win Hsb | Ws HsT HTb HTn
Initial | 30 80 5 30 10 21 8.5 24
Limit | 15775 30780 5730 |- - 10721 | - -

Name | WTn WTh HtT Htb | Wtb | Wtn Htn Wtg
Initial | 4 16 5 8.5 4 1.5 8.5 4.57
Limit | 4714 16721 - - 478 | - - 274.57
Name | Twhl Hh1 L51 h51 L17 | h17 Htip SiTh
Initial | 1.91 1.91 28.5 62.27 | 31.08 | 72.5 0.04 Y

Limit | 0.171.91 | 171.91 - - - - - 375
Name | SiO2Th | PtTh WGP | WP | HGP | HP PiezoTh | Twh2
Initial | 0.2 0.1 11.25 | 2.5 22.5 | 1.7 1.5 1.91
Limit | 0.270.5 | 0.0570.15 | - - - - - 0.171.91

Table 4.1: Initial value and limit of parameters

stress in the piezo-resistive sensor for an imposed 1um tip displacement. Feature
D indirectly expresses the probe stiffness.

An simulation is done with the parameters in Table 4.1 for a 0.5V voltage
source. The curve in Figure 4.3(b) shows the temperature along the watching
points introduced in Section 4.3. It decreases to the end of the tip. This phe-
nomenon is made more visible in Figure 4.3(c) where the temperature variations
are represented by color and also by deformation of the volume. Figure 4.3(d)
shows the current density distribution, it provides a good explanation for this phe-
nomenon. Because of the low current density in the upper end of the tip, that part
can not be self-heated. The singularity of the current density at the corner comes
from the property of Laplace equation which governs the electric equation. The
other objective features in this simulation are D = 0.5248um, W = —0.09915um,
T = 45.76K, SV = 23uV, S = 2.13MPa, Fluz = 11.65W/m?, T'd = 0.4863K. It
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wolsme: Tempera-ure (K)

Temperature distribution along the heater

—e—Twh2=1.91um

W
Temperature(K)

0 10 20 30 40 50 60 70 80

300 Watching point index
w 3c0

(b) Along watching points

uw;‘

(c¢) Around the tip (d) Current density around
the tip

Figure 4.3: Temperature and current density distribution of the probe

takes 130 seconds and 6000 elements are used.
Work History

This report is simple but the process was difficult. This work has been started
with the 3.5a version of COMSOL that offers poor possibilities of script program-
ming. The scrip was not established until the adopting of COMSOL 4.2b. It accel-
erates significantly the work because the standard MATLAB functions can be used.
This makes the programming easier and clearer. However, we found bugs that block
the process of the work. Precisely, the system cannot scale the equations correctly
when the non-standard geometry unit is used and the meshing function cannot
work for some small geometries. We derived the scaled equations expressed in pm
unit and identified the limits of each small parameters which allows meshing. We
fized all these bugs when the more powerful version of COMSOL 4.3b appeared. In
this version, equation scaling problem is solved and the meshing function is much
improved. So a robust script including material property setting, equation setting,
meshing and objective feature extraction is created. This rendered the scaled equa-
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tion no more necessary.

4.5 Simbad

The software package SIMBAD provides a generic simulation-based design tool
for investigating the behaviour of complex modeled systems. A MATLARB link has
been set between COMSOL and SIMBAD so that COMSOL models may be used as
an input for a design under SIMBAD. It includes the definition of the optimization
problem including initial value of parameters, parameter relative ranges, objective
features, constraints for geometry and objective features. It serves to transmit
current parameters between the two software packages. Finally, the results are
visualized and reported.The following driver functions are available:

e Design sensitivity and effects analysis

Used to quantify the impact of design variable modifications on the design
objective of interest. This general allows the design space to be reduced to
the subset of influential variables.

e Mono-objective performance optimization

Used to minimize a scalar function of the design objectives while satisfying
design constraints.

e Multi-objective performance optimization

Used to obtain an approximation of the Pareto front for the different design
objectives. This provides the analyst with a useful indicator for weighing the
trade-offs between the objectives of interest.

e Reliability analysis under aleatory uncertainty

Used to evaluate system reliability for one or more failure criteria with random
uncertainty a set of design variables.

e Model validation and uncertainty quantification
Used to quantify the impact of both aleatory and epistemic (lack of knowl-
edge) uncertainties in the design variables and system environment on the design

objectives and constraints.

e Info-gap robustness of design decisions to lack of knowledge
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Used to investigate the impact of lack of knowledge in design variables on
system performance.

Three toolboxes were used is this work. The design sensitivity and effects
analysis toolbox is used to quantify the impact of design variable modifications on
the design objective of interest. This allows the design space to be reduced to the
subset of influential variables. Then, the multi-objective performance optimization
toolbox is used to obtain an approximation of the Pareto front for the different
design objectives. This provides the analyst with a useful indicator for weighting
the trade-offs between the objectives of interest. Finally, the model validation
and uncertainty quantification is used to quantify the impact of both aleatory
and epistemic (lack of knowledge) uncertainties in the design variables and system
environment on the design objectives and constraints.

4.6 Optimization

This subsection discusses a multi-objective optimization for the SThM probe in-
troduced in Section 4.2. The varying of some parameters may improve some design
properties but worsen the others. For example, the increase of the silicon layer
thickness reduces the bimetallic effect but increases. In this case, the optimization
requires a trade-off between the two requirements. To the contrary, an optimiza-
tion of other parameters could be obtained directly from the clear understanding
of their contributions.

This subsection contains two parts. The first one is dedicated to study each
parameter and to identify those whose optimization requires tradeoffs. The second
one focuses on the optimization of parameters for the identified tradeoffs. A set of
solutions are reported in the pareto plot which facilitates the selection of optimal
designs.

4.6.1 Analysis by subset of parameters

The influence of each parameter is analyzed separately, but the analyses are pre-
sented for small groups to make the presentation easy. Precisely, the variables
are grouped into heater dimensions, T-shaped and tip-gap dimensions, layer thick-
nesses, trail widths and cantilever dimensions. They are marked by blue, green
and red letters in Figure 4.2(b), and by red and pink letters in Figure 4.2(a).

To make the result presentation easier, a special kind of chart, see Figure 4.4 as
an example, is used. For a parameter v with initial value v* and varies in [av?, bv?],
then the current variable v™ of v at level n is computed by v" = (a4 75(b— a))v°,

for an objective feature w corresponds to v with w® and w™ correspond to v° and
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v™, the x-axis represents the values of n and the y-axis represents the ratio w™/w®
corresponding to the variation of the objective feature.

Optimization for heater dimension The shape of the heater affects the tip
temperature and sensing voltage directly. It affects also the bimetallic effect
through the heat distribution in metal trail. First, we discuss the influence of
a polyline shaped heater, see Figure 4.2(c), on the tip temperature and on the
sensing voltage. This shows that the straight heater yields a higher sensing volt-
age and a higher tip temperature. It also exhibits their linear relation. So in the
following, the subsequent results are only for straight shaped heater.

1.05 T T T T T T : T 1 5
i i i ¢ | —o—d¥ ; : £ —o—dx
: : : —o—dx1 - L | —o—dx1
1 H H : —o—(x2 L 095 i H 3 3 %2
; : i . |——Nominal ; : i |——Nominal
; : ; 09r :
S 0.95 s S >
= - 5 :
] 0.85¢
0.9r . : s 2
08 ........ ........ Sy . e
i i I i | \ | L
0'651 2 3 4 5 6 7 8 9 10 0'751 2 3 4 5 6 7 8 8 10
Level Level

(a) (b)

Figure 4.4: Sensitivity analysis for varying tip width

In Figure 4.4, the platinum layer is heated by a 0.5V voltage source and the
sensing voltage is measured for a 10uW heat flux load to the tip. The increase of
width of any heater segment yields decrease of both tip temperature and sensing
voltage. We conclude that a straight heater with a small width allows a better
performance for these two features. In addition, the voltage-temperature curve of
each sample shown in Figure 4.5 exhibits the linear relation between them.

In the following, we discuss the heat distribution in the straight shaped heater
for several values of parameters shown in Figure 4.2(c). In Figure 4.6,

we use the kind of chart as in Figure 4.3(b). It shows the concentration of the
heat distribution in the straight heater. The effects of the width T'hw?2 of the tip,
the height H f and the width Wwu of the bottom part of the heater are discussed.

In Figure 4.6(a), the blue line with solid circles marks the curve of the highest
temperature concentration. It corresponds to the minimal allowable value of Twh?2.
Figure 4.6(b) reports the influence of H f where T'wh2 is fixed to its minimum and
a 0.2V heating voltage is imposed. The reduce of the heating voltage is to keep the
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Figure 4.5: Sensing Voltage VS tip temperature
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Figure 4.6: Heat distribution in the heater for a voltage source

tip temperature in a reasonable range. The differences of curvatures between each
curves are small which means that H f is uninfluential to the heat distribution.
But we still mark the curve of the highest temperature concentration in Figure
4.6(b) by a bold pink line where Hf equal to 8.885um. At last, we study the
influence of Wu where both of Twh2 and H f are fixed. The best curve is marked
by bold red circled line in Figure 4.6(c) corresponding to the upper limit of Wu.

The heat distributions in the straight heater for current sources are shown in
Figure 4.7. Figure 4.7(a) shows the temperature distribution for a 8mA current
source, and Figure 4.7(b) and 4.7(c) show it for a 2.6mA current source. The
conclusion is same as for the voltage source that H f is uninfluential, the optimal
value of Twh2 and Wwu should be taken their minimal allowable value and maximal
allowable value.

The optimization of the parameters in this group does no require any tradeoffs
between the objective features. In conclusion, the optimal heater should have a
wide bottom and a sharp tip.

Optimization for layer thickness We discuss the optimization of thicknesses.
Six objective features D, W, T, S, Flux and T'd are considered. Figure 4.8 shows
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Figure 4.7: Heat distribution in the heater for a current source

the influences of the layer thicknesses on these objective features.
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Figure 4.8: Sensitivity of objective features to Layer thicknesses

Figure 4.8(d) and Figure 4.8(e) show that 7" and Flux increase with the SiO2
layer thickness. The increase of the Platinum layer thickness causes the reduction
of the electric resistance and so increases the heating power in the case of a voltage
source. The thickness of the SiO2 layer determines the thermal resistance between
platinum layer and silicon layer. The SiO2 layer blocks the propagation of the
heat from the platinum layer to the silicon layer. When it becomes thicker, the
temperature as well as the heat flux in the platinum layer increase.

The inflection point of the green curve in Figure 4.8(b) corresponds to the
thermal bending tendency change. This change is discussed in the following.
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Figure 4.9(a) shows the variation of tip displacement with the SiO2 layer thick-
ness when the Platinum layer thickness is fixed to 100nm and the tip temperature
is fixed to 350K. The temperature is controlled by the heating voltage. The Si0O2
layer thickness varies from 0.2pm to 0.5pum. Two colored and deformed volumes
are used to detail the displacements when the probe is equipped with a 0.2pum and
a 0.5um SiO2 layer, see Figure 4.9(b) and Figure 4.9(c).

PtThick = 0.1 um

Wtip (um)
5 A b o 9w~ »

02 025 045 05

0.3 0.35 0.4
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(a) W-SiO2 curve for 100nm(b) Deformation for 200nm(c) Deformation for 500nm
Pt layer Si02 Si02

Figure 4.9: Tip displacements for different SiO2 layer thickness

In Figure 4.9(a), the tip displacement W starts from a negative value until to
be positive when the SiO2 layer thickness varies from 0.2pum to 0.5um. The zero
displacement happens when SiO2Thick reaches 0.370.35um which corresponds to
the inflection point in Figure 4.8(b) as explained in the following.

As shown in Figure 4.9(c), the deformation of the left of the two cantilever
legs are upward, but the deformation of the cantilever under the T-shaped gap is
downward. This comes from the heat distribution. On the other hand, this dented
shape under the T-shaped gap causes the upward displacement of the tip. A thick
SiO2 layer increases the dented shape and so increases the tip displacement. To
keep the probe smooth during its application, the SiO2 layer should be taken as
thin as possible.

Since the influences of the SiO2 layer and silicon layer are not related to the
kind of electric source, the discussion for the current source is only focused on the
platinum layer. Figure 4.10 shows the influence of the Platinum layer on the tip
temperature and on the tip displacement.

The increase of the platinum thickness increases the tip displacement and de-
creases the tip temperature at the same time. So its optimization does not require
the trade-off between these two features.

In conclusion, the thicknesses of the silicon layer and the SiO2 layer should be
taken their to lower limit to keep the probe flexible and flat. For a voltage source,
the platinum layer thickness could be used to optimize the tip displacement, but in
the case of a current source, the platinum layer should be taken as thin as possible.
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Figure 4.10: Influence of Pt layer thickness for current source

Optimization for cantilever dimensions
and of the two gaps around the legs of the cantilever are discussed. Figure 4.11
exhibits the influences of the parameters in this group.
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Figure 4.11: Sensitivity of objective features to the cantilever dimension

It shows that the parameters in this group influence mainly the probe stiffness.
Figure 4.11(a) shows that a wide middle leg and a narrow gap around it yields a
stiff cantilever. The pink curves in Figure 4.11(a) and in Figure 4.11(b) show that
the increase of W.Jn only decreases the tip displacement.
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In conclusion, the middle leg of the cantilever should have a uniform width, the
optimizations of W .Jb and W g2 require the trade-off between the tip displacement
and the tip deflection.

Optimization for tip gap and T-shaped gap dimensions The influences
of the tip gap and the T-shaped gap are discussed. In fact, these two gaps are
influential to the tip temperature for the original design. In that design, the probe
is equipped with a wide tip and a large area of the cantilever is heated, see Figure
4.3. But when the tip becomes sharp, their contribution becomes little. Figure
4.12 shows the influences of the tip gap when a probe is equipped with a 100nm
wide tip.
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Figure 4.12: Sensitivity of objective features to Layer thicknesses

The heat and the heat flux magnitude distribution of the probe is shown in
Figure 4.13.

It is clear that the temperature elevation is restricted in a little vicinity of
the tip and very little heat flux goes through the tip gap. The discussion of the
T-shaped gap is the same.

We conclude that these two gaps are not useful for the probe with a sharp tip.

Optimization for Trail dimensions The optimization of widths of the sens-
ing trail and the heating trail are discussed. Since they influence mainly the tip
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(a) Heat distribution (b) Heat flux distribution

Figure 4.13: Heat and Heat flux distribution around the optimized tip

temperature and the tip displacement, Figure 4.14 only reports their influences on
these two features.

Figure 4.14: Sensitivity of objective features to the track dimension

It shows that the increase of the sensing trail width does not increase the tip
temperature but only increases the tip displacement, the increase of the heating
circuit width increases both of them.

The same analysis is done for the current source and Figure 4.15 reports the
result.

The influence of the sensing circuit is the same but the influence of the heating
circuit is different. Both of the tip temperature and the tip displacement decreases
as the increase of the heating circuit width.

This yields the conclusion that the sensing trail should be as narrow as possible
and the optimization of the heating trail width requires a trade-off.
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Figure 4.15: Sensitivity analysis of track dimension for current source

4.6.2 Trade-off optimization

In this section, we find tradeoffs between different objective features for parameters
WJb, Wg2, Whb and PtThick which are identified in the previous section and a
pre-optimized geometry is used. The tip width is fixed to 100nm and the heater
bottom width is fixed to 5.87um, the sensing trail is fixed to 2um, the width of the
middle leg is set to be uniform, the silicon layer thickness is fixed to 3.5pum and
the SiO2 thickness is fixed to 0.2um. In the optimization, a 0.2V voltage source
is imposed to the heating circuit.

The optimization is implemented by SIMBAD together with COMSOL-MATLAB
simulation. It takes about 19 hours and 522 samples are computed. In the graph-
ical representation, see Figure 4.16, only four sensitive ones are selected because
of the limitation of graphical representation method. In Figure 4.16, each point
corresponds to a sample, their position is determined by their tip deflection, tip
displacement and tip temperature, and the color is determined by their sensor
stresses.
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Figure 4.16: Pareto plot for four objective optimization

We compare the performances of the optimal design and the original one under
the condition that they have the same tip temperature. So a 0.24V voltage source
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is imposed to the optimal design to obtain the same tip temperature as the original
one. Table 4.2 reports the comparison.

Feature | Original design | Optimal design | Relative change
D 0.5248 um 2.26pm +330.64%

W -99.15nm 4.66nm -95.30%

T 45.76K 45.09K -1.46%

S 2.13MPa 1.26MPa -40.85%

Flux 11.65W /m? 1.54W /m? -86.78%

Tdiff 0.48K 34.82K 7154%

SV 23uV 125uV 443%

Table 4.2: Report of one optimal design

Table 4.2 shows that the optimal probe is more flexible, the heat distribution
around the tip is more concentrated, the bimetallic effect is much reduced and the
sensing voltage is much increased. The cantilever flexibility comes from the thin
silicon layer and the wide gap around the middle leg. The drawback is then the
lower stress in the piezo-resistive sensor, but this could be remedied by applying
signal amplifier in the stress measuring circuit. The concentrated heat distribution
around the tip and the higher sensing voltage are due to the sharp tip. The sharp
tip together with the narrower sensing trail and the heating trail significantly
reduce the bimetallic effect. This section is closed by Table 4.3 which reports the
parameters of the selected optimal design.

Name | L H1 rl H2 r2 r3 H d2 dl Weceb
Value | 203 407 103 125 71.5 11.5 | 555 3 3 2
Name | Wu hf Whb | Wgl | d3 Wg2 | WJb | HJn | Win Hsb
Value | 5.87 993 | 11.65 |5 9 164.7 | 16.45 | 80 5t 30
Name | Ws Twhl | L51 | h51 | L17 h17 Htip | SiTh | SiO2Th | PtTh
Value | 10 1.91 | 285 |62.27 | 31.08 72.5 | 0.1 3.5 0.2 0.0853
Name | WGP | WP | HGP | HP PiezoTh | Twh2

Value | 11.25 | 2.5 225 | 1.7 1.5 0.1

Table 4.3: Parameters of the selected sample

In the end of this section, we summarize optimization rules obtained before.
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e A straight line shaped heater maximizes the tip temperature and the sensing
voltage.

e The heater with a wide bottom and a sharp tip concentrates the heat distri-
bution and reduces the bimetallic effects.

e The sensing track should be taken as narrow as possible to reduce the
bimetallic effect.

e The T-shaped gap and the tip-gap are not useful when the tip is sharp.

e The increase of the heating trail width decreases the electric resistance, so it
increases the temperature for a voltage source but decreases the temperature
for a current source. By anyway, its optimization needs trade-off between
the tip temperature and the tip displacement.

e The middle leg should be designed with a uniform width and its optimization
requires the trade-off between the probe stiffness and the bimetallic effect.

e The width of the gap around the middle leg is influential to the probe stiffness
and to the bimetallic effect, the trade-off between these two features should
be considered in its optimization.

e The silicon layer should be taken as thin as possible to have a flexible can-
tilever. The SiO2 layer causes the dented shape and it forces the upper part
of the probe to bend upward. To keep the probe flat during its application,
the SiO2 layer should be thin. The increase of the platinum thickness de-
creases the electric resistance, so it increases the temperature for a voltage
source but increases the temperature of a current source. This could be used
to optimize the bimetallic effect.

e The sensor stress is only sensitive to the thickness of the silicon layer.

4.7 Conclusion

The connection between SIMBAD and COMSOL-MATLAB has been established
and a complete optimization loop has been tested. In addition, the COMSOL-
MATLAB script based programming has been studied and the experience could
be used in other problems. Through the detailed discussion regarding the influ-
ences of each variable, the parameters needing tradeoffs have been identified and
optimization rule for the others have been established. Finally, the pareto plot of
samples for tradeoffs features has been presented.
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CONCLUSIONS AND
PERSPECTIVES

A methodology for the kernel of an asymptotic model derivation software package
MEMSALab has been proposed. The contribution of this thesis comes from three
aspects.

In computer science part, the rewriting technique is firstly used for the asymp-
totic model derivation. A grammar which allows an symbolic expression for ab-
stract mathematical objects has been proposed and has been successfully applied
in the symbolic model derivation. In the symbolic model derivation, an approach
named "by extension-combination" which facilitates to work with families of mod-
els has been first proposed. In this approach, the model derivation is based on
extensions and their combinations. Each extension covers a specific feature com-
paring with the reference proof. The new proof is generated by transforming the
reference proof through extensions. Since the transformation is more or less sim-
ilar for a family of equations, this approach facilitates much for programming of
the symbolic model derivation.

For a fluent combination of extensions, a theoretical framework for extension
combination has been proposed. Concepts of Semantic conservation transforma-
tion and Parametrization and their implementation tools Qutward growth and Pa-
rameterized meta strategy are introduced to decompose one extension to make sure
that the final result is correct. The theories for combination of outward growths
and parameterizations are introduced to solve the problem of combination of gen-
eralizations. Their implementation by rewriting strategies and some application
have also been discussed.

In mathematical part, an homogenization model of the electrothermoelastic
equation defined in a multi-layered thin domain has been derived. New features
ie multi-dimension, thin-domain,sub-domains with different physics, vector valued
solutions and multi-physics are taken into account.In the model derivation, the
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proofs of the reference model derivation are followed with using extended mathe-
matical rules and some extended steps, so that it has a good comparison with the
reference one. This benefits the preparation of the design of related extensions for
its inclusion in MEMSALab.

Last, an optimization tool which is a combination of a house-made optimization
software package SIMBAD and COMSOL-MATLAB simulation has been devel-
oped. As an example, it has been applied for optimization of a SThM probe used
in the NANOHEAT project. The general optimization principles for the similar
SThM probe designs have been summarized and a set of optimal designs corre-
sponding to different compromise of objective features have be obtained.

In this thesis, only a few aspects in the solution based on MEMSALab have
been discussed. Currently, only a skeleton of the kernel of the software is proposed,
the kernel itself is still very weak. There are a lot of work to do to enhance the
kernel to make it applicable. In the following, we discuss the work to do in future
and perspectives of our work.

Future work:

e Rewrite the rewriting strategies of the reference proof in a term rewriting
language Caml.

e [mplement the extension combination theories by rewriting strategies.

e Design elementary extensions to cover the Joule-heating thermoelastic thin
plate model and implement its derivation by Caml.

e Implement the missed interfaces in the solution based on MEMSALab.
e Derive new models following the reference proof.

e Calibrate simulation parameters and compare with experimental result.
Perspectives

e An extension strategy library.

e A good extension combination strategy.

e A complete loop of the solution based on MEMSATLab.
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This thesis is dedicated to develop a kernel of a symbolic asymptotic modeling software package
MEMSALab which will be used for automatic generation of asymptotic models for arrays of micro and
nanosystems. Unlike traditional software packages aimed at numerical simulations by using pre-built
models, the purpose of MEMSALab is to derive asymptotic models for input equations by taking into
account their own features. An approach called "by extension-combination” for the asymptotic model-
ing which allows an incremental model construction is firstly proposed for the homogenization model
derivation. It relies on a combination of the asymptotic method used in the field of partial differential
equations with term rewriting techniques coming from computer science. This approach focuses on
the model derivation for family of PDEs instead of each of them. An homogenization model of the
electrothermoelastic equation defined in a multi-layered thin domain has been derived by applying
the mathematical method used in this approach. At last, an optimization tool has been developed by
combining a house-made optimization software package SIMBAD and COMSOL-MATLAB simulation
and it has been applied for optimization of a SThM probe.

Multi-scale, Arrays, Nanosystem, Asymptotic model, Rewriting technique, extension-
combination, Elementary model, Thin-domain, Feature, Optimization

Cette thése est consacrée au développement d’'un noyau du logiciel MEMSALab de modélisation par
calcul symbolique qui sera utilis € pour la génération automatique de modeles asymptotiques pour
des matrices de micro et nanosystemes. Contrairement a des logiciels traditionnels réalisant des sim-
ulations numeériques utilisant des modeles prédéfinis, le principe de fonctionnement de MEMSALab
est de construire des modeles asymptotiques qui transforment des équations aux dérivées partielles
en tenant compte de leurs caractéristiques. Une méthode appelée "par extension-combinaison” pour
la modélisation asymptotique, qui permet la construction de modele de fagon incrémentale de sorte
que les caractéristiques désirées soient incluses étape par étape est tout d’abord proposé pour le
modéle d’homogeénisation dérivation. Il repose sur une combinaison de méthodes asymptotiques
issues de la théorie des équations aux dérivés partielles et de techniques de réécriture issues de
l'informatique. Cette méthode concentre sur la dérivation de modele pour les familles de PDEs au
lieu de chacune d’entre elles. Un modéle d’homogénéisation de I'électro thermoélastique équation
définie dans un domaine mince multicouche est dérivé par utiliser la méthode mathématique dans
cette approche. Pour finir, un outil d’optimisation a été développé en combinant SIMBAD, une boite a
outils logicielle pour I'optimisation et développée en interne, et COMSOL-MATLAB. Il a été appliqué
pour étudier la conception optimale d’une classe de sondes de microscopie atomique thermique et a
permis d’établir des regles générale pour leurs conception.

Multi-échelle, réseau, nanosystémes, modele asymptotique, technique de réécriture, extension-
combinaison, modele primaire, mince-domaine, caractéristique, Optimisation
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