Thèse soutenue

Algorithmes distribués pour l'optimisation de déploiement des microrobots MEMS

FR  |  
EN
Auteur / Autrice : Hicham Lakhlef
Direction : Julien BourgeoisHakim Mabed
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 24/11/2014
Etablissement(s) : Besançon
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) - Franche-Comté Électronique Mécanique- Thermique et Optique - Sciences et Technologies / FEMTO-ST
Jury : Président / Présidente : Pascal Felber
Examinateurs / Examinatrices : Julien Bourgeois, Hakim Mabed, Pascal Felber, Nathalie Mitton, Raphaël Couturier, Pascale Minet
Rapporteurs / Rapporteuses : Pascal Felber, Nathalie Mitton

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les microrobots MEMS sont des éléments miniaturisés qui peuvent capter et agir sur l'environnement. Leur taille est de l'ordre du millimètre et ils ont une faible capacité de mémoire et une capacité énergétique limitée. Les microrobots MEMS continuent d'accroître leur présence dans notre vie quotidienne. En effet, ils peuvent effectuer plusieurs missions et tâches dans une large gamme d'applications telles que la localisation d'odeur, la lutte contre les incendies, le service médical, la surveillance, le sauvetage et la sécurité. Pour faire ces taches et missions, ils doivent appliquer des protocoles de redéploiement afin de s'adapter aux conditions du travail. Ces algorithmes doivent être efficaces, évolutifs, robustes et ils doivent utiliser de préférence des informations locales. Le redéploiement pour les microrobots MEMS mobiles nécessite actuellement un système de positionnement et une carte (positions prédéfinies) de la forme cible. La solution traditionnelle de positionnement comme l'utilisation d'un GPS consommerait trop d'énergie. De plus, l'utilisation de solutions de positionnement algorithmique avec les techniques de multilatération pose toujours des problèmes à cause des erreurs dans les coordonnées obtenues.Dans la littérature, si nous voulons une auto-reconfiguration de microrobots vers une forme cible constituée de P positions, chaque microrobot doit avoir une capacité mémoire de P positions pour les sauvegarder. Par conséquent, si P est de l'ordre de milliers ou de millions, chaque noeud devra avoir une capacité de mémoire de positions en milliers ou millions. Parconséquent, ces algorithmes ne sont pas extensibles ou évolutifs. Dans cette thèse, on propose des protocoles de reconfiguration où les noeuds ne sont pas conscients de leurs positions dans le plan et n'enregistrent aucune position de la forme cible. En d'autres termes, les noeuds ne stockent pas au départ les coordonnées qui construisent la forme cible. Par conséquent, l'utilisation de mémoire pour chaque noeud est réduite à une complexité constante. L'objectif desalgorithmes distribués proposés est d'optimiser la topologie logique du réseau des microrobots afin de chercher une meilleure complexité pour l'échange de message et une communication peu coûteuse. Ces solutions sont complètement distribués. On montre pour la reconfiguration d'une chaîne à un carré comment gérer la dynamicité du réseau pour sauvegarder l'énergie, on étudie comment utiliser le parallélisme de mouvements pour optimiser le temps d'exécution et lenombre de mouvements. Ainsi, on propose une autre solution où la topologie physique initiale peut être n'importe quelle configuration initiale. Avec ces solutions, les noeuds peuvent exécuter l'algorithme indépendamment du lieu où ils sont déployés, parce que l'algorithme est indépendant de la carte de la forme cible. En outre, ces solutions cherchent à atteindre la forme de la cible avec une quantité minimale de mouvement.