A robust and reliable data-driven prognostics approach based on Extreme Learning Machine and Fuzzy Clustering

par kamran Javed

Thèse de doctorat en Automatique

Sous la direction de Noureddine Zerhouni et de Rafael Gouriveau.

Soutenue le 09-04-2014

à Besançon , dans le cadre de École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; Dijon ; Belfort) , en partenariat avec FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) (laboratoire) et de Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (laboratoire) .

Le président du jury était Louise Travé-Massuyès.

Le jury était composé de Noureddine Zerhouni, Rafael Gouriveau, Louise Travé-Massuyès, Antoine Grall, Janan Zaytoon.

Les rapporteurs étaient Enrico Zio, Said Rechak.

  • Titre traduit

    Une approche robuste et fiable de pronostic guidé par les données robustes et basée sur l'apprentissage automatique extrême et la classification floue


  • Résumé

    Le pronostic industriel vise à étendre le cycle de vie d’un dispositif physique, tout en réduisant les couts d’exploitation et de maintenance. Pour cette raison, le pronostic est considéré comme un processus clé avec des capacités de prédiction. En effet, des estimations précises de la durée de vie avant défaillance d’un équipement, Remaining Useful Life (RUL), permettent de mieux définir un plan d’action visant à accroitre la sécurité, réduire les temps d’arrêt, assurer l’achèvement de la mission et l’efficacité de la production.Des études récentes montrent que les approches guidées par les données sont de plus en plus appliquées pour le pronostic de défaillance. Elles peuvent être considérées comme des modèles de type boite noire pour l’ étude du comportement du système directement `a partir des données de surveillance d’ état, pour définir l’ état actuel du système et prédire la progression future de défauts. Cependant, l’approximation du comportement des machines critiques est une tâche difficile qui peut entraîner des mauvais pronostic. Pour la compréhension de la modélisation du pronostic guidé par les données, on considère les points suivants. 1) Comment traiter les données brutes de surveillance pour obtenir des caractéristiques appropriées reflétant l’ évolution de la dégradation? 2) Comment distinguer les états de dégradation et définir des critères de défaillance (qui peuvent varier d’un cas `a un autre)? 3) Comment être sûr que les modèles définis seront assez robustes pour montrer une performance stable avec des entrées incertaines s’ écartant des expériences acquises, et seront suffisamment fiables pour intégrer des données inconnues (c’est `a dire les conditions de fonctionnement, les variations de l’ingénierie, etc.)? 4) Comment réaliser facilement une intégration sous des contraintes et des exigence industrielles? Ces questions sont des problèmes abordés dans cette thèse. Elles ont conduit à développer une nouvelle approche allant au-delà des limites des méthodes classiques de pronostic guidé par les données.


  • Résumé

    Prognostics and Health Management (PHM) aims at extending the life cycle of engineerin gassets, while reducing exploitation and maintenance costs. For this reason,prognostics is considered as a key process with future capabilities. Indeed, accurateestimates of the Remaining Useful Life (RUL) of an equipment enable defining furtherplan of actions to increase safety, minimize downtime, ensure mission completion andefficient production.Recent advances show that data-driven approaches (mainly based on machine learningmethods) are increasingly applied for fault prognostics. They can be seen as black-boxmodels that learn system behavior directly from Condition Monitoring (CM) data, usethat knowledge to infer its current state and predict future progression of failure. However,approximating the behavior of critical machinery is a challenging task that canresult in poor prognostics. As for understanding, some issues of data-driven prognosticsmodeling are highlighted as follows. 1) How to effectively process raw monitoringdata to obtain suitable features that clearly reflect evolution of degradation? 2) Howto discriminate degradation states and define failure criteria (that can vary from caseto case)? 3) How to be sure that learned-models will be robust enough to show steadyperformance over uncertain inputs that deviate from learned experiences, and to bereliable enough to encounter unknown data (i.e., operating conditions, engineering variations,etc.)? 4) How to achieve ease of application under industrial constraints andrequirements? Such issues constitute the problems addressed in this thesis and have ledto develop a novel approach beyond conventional methods of data-driven prognostics.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 Vol.(153p.)
  • Annexes : Bibliogr. 125-143p.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque universitaire Sciences Sport Claude Oytana (Besançon).
  • Disponible pour le PEB
  • Cote : SCI.BESA2014.21
  • Bibliothèque : Bibliothèque universitaire électronique, Besançon.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.