Thèse soutenue

Manipulation d’un grand nombre de solitons dissipatifs dans les lasers à fibre

FR  |  
EN
Auteur / Autrice : Alioune Niang
Direction : François Sanchez
Type : Thèse de doctorat
Discipline(s) : Optique appliquée et lasers
Date : Soutenance le 10/12/2014
Etablissement(s) : Angers
Ecole(s) doctorale(s) : École doctorale Matériaux, Matières, Molécules en Pays de la Loire (3MPL) (Le Mans ; 2008-2021)
Partenaire(s) de recherche : Laboratoire : Laboratoire de photonique d'Angers - LphiA - Laboratoire de Photonique d'Angers
Jury : Président / Présidente : Pascal Picart
Examinateurs / Examinatrices : Kamel Aït-Ameur, Hervé Leblond, Mohamed Salhi
Rapporteurs / Rapporteuses : Marc Brunel, Marc Vallet

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail est consacré à l’étude des interactions d’un grand nombre de solitons dans un laser à fibre dopée erbium/ytterbium. Les impulsions interagissent entre elles et se structurent pour former des distributions plus ou moins organisées. Deux cavités ont été réalisées, l’une basée sur la rotation non-linéaire de la polarisation (RNLP) et l’autre sur le miroir optique à boucle non-linéaire (NOLM) en configuration de laser en forme de huit. Avec la RNLP, nous nous sommes intéressés d’abord à une distribution où les impulsions sont liées (cristal de solitons). Ce cristal, stable pour des puissances moyennes, devient instable lorsque la puissance augmente : il se disloque. Les solitons se réorganisent pour former un régime de verrouillage harmonique (HLM) de 50 cristaux. Nous avons ensuite cherché s’il était possible de contrôler les distributions de solitons par l’injection d’une composante continue externe. Nous avons montré que le HLM peut être forcé par l’injection de cette composante. Nous avons développé deux approches afin de modéliser un laser verrouillé en phase et soumis à l'injection d'une composante continue, l'une est scalaire et l'autre vectorielle. Ces modèles démontrent que le signal injecté peut modifier les interactions entre les solitons. Enfin, le NOLM a permis d’observer plusieurs dynamiques : pluie de solitons, gaz de solitons, liquide de solitons, poly-cristal de solitons, multi-cristal de solitons, cristal de solitons, états liés et verrouillage harmonique d’états liés. Ce laser a permis également d’observer une émission laser continue et impulsionnelle autour de 1600 nm.