Thèse soutenue

Nanocomposites poreux à base de nanoparticules métalliques : de la synthèse vers des applications dans le domaine de l'adsorption

FR  |  
EN
Auteur / Autrice : Déborah Fernand
Direction : Virginie Hornebecq
Type : Thèse de doctorat
Discipline(s) : Sciences des Matériaux, Physique, Chimie et Nanosciences
Date : Soutenance le 18/12/2014
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Jury : Président / Présidente : Bogdan Kuchta
Examinateurs / Examinatrices : Bénédicte Prélot, Renaud Denoyel
Rapporteurs / Rapporteuses : Alexandre Merlen, Vladimir Zeleñák

Résumé

FR  |  
EN

Les matériaux nanocomposites poreux organisés présentent de nombreuses propriétés dans le domaine de l’adsorption. Cette étude est portée sur la synthèse de matériaux poreux de grande aire spécifique fonctionnalisés par des nanoparticules métalliques en visant des applications dans le domaine de l’adsorption: en phase liquide et en phase gazeuse.La première application concerne la détection en phase liquide de molécules à de faibles concentrations. Des nanocomposites composés d’une matrice poreuse de silice dans laquelle sont insérées des nanoparticules de métaux nobles (i.e. Ag@SiO2 et Au@SiO2) sont étudiés comme substrats SERS en couplant thermodynamique et spectroscopie Raman. Ce couplage de l’étude de la réponse Raman et de l’étude thermodynamique de l’adsorption a conduit à une meilleure compréhension de l’influence des particules sur le seuil de détection de la molécule. L’influence de plusieurs paramètres sur la réponse Raman de la molécule sonde et sur ses propriétés d’adsorption a aussi été étudiée (la taille des particules, la nature chimique du métal, etc.).La seconde application concerne le stockage d’hydrogène. Des nanocomposites composés de matrices poreuses de silice ou de carbone dans lesquelles sont incorporées des nanoparticules d’un métal de transition (i.e. Ni@SiO2 et Ni@Carbone) sont étudiés comme matériaux de stockage en couplant manométrie et microcalorimétrie d’adsorption. La mise en place d’une méthode de réduction adaptée a constitué une étape importante de ce travail. Ce couplage d’études thermodynamiques de l’adsorption a permis de déterminer les propriétés d’adsorption de l’hydrogène à basse température et basses pressions de ces matériaux.