
UNIVERSITE D’AIX-MARSEILLE

ECOLE DOCTORALE 184

FACULTE DES SCIENCES

LABORATOIRE D’INFORMATIQUE FONDAMENTALE

THESE DE DOCTORAT

Discipline : Mathématique et Informatique

Spécialité : Informatique

Sabine FRITTELLA

Monotone Modal Logic & Friends

Soutenue le 1er December 2014

Composition du jury :

Larry MOSS Université d’Indiana Rapporteur

Thomas STUDER Université de Berne Rapporteur

Philippe BALBIANI Université de Toulouse Examinateur

Hans van DITMARSCH Université de Lorraine Examinateur

Silvio GHILARDI Université de Milan Examinateur

Nicola OLIVETTI Aix-Marseille Université Examinateur

Giuseppe GRECO Delft University of Technology Membre invité

Alessandra PALMIGIANO Delft University of Technology Directeur de thèse

Luigi SANTOCANALE Aix-Marseille Université Directeur de thèse

UNIVERSITE D’AIX-MARSEILLE

ECOLE DOCTORALE 184

FACULTE DES SCIENCES

LABORATOIRE D’INFORMATIQUE FONDAMENTALE

DOCTORAL THESIS

Discipline : Mathematics and Computer Science

Speciality : Computer Science

Sabine FRITTELLA

Monotone Modal Logic & Friends

Defended on December 1, 2014

Composition of the jury:

Larry MOSS Indiana University Rapporteur

Thomas STUDER University of Bern Rapporteur

Philippe BALBIANI University of Toulouse Examiner

Hans van DITMARSCH University of Lorraine Examiner

Silvio GHILARDI University of Milan Examiner

Nicola OLIVETTI Aix-Marseille University Examiner

Giuseppe GRECO Delft University of Technology Invited member

Alessandra PALMIGIANO Delft University of Technology PhD advisor

Luigi SANTOCANALE Aix-Marseille University PhD advisor

Cette oeuvre est mise à disposition selon les termes de la Licence Creative Commons

Attribution - Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.

iv

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/

AIX MARSEILLE UNIVERSITE

Abstract

Ecole doctorale de mathématiques et informatique de Marseille (ED 184)

Doctor of Computer Science

Monotone Modal Logic & Friends

by Sabine FRITTELLA

The present thesis focuses on Monotone Modal Logic and closely related logics from the

point of view of Correspondence Theory and Proof Theory.

The first part of the thesis establishes a formal connection between algorithmic corre-

spondence theory and certain dual characterization results for finite lattices, similar to

Nation’s characterization of a hierarchy of pseudovarieties of finite lattices progressively

generalizing finite distributive lattices. This formal connection is established through

monotone modal logic. Specifically, we adapt the correspondence algorithm ALBA to

the setting of monotone modal logic, and we use a certain duality-induced encoding of

finite lattices as monotone neighbourhood frames to translate lattice terms into formulas

in monotone modal logic.

The second part of the thesis extends the theory of display calculi to Baltag-Moss-

Solecki’s logic of Epistemic Actions and Knowledge (EAK), Monotone Modal Logic (MML),

and Propositional Dynamic Logic (PDL). Our results include several cut-elimination

metatheorems, which generalize the original metatheorem of Belnap in different and

mutually independent dimensions. The two main generalizations of display calculi

treated in the thesis are: the generalization from single type to multi-type languages,

and from the full or relativized display property to no display property.

v

http://www.univ-amu.fr/
http://www.cmi.univ-mrs.fr/dea/doku.php

vi

Acknowledgements

I would like to thank my advisers Alessandra Palmigiano and Luigi Santocanale for their

time, investment and advice during my doctorate. I particularly want to thank Alessan-

dra Palmigiano for her extraordinary support and for offering so many opportunities to

me.

I wish to offer my special thanks to Giuseppe Greco for his support and friendship, and

to Yde Venema for his wise advice.

I would like to express my very great appreciation to my collaborators, Alexander Kurz,

Vlasta Sikimić, Aybüke Özgün, with whom I hope to keep on working for many more

years, to my colleagues Nick Bezhanishvili, Jérôme Fortier, Mai Gehrke, Sam van Gool,

Sara Negri, Sumit Sourabh, Nachoem Wijnberg with whom I had very interesting and

fruitful conversations, to Jean-Marc Talbot and Nadia Creignou for helping me to reach

my goals, to the secretaries, both at the LIF and at the ILLC, who have solutions to most

of our problems, for their help and their kindness, and to the staff both at Marseille and

at Amsterdam for their kindness and their friendship.

I wish to thank Agata Ciabattoni, Peter Jipsen, Larry Moss and Thomas Studer for agree-

ing to be rapporteurs for my thesis, and Philippe Balbiani, Hans van Ditmarsch, Silvio

Ghilardi, Nicola Olivetti and Giuseppe Greco for agreeing to be examiners.

I wish to acknowledge the support and help provided by my professors at Centrale Mar-

seille and specially by François Brucker, Pascal Prea and Mary Ripert.

Finally, I would like to thank my family and friends for their support. I am particularly

grateful to my mother without whom none of this would have had been possible.

vii

viii

Contents

Abstract v

Acknowledgements vii

Contents ix

Prologue 1

Introduction . 1

Synopsis . 9

Contribution . 11

Résumé en français 13

I Correspondence Theory 25

1 Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 27

1.1 Introduction . 27

1.2 Preliminaries . 29

1.2.1 Dual equivalence for finite lattices 30

1.2.2 An environment for correspondence 34

1.2.3 The standard translation . 38

1.2.4 An informal presentation of the algorithm ALBA 42

1.3 Algorithmic correspondence for monotone modal logic 45

1.3.1 Two-sorted frames . 46

1.3.2 Basic ALBA on two-sorted frames 47

1.4 Enhancing the algorithm for correspondence 50

1.4.1 Enriched two-sorted frames . 50

1.4.2 Correspondence rules for enriched two-sorted frames 53

1.4.3 Closed right Ackermann rule . 55

1.5 Characterizing uniform upper bounds on the length of D+-chains in finite
lattices . 56

1.6 Conclusions and further directions . 59

ix

Contents x

II Proof Theory 63

2 A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 65

2.1 Introduction . 65

2.2 Preliminaries on proof-theoretic semantics and Display Calculi 67

2.2.1 Basic ideas in proof-theoretic semantics 67

2.2.2 Display calculi . 68

2.2.3 Wansing’s criteria . 74

2.3 Belnap-style metatheorem for quasi-proper display calculi 76

2.3.1 Quasi-proper display calculi . 77

2.3.2 Belnap-style metatheorem . 78

2.4 Dynamic Epistemic Logics and their proof systems 81

2.4.1 The logic of epistemic actions and knowledge 81

2.4.2 The intuitionistic version of EAK 84

2.4.3 Proof theoretic formalisms for PAL and DEL 85

2.4.4 First attempt at a display calculus for EAK 91

2.5 Final coalgebra semantics of dynamic logics 93

2.5.1 The final coalgebra . 93

2.5.2 Final coalgebra semantics of modal logic 95

2.6 Proof-Theoretic Semantics for EAK . 98

2.6.1 The calculus D’.EAK . 99

2.6.2 Properties of D’.EAK . 107

2.6.3 Belnap-style cut elimination for D’.EAK 110

2.7 Conclusions and further directions . 110

2.7.1 Conclusions . 110

2.7.2 Further directions . 111

3 Multi-Type Display Calculus for Dynamic Epistemic Logic 113

3.1 Introduction . 113

3.2 Multi-type calculi, and cut elimination metatheorem 115

3.2.1 Multi-type calculi . 115

3.2.2 Relativized display property . 116

3.2.3 Quasi-proper multi-type display calculi 117

3.2.4 Belnap-style metatheorem for multi-types 119

3.3 The Dynamic Calculus for EAK . 122

3.4 Soundness . 135

3.5 Completeness and cut elimination . 138

3.5.1 Derivable rules and completeness 139

3.5.2 Belnap-style cut elimination, and subformula property 142

3.6 Conservativity . 143

3.7 Conclusions and further directions . 147

4 Display-Type Calculi via Visibility 149

4.1 Introduction . 149

4.2 Quasi-proper multi-type display-type calculi 151

4.3 Cut elimination metatheorem . 153

Contents xi

5 Display-Type Calculus for Monotone Modal Logic 157

5.1 Introduction . 157

5.2 Preliminaries . 158

5.2.1 Syntax and semantics of monotone modal logic 158

5.2.2 Visibility and cut elimination . 159

5.3 Proper display-type calculi, and their metatheorem 160

5.3.1 Proper display-type calculi . 160

5.3.2 Cut elimination metatheorem for proper display-type calculi 161

5.4 A calculus for monotone modal logic . 164

5.4.1 The basic calculus for MML . 164

5.4.2 Soundness . 165

5.4.3 Completeness . 167

5.4.4 Cut elimination . 168

6 Multi-Type Display Calculus for Propositional Dynamic Logic 169

6.1 Introduction . 169

6.2 Basic facts and definitions . 171

6.2.1 Propositional Dynamic Logic . 171

6.2.2 Proper multi-type display calculi, and their cut elimination meta-
theorem . 173

6.3 Language and rules . 175

6.4 Soundness . 191

6.5 Completeness . 195

6.6 Cut elimination . 201

6.7 The open issue of conservativity . 202

6.8 Conclusions . 203

Conclusions 207

Appendices 213

A Proof of Lemma 1.34 213

B The Cut Elimination Metatheorems 225

C Special Rules in D’.EAK 231

C.1 Derived rules in D’.EAK . 231

C.2 Soundness of comp rules in the final coalgebra 234

D Cut Elimination for D’.EAK 235

E Completeness of D’.EAK 239

F Cut Elimination for the Dynamic Calculus for EAK 249

G Completeness for the Dynamic Calculus for EAK 253

H The Proper Display-Type Calculus for Monotone Modal Logic 265

Contents xii

I The Calculus for the Propositional Base of PDL 267

J Cut Elimination for PDL, Principal Stage 269

K Completeness for PDL 273

Bibliography 277

To my mother.

xiii

Prologue

Introduction

Monotone modal logic. Monotone modal logic is a strengthening of classical modal

logic1 which requires the modal operators to satisfy the following monotonicity rule:

ϕ ⊢ ψ

�ϕ ⊢ �ψ
.

Monotone modal logics have been studied since the beginning of modal logic in its

modern form (cf. [Lew18, LL32]) by formal philosophers such as Lewis in order to

formalize the notion of strict implication. Of the logical systems S 1-S 5 proposed by

Langford and Lewis in [LL32], only S 4 and S 5 are normal modal logics. The interest in

monotone modal logics as formal frameworks adequate to capture epistemic and deontic

reasoning is witnessed by the work of Prior [Pri54, Pri58, Pri62], Lemmon [Lem57], von

Wright [vW51, vW53, vW56, vW68, vW71].

To briefly expand on the type of objections against normality raised in the context of

epistemic and deontic logic, we mention Lemmon’s argument in [Lem57], where he

proposes several axiomatic systems of epistemic and deontic modal logics. The rule of

necessitation is not included in them since it causes the presence in the logic of theorems

of the form �φ. In the contest of the interpretation of the �-operator as moral obligation

or scientific but not logical necessity, Lemmon’s systems are in line with the view that

nothing should be a scientific law or a moral obligation as a matter of logic.

Besides epistemic and deontic logic, within the same area of philosophical logic, non-

normal modal logics and monotone modal logic in particular have been linked also

to the analysis of counterfactuals [Lew73], via the standard semantic environment of

1Chellas’ classical modal logic (cf. [Che80, Definition 8.1]), is defined as the smallest logic on a classical propo-

sitional base containing the axiom �ϕ↔ ¬^¬ϕ and closed under the rule

ϕ↔ ψ

�ϕ↔ �ψ
.

1

Prologue 2

neighbourhood frames (more on this topic below). After the introduction of Kripke

semantics [Kri63], the axiomatic frameworks of normal modal logic became prevalent,

to the point that normal modal logics became the default formal framework for modal

logic.

However, in recent years, the interest on non-normal modal logics, and monotone modal

logics in particular, has been renewed from diverse directions. To mention only some

directions, in recent years, both deontic logic and epistemic logic have found new areas

of application. For instance, deontic logic has been increasingly relevant to the field of

system specification in computer science. In this context, the deontic interpretation of

modal operators (not anymore ‘moral obligation’, but more in general ‘norm’) is useful

e.g. to enforce a different management between soft and hard constraints in planning

and scheduling problems. Using modal operators to express soft constraints as norms

brings the advantage that norms can be violated without creating an inconsistency in

the formal specification, in contrast to violations of hard constraints (cf. e.g. [CJ96]).

In this context, the formalization of obligation in terms of normal modal operators is

not considered adequate, since it gives rise to paradoxes or counterintuitive interpreta-

tions. Also, formal frameworks based on epistemic logic have been increasingly used in

artificial intelligence to capture sophisticated aspects of informational dynamics. Also

in these contexts, objections to formalizations in terms of normal modal operators have

been raised.

Finally, in the last twenty years, logics have been introduced, aimed at capturing vari-

ous phenomena such as concurrency in computer science (cf. Concurrent Propositional

Dynamic Logic [Gol92a]), rational reasoning in multi-agent environments (cf. Coalition

Logic [Pau02] and Game Logic [Par85]), or probabilistic reasoning (cf. Modal Logic for

Probability [Her03]). In all these contexts, not only the assumption of normality, but

also the distributivity of modalities over binary joins and meets is problematic. For in-

stance, in Game Logic, an agent can have a strategy to reach a state where either p1 or

p2 hold, without it being sufficient to establish which of the pi will hold. Another exam-

ple arises in settings in which the intended meaning of �φ is φ holds with a probability

greater than some threshold 0 ≤ r ≤ 1. Assume that the probability that p holds is 3
4
, that

the probability that q holds is 3
4
, and that r = 2

3
. Then we have that �p ∧ �q holds, but

�(p∧q) does not, given that the probability that p∧q holds is 9
16

. For more details about

monotone modal logic and neighbourhood semantics, the reader is referred to [Han03]

and [Pac07].

Prologue 3

A rich mathematical theory. Neighbourhood models, also known as Scott-Montague

models (cf. [Sco70, Mon70]), generalize Kripke models, and have become the stan-

dard semantic environment for those modal logics such that the Kripke-valid principles

�p ∧ �q → �(p ∧ q) (multiplicativity) and �p → �(p ∨ q) (monotonicity) are not valid.

In a neighbourhood frame, each state is associated with a collection of subsets of the

universe (called neighbourhoods), and this is how the accessibility relation is specified.

A neighbourhood frame is formally defined as a tuple F := (W, τ) such that W is a non-

empty set and τ : W −→ PPW, and a neighbourhood model is a tuple M := (F, v) such

that F is a neighbourhood frame and v : AtProp −→ PW is a valuation. A modal formula

�ϕ is true at a given state of a neighbourhood model iff the truth set of ϕ is a neighbour-

hood of that state. Chellas’ classical modal logic (cf. footnote 1) is sound and complete

w.r.t. neighbourhood models.

In the environment of neighbourhood models and frames, it is possible to establish

correspondence-type facts similar to those holding in Kripke frames. Here below, we

report on the best known of them: for any X ⊆ W, let τ−1[X] := {w ∈ W | X ∈ τ(w)}.

(N) �⊤ (n) ∀w[W ∈ τ(w)]

(P) ¬�⊥ (p) ∀w[∅ < τ(w)]

(M) �(φ ∧ ψ)→ �φ ∧ �ψ (m) ∀w∀X∀Y[(X ∈ τ(w) & X ⊆ Y)⇒ Y ∈ τ(w)]

(C) �φ ∧ �ψ→ �(φ ∧ ψ) (c) ∀w∀X∀Y[(X ∈ τ(w) & Y ∈ τ(w))⇒ X ∩ Y ∈ τ(w)]

(D) �φ→ ^φ (d) ∀w∀X[X ∈ τ(w)⇒ Xc
< τ(w)]

(T) �φ→ φ (t) ∀w∀X[X ∈ τ(w)⇒ w ∈ X]

(B) φ→ �^φ (b) ∀w∀X[w ∈ X ⇒ (τ−1[Xc])c ∈ τ(w)]

(4) ��φ→ φ (iv) ∀w∀X∀Y[(X ∈ τ(w) & ∀x[x ∈ X ⇒ Y ∈ τ(x)])

⇒ Y ∈ τ(w)]

(4’) �φ→ ��φ (iv’) ∀w∀X∀Y[X ∈ τ(w)⇒ τ−1[X] ∈ τ(w)]

(5) ^φ→ �^φ (v) ∀w∀X[X < τ(w)⇒ (τ−1[X])c ∈ τ(w)]

In particular, monotone modal logic, which can be equivalently characterized as classical

modal logic extended with the axiom (M) above, is sound and strongly complete with

respect to the class of monotone neighbourhood frames, i.e. the class of neighbourhood

frames satisfying condition (m) above (see [Han03]).

Any Kripke frame F = (W,R) can be recast as a (special) monotone neighbourhood

frame simply by defining the neighbourhood map σF : W −→ PPW by the assignment

w 7−→ {X ⊆ W | R[w] ⊆ X}. Conversely, a neighbourhood frame (W, σ) contains its core

if
⋂
σ(w) ∈ σ(w) for every w ∈ W. Clearly, for every Kripke frame F, the monotone

neighbourhood frame NF = (W, σF) contains its core. A monotone neighbourhood frame

N = (W, σ) containing its core gives rise to the Kripke frame FN = (W,RN) such that

RN[w] =
⋂
σ(w) for each w ∈ W. It is straightforward to see that F = FNF and N = NFN

Prologue 4

for every Kripke frame F and every monotone neighbourhood frame N containing its

core.

The link between monotone modal logics and normal logics has been studied a lot, both

in the sense that normal modal logic has been used to simulate monotone modal logic

[KW99], and in the sense that results and techniques from normal modal logic have been

extended to the non-normal case: for instance, in [Doš89], duality results have been es-

tablished between categories of neighbourhood frames and categories of modal algebras

(understood as Boolean algebras with an additional unary operation), which extend re-

sults of Goldblatt [Gol76] and Thomason [Tho75] about categories of relational frames

for normal modal logic. Building on the seminal work [Pau99], in [HK04] and [HKP07]

the coalgebraic perspective on normal modal logic has been extended to non-normal

modal logics. Indeed, neighbourhood structures have been equivalently recast as coal-

gebras for the functor F := 22(−)

resulting from the composition of the contravariant

powerset functor with itself. In this setting, the coalgebraic equivalence notions of F-

bisimulation, behavioural equivalence and neighbourhood bisimulation have been stud-

ied, and the analogues of van Benthem’s characterization theorem and Hennessy-Milner

theorem have been proved.

Other recent directions explore the link between neighbourhood semantics and (formal)

topology. For instance, in [dAFH09], Lewis’ neighbourhood semantics for counterfactual

logic [Lew73] has been extended to a topos-theoretic setting.

A logic embedded in many logics. Summing up the discussion so far, monotone modal

logic lies at the intersection of many issues, pertaining to philosophy, mathematics, the-

oretical computer science, artificial intelligence and social science, as is witnessed by

the fact that non-normal modal connectives occur in very different formal systems such

as game logics [Par85, PP03], epistemic logics [vDvdHK03, Hei96], probabilistic and

dynamic logics [Gol92b, Her03], deontic logics [CJ96]. Hence, we believe that it is im-

portant and useful to study monotone modal logic not in isolation, but in the context of

all these different settings, and to develop methods which can be transferred from one

logical system to another. This is the approach taken in the present thesis. Specifically,

monotone modal logic is studied at the crossroads of two very general methodologies

pertaining to two different areas of logic: algebraic correspondence theory (developed

within Stone duality for nonclassical logics), and the theory of display calculi, devel-

oped within structural proof theory, and motivated both by algebraic and philosophical

considerations. Algebraic and algorithmic correspondence theory has been adapted to

monotone modal logic, and this adaptation has been used as a basis for the formaliza-

tion of a correspondence result about finite lattices. On the other hand, the theory of

Prologue 5

display calculi has been extended to a multi-type setting, which makes it possible to

treat smoothly and uniformly a wide range of difficulties arising in the proof theory of

dynamic logics such as Baltag-Moss-Solecki’s logic of epistemic actions and knowledge.

Within the multi-type setting, a generalization has been defined to deal with the specific

feature of monotone modal logic, namely the fact that monotone modalities do not have

adjoints per definition. In its turn, this generalization for monotone modal logic can be

applied to solve certain hurdles in multi-type calculi for other dynamic logics such as

game logic. This brief outline hopefully shows the usefulness of adopting a synthetic ap-

proach in the study of families of logics, and in particular, the key mediating role played

by monotone modal logic in these different contexts.

In the remainder of the present introduction, we give an outline of algebraic and algo-

rithmic correspondence, and of display calculi.

Correspondence theory. Sahlqvist theory has a long history in modal logic, going back

to [Sah75] and [vB85]. The Sahlqvist theorem in [Sah75] gives a syntactic definition

of a class of modal formulas, the Sahlqvist class, each member of which defines an ele-

mentary (i.e. first order definable) class of frames and is canonical. These are two very

important properties: the canonicity of an axiomatization guarantees the strong Kripke

completeness of its associated logic, and elementarity guarantees all the advantages,

both computational and theoretical, of first-order logic over second-order logic. Both

canonicity and elementarity turn out to be algorithmically undecidable, taken singularly

and in combination [CC06], so a decidable approximation, like the Sahlqvist class, is

very desirable.

Over the years, many extensions, variations and analogues of this result have appeared.

For instance, algebraic/topological proofs in [SV89] and [Jón94], constructive canon-

icity in [GM97], variations of the correspondence language in [vB06], Sahlqvist-type

results for hybrid logics in [tCMV05] and µ-calculus in [CFPS14] and [vBBH12], en-

largements of the Sahlqvist class to e.g. the inductive formulas of [GV06].

From its onset, Sahlqvist theory has had a distinct algorithmic flavour to it, given that

the Sahlqvist-van Benthem algorithm of [vB85] was used to effectively compute the first-

order frame correspondents of Sahlqvist formulas. Recently, new algorithmic methods

for correspondence and canonicity have greatly enlarged the original Sahlqvist class. In

particular, the SQEMA algorithm (see [CGV06]) is guaranteed to succeed in computing

the first order correspondent of each member of a class of modal formulas, the inductive

formulas, significantly larger than the Sahlqvist class. Moreover, inductive formulas are

also proven to be canonical.

Prologue 6

In [CP12], algorithmic canonicity and correspondence results analogous to the ones

appearing in [CGV06] have been obtained for the language of distributive modal logic,

a modal logic framework the propositional base of which is the logic of distributive

lattices. A critical feature of this direction is that the dualities and adjunctions between

the relational and the algebraic semantics of these logics have made it possible to distil

the order-theoretic and algebraic significance of the SQEMA reduction steps from the

model theoretic setting, and hence to recast them into an algebraic setting which is more

general than the boolean one, and which can be extended even more to the setting of

general (i.e. not necessarily distributive) lattices [CP14]. Taking stock of these results

gave rise to the so-called unified correspondence theory, a framework within which

correspondence results can be formulated and proved abstracting away from specific

logical signatures, and only in terms of the order-theoretic properties of the algebraic

interpretations of logical connectives. A specific feature of the unified correspondence

approach is the use of existing dualities to adapt correspondence results to possibly

different semantic environments for a given logic. For more details about this connection

and the ensuing generalizations, the reader is referred to [CPS] and [CGP14].

In Chapter 1 of the present thesis, we give an application of unified correspondence

theory. Namely, we adapt the algorithm ALBA so that it fits an algebraic environment

arising from finite lattices and which provides an interpretation for a monotone modal

language. As a consequence of this adaptation, we are able to obtain certain char-

acterization results about classes of finite lattices as instances of the modified ALBA

reductions.

Display Calculi. Nuel Belnap introduced the first display calculus, which he calls Dis-

play Logic [Bel82], as a proof-theoretic framework designed to capture in a modular way

many different logics in one uniform setting. The main technical advantage of display

calculi is that they provide a setting to state and prove generic (i.e. canonical) cut elimi-

nation metatheorems. These are theorems which guarantee a given calculus to enjoy cut

elimination, provided it satisfies certain conditions (reported here in Section 2.3), the

verification of which is relatively straightforward. The proof of these metatheorems con-

sists in defining uniform transformation steps in the cut elimination proof à la Gentzen.

This uniformity is the reason why we can say that Belnap-style cut elimination (i.e. cut

elimination obtained as the consequence of such a metatheorem) is to Gentzen-style cut

elimination what canonicity is to completeness.

Display calculi have given adequate proof-theoretic accounts of logics which have noto-

riously been difficult to treat with other approaches. Among them, besides classical

Prologue 7

and (bi-)intuitionistic logic [Bel82], are linear logic [Bel90], modal and tense (bi)-

intuitionistic logic [GPT10, Gor96, Kra96, Wan94], substructural logics [Gor98], rel-

evant logics [Res98], or the logic of relation algebras [Gor97]. In the specific case of

modal logic, it has been extremely difficult to extend traditional Gentzen sequent calculi

so as to obtain a uniform and general proof theory encompassing the numerous exten-

sions of the minimal normal modal logic K. One important feature of display calculi

is that there is a neat division of labour between the introduction rules for the logical

connectives, and the structural rules, which encode special properties of given logical

connectives, both taken singularly and in their interaction. Axiomatic extensions of a

given logic are typically captured in a modular way by the adding structural rules cor-

responding to the additional axioms to the basic calculus. In [Kra96], Kracht accounted

for a large class of such modal extensions uniformly and modularly in the context of

display calculi, by characterizing a subclass of Sahlqvist modal formulas (the so-called

primitive formulas), each of which can be encoded as a structural rule in display calculus.

As to the specific design features of display calculi, Belnap took inspiration from Gentzen’s

basic observations on structural rules. Indeed, in the standard Gentzen formulation, the

comma symbol ‘,’ separating formulas in the precedent and in the succedent of sequents

can be recognized as a metalinguistic connective, of which the structural rules define

the behaviour. Belnap took this idea further by admitting not only the comma, but

also several other connectives to keep formulas together in a structure, and called them

structural connectives. Just like the comma in standard Gentzen sequents is interpreted

contextually (that is, as conjunction when occurring on the left-hand side and as dis-

junction when occurring on the right-hand side), each structural connective typically

corresponds to a pair of logical connectives, and is interpreted as one or the other of

them contextually (more of this in Sections 2.2.2 and 2.6.1). Structural connectives

maintain relations with one another, the most fundamental of which take the form of

adjunctions and residuations. These relations make it possible for the calculus to enjoy

the powerful property which gives it its name, namely, the display property.

Definition 0.1. A proof system enjoys the display property iff for every sequent X ⊢ Y and every

substructure Z of either X or Y , the sequent X ⊢ Y can be equivalently transformed, using the

rules of the system, into a sequent which is either of the form Z ⊢ W or of the form W ⊢ Z, for

some structure W. In the first case, Z is displayed in precedent position, and in the second case,

Z is displayed in succedent position. The invertible rules enabling this equivalent rewriting are

called display postulates.

To illustrate the fundamental role played by the display property in the transformation

steps of the cut elimination metatheorem, consider the elimination step of the following

cut application, in which the cut formula is principal on both premises of the cut.

Prologue 8

... π1

X1 ⊢ A

... π2

X2 ⊢ B

X1 , X2 ⊢ A ∧ B

... π

A , B ⊢ Y

A ∧ B ⊢ Y

X1 , X2 ⊢ Y

 ... π2

X2 ⊢ B

... π1

X1 ⊢ A

... π

A , B ⊢ Y

A ⊢ Y < B

X1 ⊢ Y < B

X1 , B ⊢ Y

B ⊢ X1 > Y

X2 ⊢ X1 > Y

X1 , X2 ⊢ Y

The dashed lines in the prooftree on the right-hand side correspond to applications of

display postulates. Clearly, this transformation step has been made possible because the

display postulates disassemble, as it were, compound structures so as to give us access

to the immediate subformulas of the original cut formula, and then reassemble them so

as to ‘put things back again’. Hence, it is possible to break down the original cut into

two cut applications on the immediate subformulas, as required by the original Gentzen

strategy.

At this point, it is natural to ask the following question. If the modal operators in mono-

tone modal logic are supposed not to preserve joins and meets, then it is not reasonable

to assume that they have adjoints. However, it clearly emerges from the example above

that the display postulates essentially encode adjunctions/residuations. So how is it

possible to account for monotone modal logics within the display calculi methodology?

Indeed, the price to pay for the beautiful display property is that the language needs

to include additional connectives which are essential for the bookkeeping required by

its enforcement. The presence of these additional connectives immediately brings about

conservativity issues. In many cases, these issues can be resolved by appealing to se-

mantic arguments (we will see an example of this happy situation in Chapter 2). In

other cases, semantic arguments are not applicable, but conservativity can be proved

nonetheless, thanks to excellent syntactic circumstances (this is the case of the calcu-

lus of Chapter 3). In the case of monotone modal logic, we have given up the display

property, and opted for a calculus which is display-type but not really display. Indeed,

in Chapter 5 we introduce a calculus which includes some display postulates but not

enough of them to guarantee reduction steps like the one illustrated above. Nonethe-

less, and most importantly, we will show in Chapter 4 that it is still possible to prove

a Belnap-style cut elimination metatheorem for display-type calculi. Finally, in the case

of the calculus of Chapter 6, the conservativity is still open, and we will detail a proof

strategy to achieve it.

Prologue 9

Synopsis

In Chapter 1, we report on the results in [FPS14]. We adapt the algorithm ALBA to

monotone modal logic, and obtain certain dual characterization results for finite lattices

as instances of successful reductions of the modified ALBA algorithm.

In Chapter 2, we report on the results in [FGK+14c]. We provide an analysis of the

existing proof systems for dynamic epistemic logic from the viewpoint of proof-theoretic

semantics. We discuss the main features of display calculi, and focus our attention

on Wansing’s notion of proper display calculi. We generalize this notion to that of

quasi-proper display calculi, and prove its corresponding Belnap-style cut elimination

metatheorem. We introduce the display calculus D’.EAK for Baltag-Moss-Solecki’s logic

of Epistemic Actions and Knowledge. This calculus revises and improves a previous

calculus D.EAK given in [GKP13], for which cut elimination Belnap-style could not be

proven. A common feature of D.EAK and D’.EAK is the presence of the adjoints of the

dynamic modal operators. Although these adjoints are not naturally interpretable in the

standard Kripke semantics of updated models, they have a natural interpretation in the

alternative but equivalent final coalgebra semantics for EAK. We prove that D’.EAK is

sound w.r.t. the final coalgebra semantics, complete and conservative w.r.t. EAK, and is

a quasi-proper display calculus, hence it enjoys cut elimination via the corresponding

Belnap-style metatheorem.

In Chapter 3, we report on the results in [FGK+14a]. We generalize display calculi to

a multi-type setting. We introduce the multi-type counterpart of quasi-proper display

calculi, referred to as quasi-proper multi-type display calculi, and prove their corre-

sponding Belnap-style cut elimination metatheorem. We introduce a multi-type display

calculus for EAK, referred to as Dynamic Calculus for EAK. In this calculus, the param-

eters indexing the dynamic and epistemic modal operators in the original language of

EAK are taken as terms, and the unary modal operators are encoded as binary opera-

tions taking arguments of different types. We prove that the Dynamic Calculus for EAK

is sound w.r.t. the final coalgebra, complete and conservative w.r.t. EAK and is a quasi-

proper multi-type display calculus, hence it enjoys cut elimination via the corresponding

Belnap-style metatheorem.

In Chapter 4, we report on the results in [FGK+14b]. We discuss a generalization of

the multi-type display setting in which the display property (either full or relativized)

is dropped. This setting imports ideas from Sambin’s Basic Logic [BFS00], and com-

pensates the lack of display property by pivoting on the so-called visibility property. We

introduce the notion of quasi-proper display-type calculi in the multi-type setting, and

prove its associated Belnap-style cut elimination metatheorem.

Prologue 10

In Chapter 5, we introduce a more compact version of the setting in the previous chapter.

This version is single-type and ‘proper’ instead of quasi-proper (that is, the shape of the

axioms is restricted as in Belnap’s original paper, rather than more general, as e.g. in

the proof systems for EAK). We introduce a display-type calculus for monotone modal

logic, and prove that it is sound and complete w.r.t. the basic monotone modal logic, and

is a proper display-type calculus, hence it enjoys cut elimination via the corresponding

Belnap-style metatheorem.

In Chapter 6, we report on the results in [FGKP14]. We introduce a multi-type display

calculus for Propositional Dynamic Logic (PDL). This calculus is complete w.r.t. PDL, and

is a proper multi-type display calculus, hence enjoys cut elimination via the correspond-

ing Belnap-style metatheorem. We discus the soundness of its rules w.r.t. the standard

semantics, and its conservativity problem, which is still open.

Appendix A provides the proof of the main result in Chapter 1, that is Lemma 1.34.

Appendix B lists the Belnap-style cut elimination metatheorems discussed in Part II.

Appendices C, D, and E collect material pertaining to Chapter 2. Appendix C provides

some derived rules of the calculus D’.EAK. Appendix D collects most transformation

steps in the verification that D’.EAK is a quasi-proper display calculus (cf. Section 2.6.3).

In Appendix E, we prove the completeness of D’.EAK w.r.t. the Hilbert presentation of

EAK (cf. Sections 2.4.1 and 2.4.2) by deriving the axioms of (the intuitionistic version

of) EAK in D’.EAK.

Appendices F and G refer to Chapter 3. In Appendix F, we complete the proof of the

Belnap-style cut elimination (cf. Section 3.5.2) for the Dynamic Calculus for EAK given

in Section 3.2. In Appendix G, we prove the completeness of the Dynamic Calculus for

EAK w.r.t. the Hilbert presentation of D’.EAK (cf. Section 2.4) by deriving the axioms of

(the intuitionistic version of) EAK in the Dynamic Calculus.

Appendix H provides the rules of the display-type sequent calculus for monotone modal

logic introduced in Chapter 5.

Appendices I, J and K refer to Chapter 6. Appendix I provides the rules for the proposi-

tional base of the display calculus for PDL. In Appendix J, we complete the proof of the

Belnap-style cut elimination (cf. Section 6.6) for the display calculus for PDL given in

Section 6.3. In Appendix K, we prove that the display calculus for PDL given in Section

6.3 is complete w.r.t. the Hilbert presentation of PDL.

Table 1 gives a schematic view of the different kinds of calculi we study in Part II of the

present thesis, and the logics to which they apply.

Prologue 11

Quasi-Proper Proper

Display
Single-Type EAK (cf. Chapter 2) Primitive modal logics [Kra96]

Multi-Type EAK (cf. Chapter 3) PDL (cf. Chapter 6)

Display-Type
Single-Type MML (cf. Chapter 5)

Multi-Type Chapter 4

Table 1: Overview of main notions in Part II of the present thesis

Contribution

Chapter 1 is based on [FPS14]. The initial idea of this work, that certain characteri-

zation results for finite lattices can be understood as correspondence phenomena, was

formulated by Luigi Santocanale already in [San09]. He also conjectured that the cor-

respondence techniques revolving around ALBA could be usefully adapted to this prob-

lem. The author of the present thesis, in collaboration with Alessandra Palmigiano,

introduced the basic adaptation of the algorithm ALBA (cf. [CP12]) to monotone modal

logic (cf. Section 1.3). The introduction of the further enhancements of ALBA for the

specific finite lattice environment (cf. Section 1.4) and the application to the D+-chains

(cf. Section 1.5 and Appendix A) are contributions of the present author.

Chapter 2 is based on [FGK+14c]. A precursor of this paper is [GKP13], in which

Giuseppe Greco, Alessandra Palmigiano and Alexander Kurz introduce a calculus for

EAK which is rather similar to the one appearing in [FGK+14c], but which fails to satisfy

all the conditions of Belnap’s original metatheorem. In particular, the cut elimination for

this calculus is proved Gentzen-style. The present author contributed to the introduction

of the notion of quasi properly display calculus and to the proof of its associated cut-

elimination metatheorem. A collective and crucial realization emerging from those first

discussions was that we needed to abandon the strategy of trying to appeal to existing

metatheorems and rather introduce a new design, which then resulted in the notion of

quasi-proper display calculus. The present author contributed to all the developments

which make the calculus introduced in [FGK+14c] a technical improvement over the one

of [GKP13]. The preliminary Sections 2.1 and 2.4 elaborate material discussed in Vlasta

Sikimić’s master thesis [Sik13]; the present version incorporates the feedback received

from the reviewers of the paper. Section 2.5 on the coalgebra semantics was mainly de-

veloped by Alexander Kurz. The present author contributed, at an earlier or later stage,

to each section of the paper, with a special stress on the new notion of quasi-proper dis-

play calculi (cf. Section 2.3), and the proof of its associated Belnap-style metatheorem.

Prologue 12

Chapter 3 is based on [FGK+14a]. The idea of multi-type calculus already appeared in

Vlasta Sikimić’s thesis [Sik13], in which a preliminary version appears of the calculus

introduced in [FGK+14a] and an attempt at a proof of cut elimination Belnap-style, by

appealing to an existing metatheorem. However, as discussed above, the strategy of

appealing to existing metatheorems turned out to be unfeasible, both for the single-type

calculus, and a fortiori for the multi-type calculus. Again, while the present author’s

contributions cover each section of the paper in different stages of its development, the

main contributions focus on the development of the notion of quasi-proper multi-type

display calculi and its associated metatheorem (cf. Section 3.2), the modifications of the

rules of the Dynamic Calculus for EAK (cf. Section 3.3), the soundness (cf. Section 3.4)

and the conservativity (cf. Section 3.6).

Chapter 4 is based on [FGK+14b], and Chapter 5 reports on work not yet published.

Introducing a display calculus for monotone modal logic was one of the main initial

motivations for the present author, and an important technical step towards the devel-

opment of proof-theoretic semantically adequate calculi for such logics as Parikh’s game

logic. The initial idea on how to overcome the technical difficulties specific to monotone

modal logic was Giuseppe Greco’s, and consisted in making use of the visibility notion

as in [BFS00]. Giuseppe Greco and the present author studied the setting of display-

type calculi together, developing in particular the metatheorem specific to display-type

calculi (cf. Chapter 4). The present author then developed the calculus and the proof of

the metatheorem most directly applicable to monotone modal logic (cf. Chapter 5).

Chapter 6 is based on [FGKP14]. As was the case with the previous many-author papers,

this paper grew from the close collaboration and interaction of all the authors, so that

each author contributed in a widespread way to the paper in its present form. As to

some features of the design of the calculus (cf. Section 6.3), Alessandra Palmigiano had

the idea to introduce actions and transitive actions as separate types, and to model the

proof-theoretic behaviour of the connective (·)+ making use of the fact that its semantic

interpretation, i.e. the transitive closure operation, is left adjoint to the embedding of

transitive actions into actions ; Giuseppe Greco developed the theory around the fixed

point axiom and the induction axiom, and the present author developed the other tech-

nicalities of the design of the calculus: the test, the choice, the sequential composition

and the virtual adjoints. In collaboration with Alessandra Palmigiano, the present au-

thor proved the soundness of the rules involving no virtual adjoints (cf. Section 6.4),

and, in collaboration with Giuseppe Greco, proved the completeness of the calculus (cf.

Section 6.5).

Résumé en français

Introduction

Logique modale monotone. La logique modale monotone est la plus petite logique

modale classique2 dont les opérateurs modaux satisfont la règle d’inférence RM:

ϕ↔ ψ

�ϕ↔ �ψ
.

Les logiques modales monotones sont étudiées depuis l’apparition de la logique modale

sous sa forme moderne (cf. [Lew18, LL32]) par des philosophes formels tels que Lewis

dans le but de formaliser la notion d’implication stricte. Parmi les systèmes logiques S 1-

S 5 proposés par Langford et Lewis dans [LL32], seulement S 4 et S 5 sont des logiques

normales. Les travaux de Prior [Pri54, Pri58, Pri62], Lemmon [Lem57], et von Wright

[vW51, vW53, vW56, vW68, vW71] témoignent de l’intérêt porté aux logiques modales

monotones comme des systèmes formels adéquats pour représenter des raisonnements

épistémiques et déontiques.

Par ailleurs, il existe plusieurs objections émises contre l’utilisation de logique modale

normale dans le contexte de la logique épistémique et déontique. Mentionnons les ar-

guments de Lemmon dans [Lem57] où il propose plusieurs systèmes d’axiomes pour

les logiques épistémiques et déontiques. Ces systèmes ne contiennent pas la règle de

nécessité car elle entraine la présence dans la logique de théorèmes de la forme �φ.

Lorsque l’opérateur � est interprété comme une obligation morale ou scientifique mais

pas comme une nécessité logique, les systèmes proposés par Lemmon sont en accord

avec l’idée que rien ne devrait être une loi scientifique ou une obligation morale d’un point

vue logique.

2 La logique modale classique introduite par Chellas (cf. [Che80, Definition 8.1]) est définie comme la plus petite

logique dont la base propositionnelle est classique, contenant l’axiome �ϕ↔ ¬^¬ϕ et fermée par rapport à la règle

ϕ↔ ψ

�ϕ↔ �ψ
.

13

Résumé 14

En plus des logiques épistémiques et déontiques, dans le même domaine de la logique

philosophique, les logiques non-normales et en particuliers les logiques monotones ont

aussi été liées à l’étude des contre-factuels [Lew73], via l’environnement de la séman-

tique standard des structures de voisinages. Après l’introduction de la sémantique de

Kripke [Kri63], le système axiomatique de la logique modale normale a été très util-

isé, à tel point que les logiques modales normales sont devenues le système formel par

défaut pour la logique modale.

Cependant, ces dernières années, l’intérêt pour les logiques modales non-normales, et

en particulier pour les logiques modales monotones s’est exprimé dans différentes direc-

tions. Pour n’en mentionner que quelques unes, récemment, la logique épistémique et la

logique déontique ont toutes deux trouvé de nouveaux domaines d’applications. Par ex-

emple, la logique déontique est devenue de plus en plus pertinente dans le domaine de la

spécification de systèmes en informatique. Dans ce contexte, l’interprétation déontique

des opérateurs modaux (non plus “l’obligation morale”, mais de façon plus générale

“la norme”) est utile par exemple pour appliquer une gestion différente des contraintes

faibles et dures dans les problèmes de planning et d’ordonnancement. Utiliser les opéra-

teurs modaux pour exprimer les contraintes faibles en terme de normes a l’avantage que

les normes peuvent être enfreintes sans créer une inconsistance dans la spécification

formelle, contrairement à la violation de contraintes dures (cf. par exemple [CJ96]).

Dans ce contexte, la formalisation de l’obligation à l’aide d’opérateurs modaux normaux

n’est pas considérée adéquate, puisque cela engendre des paradoxes ou des interpréta-

tions contre-intuitives. De même, les systèmes formels basés sur la logique épistémique

sont de plus en plus utilisés en intelligence artificielle pour modéliser des aspects so-

phistiqués de la dynamique de l’information. Dans ce contexte, des objections contre les

formalisations en termes d’opérateurs modaux normaux sont aussi apparues.

Finalement, durant les vingt dernières années, des logiques ont été introduites dont le

but est de modéliser différents phénomènes tels que la concurrence en informatique

(cf. Concurrent Propositional Dynamic Logic [Gol92a]), les raisonnements rationnels

dans des environnements contenant plusieurs agents (cf. Coalition Logic [Pau02] et

Game Logic [Par85]), ou les raisonnements probabilistes (cf. Modal Logic for Probabil-

ity [Her03]). Dans tous ces contextes, non seulement l’hypothèse de normalité, mais

aussi la distributivité des opérateurs modaux sur les suprema et les infima binaires sont

problématiques. Par exemple, en logique des jeux, un agent peut avoir une stratégie

pour atteindre un état tel que p1 ou p2 est vraie sans que sa stratégie ne lui permette

de déterminer laquelle des propositions pi sera vraie. Un autre exemple provient du

cadre dans lequel la signification de l’opérateur � est “φ est vraie avec une probabilité

supérieure à un certain seuil 0 ≤ r ≤ 1”. Supposons que la probabilité que p soit vraie

est 3
4
, que la probabilité que q soit vraie soit 3

4
, et que r = 2

3
. Alors, nous avons que

Résumé 15

�p ∧ �q est vraie, mais �(p ∧ q) ne l’est pas étant donné que la probabilité que p ∧ q soit

vraie est 9
16

. Pour plus de détails sur la logique modale monotone et la sémantique des

voisinages, se référer à [Han03] et [Pac07].

Une théorie mathématique riche. Les structures de voisinages, aussi connues sous le

nom de modèles de Scott et Montague (cf. [Sco70, Mon70]), généralisent les mod-

èles de Kripke et sont devenues l’environnement sémantique standard des logiques pour

lesquelles l’axiome de multiplicité �p ∧ �q → �(p ∧ q) et/ou l’axiome de monotonicité

�p→ �(p∨ q) ne sont pas valides. Dans une structure de voisinages, chaque état est as-

socié à une collection de sous-ensembles de l’univers (appelés voisinages) qui définissent

la relation d’accessibilité. Une structure de voisinage est formellement définie comme

un couple F := (W, τ) tel que W est un ensemble non-vide et τ : W −→ PPW. Un mod-

èle de voisinages est un couple M := (F, v) tel que F est une structure de voisinages et

v : AtProp −→ PW est une valuation. Une formule modale �ϕ est vraie à un état donné

du modèle de voisinages si et seulement si l’ensemble des valeurs de vérité de ϕ est un

voisinage de cet état. La logique modale classique introduite par Chellas (cf. note de bas

de page numéro 2) est correcte et complète par rapport aux modèles de voisinages.

Dans l’environnement des modèles et structures de voisinages, il est possible d’établir

des résultats de correspondance similaires à ceux établis pour les structures de Kripke.

Ci-dessous, nous rappelons les plus connus d’entre eux: pour tout X ⊆ W, soit τ−1[X] :=

{w ∈ W | X ∈ τ(w)},

(N) �⊤ (n) ∀w[W ∈ τ(w)]

(P) ¬�⊥ (p) ∀w[∅ < τ(w)]

(M) �(φ ∧ ψ)→ �φ ∧ �ψ (m) ∀w∀X∀Y[(X ∈ τ(w) & X ⊆ Y)⇒ Y ∈ τ(w)]

(C) �φ ∧ �ψ→ �(φ ∧ ψ) (c) ∀w∀X∀Y[(X ∈ τ(w) & Y ∈ τ(w))⇒ X ∩ Y ∈ τ(w)]

(D) �φ→ ^φ (d) ∀w∀X[X ∈ τ(w)⇒ Xc
< τ(w)]

(T) �φ→ φ (t) ∀w∀X[X ∈ τ(w)⇒ w ∈ X]

(B) φ→ �^φ (b) ∀w∀X[w ∈ X ⇒ (τ−1[Xc])c ∈ τ(w)]

(4) ��φ→ φ (iv) ∀w∀X∀Y[(X ∈ τ(w) & ∀x[x ∈ X ⇒ Y ∈ τ(x)])

⇒ Y ∈ τ(w)]

(4’) �φ→ ��φ (iv’) ∀w∀X∀Y[X ∈ τ(w)⇒ τ−1[X] ∈ τ(w)]

(5) ^φ→ �^φ (v) ∀w∀X[X < τ(w)⇒ (τ−1[X])c ∈ τ(w)]

En particulier, la logique modale monotone peut être définie de façon équivalente comme

la logique modale classique enrichie avec l’axiome (M) ci-dessus. Elle est correcte et

fortement complète par rapport à la classe des structures de voisinages monotones, i.e. la

classe des structures de voisinages satisfaisant la condition (m) ci-dessus (voir [Han03]).

Résumé 16

Toute structure de Kripke F = (W,R) peut être redéfinie comme une structure (spéciale)

de voisinages monotone simplement en définissant la fonction de voisinages σF : W −→

PPW avec l’application w 7−→ {X ⊆ W | R[w] ⊆ X}. Réciproquement, une structure

de voisinages (W, σ) contient son noyau si
⋂
σ(w) ∈ σ(w) pour chaque w ∈ W. Man-

ifestement, pour chaque structure de Kripke F, la structure de voisinages monotone

NF = (W, σF) contient son noyau. Une structure de voisinages monotone N = (W, σ)

contenant son noyau donne lieu à une structure de Kripke FN = (W,RN) telle que

RN[w] =
⋂
σ(w) pour chaque w ∈ W. Il est facile de voir que F = FNF et N = NFN

pour chaque structure de Kripke F et pour chaque structure de voisinages monotone N

contenant son noyau.

Le lien entre les logiques modales monotones et les logiques normales a été beaucoup

étudié. En effet, les logiques modales normales ont été utilisées pour simuler les logiques

modales monotones [KW99], et les résultats et les techniques de la logique modale nor-

male ont été étendus au cas des logiques non-normales. Par exemple, dans [Doš89], des

résultats de dualité ont été établis entre des catégories de structures de voisinages et des

catégories d’algèbres modales (i.e. algèbres de Boole avec un opérateur unaire supplé-

mentaire) ; ces résultats étendent ceux de Goldblatt [Gol76] et Thomason [Tho75] sur

les catégories de structures relationnelles pour les logiques modales normales. A partir

des travaux de Pauly [Pau99], la perspective coalgébrique pour la logique modale nor-

male a été étendue aux logiques modales non-normales. dans [HK04] et [HKP07]. En

effet, les structures de voisinages peuvent être redéfinies de façon équivalente comme

des coalgèbres pour le foncteur F := 22(−)

résultant de la composition du foncteur con-

travariant “ensemble des parties” avec lui-même. Dans ce cadre de travail, les no-

tions d’équivalences de F-bisimulation, équivalence comportementale et bisimulation

de voisinages ont été étudiées, et les analogues du théorème de caractérisation de van

Benthem et du théorème de Hennessy-Milner ont été prouvés.

D’autres directions de recherche récentes explorent le lien entre la sémantique des voisi-

nages et la topologie (formelle). Par exemple, dans [dAFH09], la sémantique des voisi-

nages de Lewis pour la logique contre-factuelle [Lew73] a été étendue au cadre de la

théorie des topos.

Une logique entrelacée avec de nombreuses logiques. En résumé de la discussion menée

jusque là, la logique modale monotone se situe à l’intersection de nombreuses problé-

matiques appartenant à la philosophie, les mathématiques, l’informatique, l’intelligence

artificielle et les sciences sociales, comme le montre le fait que les connecteurs modaux

non-normaux apparaissent au sein de systèmes formels très différents tels que la logique

des jeux [Par85, PP03], des logiques épistémiques [vDvdHK03, Hei96], des logiques

Résumé 17

probabilistes et dynamiques [Gol92b, Her03], des logiques déontiques [CJ96]. D’où,

nous pensons qu’il est important et utile d’étudier la logique modale monotone non pas

de façon isolée, mais dans le contexte de ces différents environnements, et de dévelop-

per des méthodes qui peuvent être transférées d’un système logique à un autre. Ceci est

l’approche choisie dans cette thèse. Plus spécifiquement, la logique modale monotone

est étudiée au croisement de deux méthodologies très générales appartenant à deux do-

maines différents de la logique: la théorie de la correspondance algébrique (développée

dans le cadre de la dualité de Stone pour les logiques non-classiques), et la théorie des

display calculs, développée dans le cadre de la théorie des preuves structurelle, et mo-

tivée par des considérations algébriques et philosophiques. D’une part, la théorie de la

correspondance algébrique et algorithmique a été adaptée à la logique modale mono-

tone, et cette adaptation a été utilisée comme une base pour la formalisation d’un résul-

tat de correspondance pour les treillis finis. D’autre part, la théorie des display calculs

a été étendue au cadre des types multiples, ce qui rend possible de traiter sans prob-

lèmes et uniformément un large champ de difficultés qui apparaissent dans la théorie

des preuves des logiques dynamiques telles que la logique épistémique de Baltag-Moss-

Solecki pour les actions épistémiques et la connaissance. Dans le cadre de la théorie

des preuves avec les types multiples, une généralisation a été développée pour pren-

dre en compte les particularités de la logique modale monotone, à savoir le fait que les

modalités monotones, par définition, n’ont pas d’adjoints. A son tour, cette généralisa-

tion pour la logique modale monotone peut être utilisée pour franchir certains obstacles

dans les calculs pour d’autres logiques dynamiques telles que la logique des jeux. Nous

espérons que cette brève synthèse montre l’utilité d’adopter une approche synthétique

dans l’étude des familles de logiques, et en particulier, le rôle clé joué par la logique

modale monotone dans ces différents contextes.

Dans le reste de cette introduction, nous présentons les grandes lignes concernant la

correspondance algébrique et algorithmique, et les display calculs.

Théorie de la correspondance. La théorie de Sahlqvist a une longue histoire dans la

logique modale monotone, datant de [Sah75] et [vB85]. Le théorème de Sahlqvist dans

[Sah75] donne une définition syntaxique d’une classe de formules modales, nommée la

classe de Sahlqvist : chaque élément de cette classe définit une classe élémentaire (i.e.

définissable dans la logique du première ordre) de structures, et cette classe est canon-

ique. Ce sont deux propriétés très importantes : la canonicité d’une axiomatisation

garantit la complétude forte de Kripke de ses logiques associées, et l’élémentarité garan-

tit tous les avantages, calculatoires et théoriques, de la logique du premier ordre par

rapport à la logique du second ordre. A la fois la canonicité et l’élémentarité se trouvent

être algorithmiquement non décidables qu’elles soient prises séparément ou ensemble

Résumé 18

[CC06]. Ainsi, avoir une approximation décidable comme la classe de Sahlqvist est très

recherché.

Au cours des années, plusieurs extensions et variantes de ce résultat sont apparues ; par

exemple, des preuves algébriques/topologiques dans [SV89] et [Jón94], de la canonicité

constructive dans [GM97], des variations du langage de correspondance dans [vB06],

des résultats de type Sahlqvist pour les logiques hybrides dans [tCMV05] et pour le

µ-calcul dans [CFPS14] et [vBBH12], des extensions de la classe de Sahlqvist, par ex-

emple, aux formules inductives dans [GV06].

Depuis le commencement, la théorie de Sahlqvist a eu un aspect algorithmique marqué,

car l’algorithme de Sahlqvist-van Benthem [vB85] fut utilisé pour calculer les structures

du premier ordre correspondant aux formules de Sahlqvist. Récemment, de nouvelles

méthodes algorithmiques pour la correspondance et la canonicité ont grandement élargi

la classe de Sahlqvist d’origine. En particulier, l’algorithme SOEMA (voir [CGV06])

calcule à coup sûr le correspondant du premier ordre de chaque élément de la classe

des formules inductives, qui est une classe de formules modales largement plus grande

que la classe de Sahlqvist. De plus, il a été prouvé que les formules inductives sont aussi

canoniques.

Dans [CP12], des résultats de canonicité et de correspondance analogues à ceux dans

[CGV06] ont été obtenus pour le langage de la logique modale distributive, qui est

une logique modale dont la base propositionnelle est la logique des treillis distribu-

tifs. Les dualités et adjonctions existantes entre les sémantiques relationnelles et al-

gébriques de la logique modale normale et de la logique modale distributive ont rendu

possible la retranscription des étapes de réduction de l’algorithme SOEMA (établi dans

l’environnement de la théorie des modèles) en un algorithme similaire (établi dans un

environnement algébrique). Ce résultat a lui-même était généralisé aux treillis, qui ne

sont pas nécessairement distributifs [CP14].

La théorie unifiée de la correspondance a émergé de l’ensemble de ses résultats. La

théorie unifiée de la correspondance est un cadre de travail dans lequel les résultats de

correspondance peuvent être énoncés et prouvés de manière abstraite, sans se référer

à une signature logique donnée. Les résultats sont alors exprimés seulement en fonc-

tion des propriétés des interprétations algébriques des connecteurs logiques. La corre-

spondance unifiée permet d’utiliser des dualités existantes pour adapter des résultats de

correspondance à différentes sémantiques d’une logique donnée. Pour plus de détails

à ce sujet, se reporter à [CPS] et [CGP14]. Dans le Chapitre 1 de cette thèse, nous

présentons une application de la théorie de la correspondance unifiée : nous utilisons

un résultat de dualité entre les treillis finis et des structures similaires aux structures de

voisinages et nous adaptons l’algorithme ALBA pour la logique modale monotone et plus

Résumé 19

spécifiquement au cas des treillis finis. Cette adaptation de l’algorithme ALBA permet

d’obtenir une caractérisation de certaines classes de treillis finis.

Display Calculs. Nuel Belnap introduisit le premier display calcul qu’il nomma Dis-

play Logic [Bel82], comme un environnement pour la théorie des preuves, conçu pour

traiter d’une façon modulaire et uniforme de nombreuses logiques. Le principal avan-

tage technique des display calculs est qu’ils fournissent un environnement pour énoncer

et prouver de façon générique (i.e. canonique) des méta-théorèmes d’élimination de

coupure. Ces méta-théorèmes garantissent qu’un calcul donné satisfait l’élimination de

la coupure dans la mesure où il vérifie certaines conditions (c.f. Section 2.3) dont la

vérification est aisée. La preuve de ces méta-théorèmes consiste à définir des étapes uni-

formes de transformation dans la preuve de l’élimination de la coupure de type Gentzen.

Cette uniformité est la raison pour laquelle nous pouvons dire que l’élimination de la

coupure de type Belnap (i.e. l’élimination de la coupure obtenue comme la conséquence

d’un de ces méta-théorèmes) est à l’élimination de la coupure de type Gentzen ce que la

canonicité est à la complétude.

Les display calculs ont permis d’avoir une meilleure compréhension, du point de vue

de la théorie des preuves, de logiques qui sont notoirement difficiles à traiter avec

d’autres approches. Parmi ces logiques on trouve, en plus des logiques classique et (bi-

)intuitionniste [Bel82], la logique linéaire [Bel90], la logique modale et temporelle (bi-

)intuitionniste [GPT10, Gor96, Kra96, Wan94], des logiques substructurelles [Gor98],

des logiques pertinentes [Res98], ou la logique des algèbres relationnelles [Gor97].

Dans le cas de la logique modale, il a été extrêmement difficile d’étendre les calculs

des séquents traditionnels à la Gentzen afin d’obtenir un théorie des preuves uniforme

et générale englobant les nombreuses extensions de la logique modale normale mini-

male K. Une caractéristique importante des display calculs est qu’il y a une division du

travail nette entre les règles d’introduction pour les connecteurs logiques, et les règles

structurelles qui encodent des propriétés spécifiques à des connecteurs logiques donnés

qu’ils soient considérés seuls ou dans leurs interactions. Les extensions axiomatiques

d’une logique donnée sont typiquement traitées en ajoutant au calcul de base des rè-

gles structurelles correspondant aux axiomes ajoutés. Dans [Kra96], Kracht traite de

façon uniforme et modulaire une large classe d’extensions de la logique modale dans

le contexte des display calculs en caractérisant une sous-classe de formules modales de

Sahlqvist (nommées formules primitives), dont chaque formule peut être encodée par

une règle structurelle dans le display calcul.

En ce qui concerne les propriétés spécifiques aux display calculs, Belnap s’est inspiré

des observations de Gentzen sur les règles structurelles. En effet, dans la formulation

Résumé 20

standard de Gentzen, la virgule ‘,’ séparant les formules en position “précédente” et

en position “succédente” peut être reconnue comme un connecteur méta-linguistique

dont les règles structurelles définissent le comportement. Belnap généralisa cette idée

en admettant non seulement la virgule mais aussi d’autres connecteurs pour garder les

formules ensemble dans une structure et les appela connecteurs structurels. Tout comme

la virgule, qui dans le calcul des séquents à la Gentzen est interprétée en fonction du

contexte (i.e. comme une conjonction quand elle apparait à gauche du séquent et comme

une disjonction quand elle apparait à droite du séquent), chaque connecteur structurel

correspond généralement à une paire de connecteurs logiques et est interprété comme

l’un ou l’autre en fonction du contexte (c.f. Sections 2.2.2 and 2.6.1). Les connecteurs

structurels entretiennent des relations les uns avec les autres, dont la plus fondamentale

prend la forme d’adjonctions ou de résiduations. Ces relations permettent au calcul de

satisfaire la très importante propriété de display qui lui donne son nom.

Definition 0.2. Un système de preuve satisfait la propriété de display si et seulement si pour

chaque séquent X ⊢ Y et chaque sous-structure Z de X ou Y , le séquent X ⊢ Y peut être trans-

formé de façon équivalente, en utilisant les règles du système, en un séquent qui est soit de la

forme Z ⊢ W soit de la forme W ⊢ Z, et telle que W est une structure. Dans le premier cas, Z est

isolé en position précedente, et dans le second, Z est isolé en position succédente . Les règles

inversibles permettant cette réécriture équivalente sont appelées postulats de display.

Pour illustrer le rôle fondamental joué par la propriété de display dans les étapes de

transformation du méta-théorème d’élimination de la coupure, considérons l’étape d’élimination

de l’application de la coupure ci-dessous dans laquelle la formule de coupure est princi-

pale dans les deux prémisses de la coupure.

... π1

X1 ⊢ A

... π2

X2 ⊢ B

X1 , X2 ⊢ A ∧ B

... π

A , B ⊢ Y

A ∧ B ⊢ Y

X1 , X2 ⊢ Y

 ... π2

X2 ⊢ B

... π1

X1 ⊢ A

... π

A , B ⊢ Y

A ⊢ Y < B

X1 ⊢ Y < B

X1 , B ⊢ Y

B ⊢ X1 > Y

X2 ⊢ X1 > Y

X1 , X2 ⊢ Y

Les lignes en pointillés dans l’arbre de preuve sur la droite correspondent à des applica-

tions de postulats de display. Cette étape de transformation est possible car les postulats

de display désassemblent les structures composées afin de nous donner accès aux sous-

formules qui constituent immédiatement la formule de coupure et les ré-assemblent afin

de ‘remettre les choses ensemble’. Ainsi, il est possible de casser la coupure d’origine en

deux applications de la coupure sur les sous-formules immédiates, comme réclamé par

la stratégie originelle de Gentzen.

Résumé 21

Il est alors naturel de se poser la question suivante : si les opérateurs modaux en logique

modale monotone sont supposés ne pas préserver les suprema et les infima, alors il n’est

pas raisonnable de supposer qu’ils ont des adjoints. Cependant, il apparaît clairement

à partir de l’exemple ci-dessus que les postulats de display encodent essentiellement

les adjonctions/résiduations. Ainsi, comment est-il possible de prendre en compte les

logiques modales monotones dans la méthodologie des display calculs ?

En effet, le prix à payer pour l’élégante propriété de display est que le langage doit

inclure des connecteurs additionnels qui sont essentiels pour la comptabilité requise

par son application. La présence de ces connecteurs additionnels soulève immédiate-

ment des problèmes de conservativité. Dans de nombreux cas, ces problèmes peuvent

être résolus en utilisant des arguments sémantiques (nous verrons un exemple de cette

heureuse situation dans le Chapitre 2). Dans d’autres cas, les arguments sémantiques

ne sont pas utilisables, mais la conservativité peut néanmoins être prouvée grâce à

d’excellentes propriétés syntaxiques (cela est le cas pour le calcul du Chapitre 3). Dans

le cas de la logique modale monotone, nous avons abandonné la propriété de display,

et opté pour un calcul “type display” mais qui ne satisfait pas la propriété de display.

En effet, dans le Chapitre 5, nous introduisons un calcul qui contient certains postulats

de display, mais pas suffisamment pour garantir les étapes de réduction comme celles

illustrées précédemment. De plus, nous montrerons dans le Chapitre 4 qu’il est encore

possible de prouver un méta-théorème d’élimination de la coupure pour les calculs de

type display. Finalement, dans le cas du calcul du Chapitre 6, la conservativité est encore

un problème ouvert, et nous présenterons une stratégie pour la prouver.

Synopsis

Dans le Chapitre 1, nous présentons les résultats de [FPS14]. Nous adaptons l’algorithme

ALBA à la logique modale monotone, and obtenons des résultats de caractérisations

duales pour les treillis finis en utilisant l’algorithme ALBA modifié.

Dans le Chapitre 2, nous présentons des résultats de [FGK+14c]. Nous analysons les

systèmes de preuves existants pour la logique épistémique dynamique du point de vue

de la sémantique de la théorie des preuves. Nous discutons les caractéristiques princi-

pales des display calculs, et nous concentrons notre attention sur la notion de display

calcul propre introduite par Wansing. Nous généralisons cette notion à celle de display

calcul quasi-propre, et nous prouvons le méta-théorème d’élimination de la coupure de

type Belnap correspondant. Nous introduisons le display calcul D’.EAK pour la logique

de Baltag-Moss-Solecki, Epistemic Actions and Knowledge. Ce calcul est une améliora-

tion du calcul D.EAK présenté dans [GKP13], pour lequel l’élimination de la coupure

Résumé 22

n’avait pas pu être prouvée en utilisant la méthode introduite par Belnap. La caractéris-

tique commune aux calculs D.EAK et D’.EAK est la présence des adjoints des opérateurs

dynamiques. Bien que ces adjoints ne soient pas directement interprétables dans la

sémantique standard de Kripke pour les modèles actualisés, ils ont une interprétation

naturelle dans la sémantique, alternative mais équivalente, de la coalgèbre finale pour

EAK. Nous prouvons que D’.EAK est correct par rapport à la sémantique de la coalgèbre

finale, et complet et conservatif par rapport à EAK, et que c’est un display calcul quasi-

propre, qui il satisfait de fait l’élimination de la coupure via le méta-théorème de type

Belnap correspondant.

Dans le Chapitre 3, nous présentons les résultats de [FGK+14a]. Nous généralisons les

display calculs aux langages typés. Nous introduisons l’équivalent des display calculs

quasi-propres pour les langages typés que nous nommons display calculs quasi-propres

multi-types, et nous prouvons le méta-théorème d’élimination de la coupure de type

Belnap correspondant. Nous introduisons un display calcul typé pour EAK, dénommé

Calcul Dynamique pour EAK. Dans ce calcul, les paramètres indexant les opérateurs

modaux dynamiques et épistémiques dans le langage originel de EAK sont vus comme

des termes et les opérateurs modaux unaires sont codés par des opérations binaires

prenant des arguments de types différents. Nous prouvons que le Calcul Dynamique

pour EAK est correct par rapport à la sémantique pour la coalgèbre finale, et complet

et conservatif par rapport à EAK et que EAK est un display calcul quasi-propre multi-

type qui satisfait donc l’élimination de la coupure via le méta-théorème de type Belnap

correspondant.

Dans le Chapitre 4, nous présentons les résultats de [FGK+14b]. Nous discutons une

généralisation des display calculs multi-types dans laquelle nous abandonnons la pro-

priété de display. Dans ce contexte, nous importons des idées de [BFS00], et com-

pensons le manque de propriétés display en renforçant la propriété de visibilité. Nous

introduisons la notion de calculs quasi-propres de type display dans le cadre des types

multiples, et nous prouvons le méta-théorème d’élimination de la coupure de type Bel-

nap qui lui est associé.

Dans le Chapitre 5, nous introduisons une version plus compacte de l’environnement

introduit dans le chapitre précédent. Cette version ne comporte qu’un seul type et est

‘propre’ au lieu d’être ‘quasi-propre’ (i.e. la forme des axiomes est restreinte comme dans

l’article original de Belnap, au lieu d’être plus générale comme, par exemple, dans les

systèmes de preuves pour EAK). Nous introduisons un calcul de type display pour la

logique modale monotone, nous prouvons qu’il est correct et complet par rapport à la

logique monotone de base. Nous montrons de plus que c’est un calcul propre de type

Résumé 23

display et donc qu’il a la propriété d’élimination de la coupure via le méta-théorème de

type Belnap correspondant.

Dans le Chapitre 6, nous présentons les résultats de [FGKP14]. Nous introduisons un

display calcul multi-types pour la Logique Propositionnelle Dynamique (PDL). Ce calcul

est complet par rapport à PDL, et est un display calcul propre multi-type, il a donc la

propriété d’élimination de la coupure via le méta-théorème de type Belnap correspon-

dant. Nous discutons la correction de ses règles par rapport à la sémantique standard,

et la question de sa conservativité qui est encore ouverte.

L’Appendice A fournit la preuve du résultat principal du Chapitre 1, qui est le Lemme

1.34.

L’Appendice B liste les méta-théorèmes d’élimination de la coupure de type Belnap dis-

cutés dans la Partie II.

Les Appendices C, D, et E collectent de la documentation concernant le Chapitre 2.

L’Appendice C fournit certaines régles dérivées du calcul D’.EAK. L’Appendice D liste

la plupart des étapes de transformation de la vérification du fait que D’.EAK est un

display calcul quasi-propre (cf. Section 2.6.3). Dans l’Appendice E, nous prouvons la

complétude de D’.EAK par rapport à la présentation de Hilbert de EAK (cf. Sections 2.4.1

et 2.4.2) en dérivant les axiomes de (la version intuitionniste de) EAK dans D’.EAK.

Les Appendices F et G se réfèrent au Chapitre 3. Dans l’Appendice F, nous complétons

la preuve de l’élimination de la coupure (cf. Section 3.5.2) pour le Calcul Dynamique

pour EAK donné dans la Section 3.2. Dans l’Appendice G, nous prouvons la complétude

du Calcul Dynamique pour EAK par rapport à la présentation de Hilbert de D’.EAK (cf.

Section 2.4) en dérivant les axiomes de (la version intuitionniste de) EAK dans le Calcul

Dynamique.

L’Appendice H fournit les règles du calcul des séquents de type display pour la logique

modale monotone introduite dans le Chapitre 5.

Les Appendices I, J et K se réfèrent au Chapitre 6. L’Appendice I fournit les règles de la

base propositionnelle du display calcul pour PDL. Dans l’Appendice J, nous complétons

la preuve de l’élimination de la coupure (cf. Section 6.6) pour le display calcul pour PDL

donné dans la Section 6.3. Dans l’Appendice K, nous prouvons que le display calcul pour

PDL donné dans la Section 6.3 est complet par rapport à la présentation de Hilbert de

PDL.

Part I

Correspondence Theory

25

Chapter 1

Dual Characterizations for Finite

Lattices via Correspondence Theory

for Monotone Modal Logic

1.1 Introduction

Dual characterization results for finite lattices. The present chapter builds on a duality

for finite lattices, established by Santocanale [San09]. The structures dually equiva-

lent to finite lattices are referred to as join-presentations, and are certain triples (X,≤,M)

such that (X,≤) is a finite poset, and M : X −→ PPX. In [San09], it has been pointed

out—and indicated as a worthwhile research direction—that the existence of this duality

makes it possible to investigate systematic dual characterization results, between equa-

tions or inequalities in the algebraic language of lattices on one side, and first-order

conditions in the language of join-presentations on the other. One significant instance of

such systematic dual characterizations has been developed in the same paper, between

a class of inequalities in the language of lattices and a corresponding class of first-order

conditions. Both classes are parametric in the class of finite trees (cf. [San09, Proposi-

tion 8.5]). This result generalizes Nation’s [Nat90, Section 5] stating that a certain class

of finite lattices1 is a pseudovariety, and is similar to Semenova’s results [Sem05].

From modal logic to unified correspondence theory. Modal logic is an area in which

systematic dual characterization results have been extensively developed, giving rise to

a very rich theory—the so called modal correspondence theory—which has been investi-

gated for almost forty years. Modal correspondence theory was originally developed in a
1Namely, the finite lattices such that the length of their D-chains has a uniform upper bound.

27

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 28

purely model-theoretic way [vB85]. However, correspondence-related phenomena have

been studied in an algebraic framework subsuming duality theory since the early 90s

[JT51], and very recently, a unified correspondence framework has emerged [CGP14],

which is based on duality, and uniformly extends correspondence theory to many non-

classical logics. One of the main tools developed by this theory is an algorithm (actually

various cognate versions of it, cf. [CP12]) or calculus for correspondence, called ALBA,

which mechanizes dual characterization meta-arguments. In particular, as discussed in

[CP12] and [CGP14], the core of ALBA is the encoding of a general meta-argument for

correspondence known in the literature as the minimal valuation argument into a rule

which relies on the Ackermann lemma [Ack35]. The algorithm ALBA takes in input for-

mulas or inequalities in a given propositional language and, whenever it succeeds2, it

computes the first-order correspondent of the given formula or inequality, i.e. a first-order

sentence which holds in a given structure exactly when the given propositional formula

or inequality is valid in the dual algebra of that structure. The general theory also pro-

vides the syntactic characterization of a class of formulas/inequalities for each logic,

the so-called inductive formulas/inequalities, on which the algorithm is guaranteed to

uniformly succeed. For each language, inductive inequalities form the largest such class

syntactically defined so far in the literature.

Aim of the chapter. Given the availability of this theory, it seems natural to try and un-

derstand dual characterization results such as [San09, Proposition 8.5] as instances of a

more general unified correspondence mechanism. This is what the present chapter aims

at doing, by establishing a novel dual characterization result similar to Nation’s. Our

result paves the way to the mechanization and systematization of dual characterizations

such as the one in [San09].

Methodology: basic algorithmic correspondence for monotone modal logic. Our approach

is based on an adaptation of the algorithm/calculus ALBA of [CP12] to the case of mono-

tone modal logic. This adaptation is necessary, since some of the rules in the standard

version of the algorithm would not be sound for the modal connectives of monotone

modal logic, and is one of the contributions of the present chapter. The adapted ALBA

is semantically justified in the general environment of two-sorted frames (cf. Section

1.3), which are general structures that can encode monotone neighbourhood frames as

special cases. As their name suggests, two-sorted frames are relational structures based

on two domains. Normal modal operators can be associated in the standard way with

2It is well known [CC06] that the problem of whether a formula admits a first-order correspondent is undecidable.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 29

the binary relations on two-sorted frames. Monotone modal operators can be then in-

terpreted on two-sorted frames as the composition of some of these normal modalities.

This provides the basic semantic environment for the adapted ALBA.

Correspondence theory for monotone modal logic has already been studied in [Han03],

where a class of monotone modal formulas which are guaranteed to have a first order

correspondent has been identified. However, the class of inductive inequalities corre-

sponding to the ALBA setting is strictly larger than the one in [Han03].

Enhancing ALBA. However, the translations of inequalities such as Nation’s [Nat90]

and as the ones treated in the present chapter fall outside the inductive class. Hence,

another contribution of the present chapter is the addition of special rules which are

sound on the specific semantic setting arising from finite lattices. Interestingly, an

Ackermann-type rule features among these additional rules, the soundness of which

cannot be straightforwardly explained in terms of the Ackermann lemma, but which

however still intuitively encodes a minimal valuation argument.

Organization of the chapter. In Section 1.2, we collect preliminaries on the duality be-

tween finite lattices and join-presentations, the language and neighbourhood semantics

of monotone modal logic, the duality-induced ‘standard translation’ of lattice terms into

terms in the language of monotone modal logic, and the algorithm for correspondence

ALBA. In Section 1.3, we adapt the algorithm ALBA specifically to monotone modal logic

via the introduction of two-sorted frames. In Section 1.4, we enhance the adapted ALBA

by introducing additional rules, and prove their soundness w.r.t. the semantic environ-

ment of so-called enriched two-sorted frames which can be naturally associated with

finite lattices. In Section 1.5, upper bounds on the length of D+-chains (cf. Definition

1.32) are obtained as a reduction of the enhanced ALBA. Section 1.6 collects the con-

clusions and further directions. The proof of a technical lemma appears in Appendix

A.

1.2 Preliminaries

The aim of the present section is to collect preliminaries belonging to diverse fields of

logic, and to connect them so as to set the stage for the main result. In the next sub-

section, we report on a duality on objects for finite lattices, which has been introduced

in [San09]. Given that the structures dual to finite lattices can be naturally associated

with monotone neighbourhood frames, and given that monotone neighbourhood frames

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 30

are standard models for monotone modal logic, the duality presented in Section 1.2.1

serves as a basis for the definition of a standard translation between lattice terms and

monotone monotone modal logic formulas. In Section 1.2.2, we recall the basic defi-

nitions about monotone modal logic and neighbourhood frames, and we show how we

can represent a finite lattice as a monotone neighbourhood frame. In Section 1.2.3, we

define a standard translation between lattice terms and formulas of monotone modal

logic, and show that this translation adequately transfers and reflects the validity of lat-

tice inequalities on any finite lattice L, and the validity of their standard translations on

the monotone neighbourhood frames associated with L. Finally, in Section 1.2.4, we

give an informal presentation of the algorithm for correspondence ALBA, introduced in

[CP12], for correspondence for normal modal logic.

1.2.1 Dual equivalence for finite lattices

In the present subsection, we report on the object-part of a dual equivalence between

finite lattices and certain poset-based structures (cf. Definition 1.4). Our presentation is

based on [San09]. These structures will turn out to be special neighbourhood frames,

and hence the existence of this duality provides the bridge between the propositional

logic of lattices and monotone modal logic.

In what follows, L will denote a finite lattice. Elements of L will be denoted a, b . . .

Throughout this chapter, the letters i, j, k will be reserved for join-irreducible elements

of L (the set of which is J(L)), and m, n for meet-irreducible elements of L (the set of

which is M(L)), respectively. Recall that an element j , ⊥ of L is join-irreducible iff

j = a∨b implies that either j = a or j = b for all a, b ∈ L. Order-dually, an element m , ⊤

of L is meet-irreducible iff m = a ∧ b implies that either m = a or m = b for all a, b ∈ L. A

subset C ⊆ L is a join-cover of a ∈ L if a ≤
∨

C.

For any poset (S ,≤), its associated refinement relation, denoted ≪, is defined on the set

P f (S) of finite subsets of S by the following stipulation:

A ≪ B iff for every a ∈ A there exists some b ∈ B such that a ≤ b. (1.1)

Equivalently,

A ≪ B iff ↓A ⊆ ↓B,

where ↓C := {x ∈ S | x ≤ c for some c in C} for every C ⊆ S . Throughout the chapter, we

say that a join-cover C of a is minimal if it is an ≤-antichain, and if, for any ≤-antichain

D ⊆ L, (a ≤
∨

D and D ≪ C) imply D = C. A join-cover of a is trivial if it contains a. We

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 31

can easily show that any join-irreducible element j ∈ J(L) has only one trivial minimal

join-cover, that is, the singleton { j}.

Direct presentations and their closure operators. In the present paragraph, we define

direct presentations, and introduce a closure operator over these presentations which

is a key ingredient of the duality on objects between finite lattices and reflexive and

transitive presentations (see paragraph below).

Definition 1.1. A presentation is a triple (X,≤,M) such that (X,≤) is a poset, and M : X →

PPX. A presentation is

• monotone if for all x, y ∈ X, any C ⊆ X, if y ≤ x and C ∈ M(x), then D ≪ C for some

D ∈ M(y);

• reflexive if for each x ∈ X, there exists some C ∈ M(x) such that C ≪ {x};

• transitive if for every x ∈ X and every C ⊆ X, if C ∈ M(x) then for every collection

{Dc | c ∈ C} such that Dc ∈ M(c) for every c ∈ C, there exists some E ∈ M(x) such that

E ≪
⋃

c∈C Dc;

• direct if it is monotone, reflexive, and transitive.

Recall that a downset of (X,≤) is a subset S ⊆ X such that for all x, y ∈ X, if y ≤ x and

x ∈ S then y ∈ S . Let D(X,≤) denote the set of downsets of (X,≤).

For any presentation A = (X,M) where X := (X,≤) is a poset, the assignment clA :

DX −→ DX is defined as follows: for any S ∈ DX,

clA(S) := {x ∈ X | D ⊆ S for some D ∈ M(x)}. (1.2)

Lemma 1.2. For any direct presentation A = (X,≤,M), the map clA is a closure operator.

Proof. We first prove that the map clA is well-defined. Fix S ∈ DX, x ∈ clA(S) and y ∈ X.

Assume that y ≤ x. Since x ∈ clA(S), there is some Cx ∈ M(x) such that Cx ⊆ S . In addition,

since A is monotone, y ≤ x implies that there exists some Cy ∈ M(y) such that Cy ≪ Cx. By

definition of≪, we have that Cy ⊆ S because S is a downset. Thus y ∈ clA(S). This finishes the

proof that clA(S) is a downset. Hence the map clA is well-defined.

To prove that clA is a closure operator, we need to show that clA is order-preserving, and that

S ⊆ clA(S) and clA(clA(S)) ⊆ clA(S) for any S ∈ DX. It is immediate to see that clA is order

preserving.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 32

Since A is reflexive, there is some C ∈ M(x) such that C ⊆ ↓x. Moreover, x ∈ S implies that

↓x ⊆ S . Hence, by definition of clA, we have that x ∈ clA(S) for any x ∈ S , that is S ⊆ clA(S).

It remains to be shown that clA(clA(S)) ⊆ clA(S) for any S ∈ DX. Let x ∈ clA(clA(S)). By

definition of clA, there exists some D ∈ M(x) such that D ⊆ clA(S). Then any d ∈ D is an

element of clA(S). Thus, for each d ∈ D there exists some Ed ∈ M(d) such that Ed ⊆ S . Since

A is transitive, there is some C ∈ M(x), such that C ≪
⋃

d∈D Ed. Thus C ⊆ S , and, by definition

of clA(S), this proves that x ∈ clA(S). This completes the proof that clA is a closure operator. �

Definition 1.3. For any direct presentation A = (X,≤,M), a downset S ⊆ X is closed if S =

clA(S). The closure of a downset S ⊆ X is the set clA(S). In the following, whenever it causes

no confusion, we denote the closure of a downset S by S .

Notice that for any direct presentation A = (X,≤,M), we can extend the closure operator

clA to sets, as follows:

clA : PX −→ PX

S 7−→ clA(↓≤S). (1.3)

Since, clA and ↓≤ are closure operators on downsets and on sets respectively, we can

easily prove the clA is a closure operator too.

Join-presentation of a finite lattice.

Definition 1.4. The join-presentation3 of a lattice L is the presentation (J(L),≤,M) such that

(J(L),≤) is the poset of the join-irreducible elements of L with the order induced by L, andM

is the map J(L) −→ PPJ(L) assigning any j to the collection of its minimal join-covers.

Lemma 1.5 (cf. Lemma 4.2 in [San09]). For any finite lattice L, the join-presentation (J(L),≤

,M) associated with L is a direct presentation.

More generally, we can associate every element a of a lattice L with the set M(a) of its

minimal join covers. The following lemma lists some properties ofM : L −→ PPJ(L).

Lemma 1.6 (cf. [San09], page 5). Let (L,≤) be a finite lattice. For all a ∈ L, j ∈ J(L), C ∈ M(a)

and Y ⊆ L,

1. C ⊆ J(L), and C is an ≤-antichain;

2. M(a) is a≪-antichain;

3Join-presentations are also referred to as OD-graphs in the literature (cf. [Nat90, San09]).

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 33

3. if a ≤
∨

Y, then there exists some D ∈ M(a) such that D ≪ Y;

4. { j } ∈ M(j).

For every finite lattice L, let LL be the lattice of the closed downsets of the join presen-

tation (J(L),≤,M) associated with L.

Proposition 1.7 (cf. [Nat90]). Every finite lattice L is isomorphic to the lattice LL as above.

The following lemmas will be useful in the remainder of the chapter.

Lemma 1.8 (Lemma 4.2 in [San09]). For any finite lattice L and any j ∈ J(L), the downset

↓J(L) j is a closed subset of the join-presentation (J(L),≤,M) associated with L.

Lemma 1.9. Let L be a finite lattice, and (J(L),≤,M) be its join-presentation. For any j, k ∈

J(L) and any ≤-antichain C ⊆ J(L), if C ∈ M(j) and k ∈ C,

1. j < ↓≤(C r k),

2. k < ↓≤(C r k),

3. j < {k′ ∈ J(L) | k′ < k},

4. there is no D ∈ M(j) such that D ⊆ ↓≤J
(C r k) ∪ {k′ ∈ J(L) | k′ < k}.

Proof. Fix C ∈ M(j) and k ∈ C. As to item 1. Since C is a minimal cover of j, the sets C r k

and ↓≤J
(C r k) are not covers of j. Hence j < ↓≤(C r k).

We show item 2 by contradiction. Assume that k ∈ ↓≤(C r k). By the definition of closure,

this implies that there exists some D ∈ M(k) such that D ⊆ ↓≤(C r k). The following chain of

inequalities holds

j ≤
∨

C (C ∈ M(j))

=
∨

((C r k) ∪ {k})

= (
∨

(C r k)) ∨ k

≤
∨

(C r k) ∨
∨

D (D ∈ M(k))

=
∨

((C r k) ∪ D),

which shows that the set (C r k) ∪ D is a cover of j. Hence, there exists a minimal cover

C′ ∈ M(j) that refines it, i.e. such that C′ ≪ (C r k) ∪ D. By the definition of ≪, this means

that C′ ⊆ ↓≤((C r k) ∪ D). Since D ⊆ ↓≤(C r k), we have that ↓≤((C r k) ∪ D) = ↓≤(C r k),

which proves that C′ ⊆ ↓≤(C r k). This proves that j ∈ ↓≤(C r k), which contradicts item 1.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 34

Item 3 immediately follows from the definition of a minimal cover.

As to item 4, suppose for contradiction that there exists some D ∈ M(j) such that D ⊆

↓≤J
(C r k) ∪ {k′ ∈ J(L) | k′ < k}. Then, for any d ∈ D, there exists some kd ∈ ↓≤J

(C r k) ∪ {k′ ∈

J(L) | k′ < k} such that d ≤ kd. If kd ∈ {k
′ ∈ J(L) | k′ < k}, then kd < k. If kd < {k

′ ∈ J(L) |

k′ < k}, then kd ∈ ↓≤J
(C r k) and there is some Ed ∈ M(d) such that Ed ≪ C r k. Since the

join-presentation of L is a transitive presentation, the set

E :=
⋃
{Ed | d ∈ D and kd < {k

′ ∈ J(L) | k′ < k}} ∪
⋃
{kd | d ∈ D and kd < k}

is a cover of j. Hence, there exists some E′ ∈ M(j) such that E′ ≪ E. Since E ≪ C and the

relation≪ is transitive, this implies that E′ ≪ C. Hence, to finish the proof, it is enough to show

that E′ , C, which would contradict the minimality of C. Since

k < ↓≤J
(C r k) ∪ {k′ ∈ J(L) | k′ < k} and ↓≤J

E′ ⊆ ↓≤J
E ⊆ ↓≤J

(C r k) ∪ {k′ ∈ J(L) | k′ < k},

we have that k < E′. Since, by assumption, k ∈ C, this proves that E′ , C as required. �

1.2.2 An environment for correspondence

The structures described in the previous subsection are very close to neighbourhood

frames (we will expand on this at the end of the present subsection). Neighbourhood

frames are well known to provide a state-based semantics for monotone modal logic (see

[Han03]). Hence, as discussed in [CGP14], the duality between lattices and join pre-

sentations induces a correspondence-type relation between the propositional language

and logic of lattices, and a fragment of the language of monotone modal logic.

In the present section we collect the basic ingredients of this correspondence: the lan-

guages, their interpretations, and a syntactic translation which may be regarded as a

kind of standard translation between the language of lattices and the monotone modal

language.

Definition 1.10. The language of lattice terms LLatt over the set of variables AtProp is as usual

given by the following syntax

ϕ ::= ⊥ | ⊤ | p | ϕ ∨ ϕ | ϕ ∧ ϕ,

with p ∈ AtProp.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 35

Definition 1.11. The language of monotone modal logic LMML over the set of variables AtProp

is recursively defined as follows:

ϕ ::= ⊥ | ⊤ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | (∃∀)ϕ | (∀∃)ϕ.

Definition 1.12. A neighbourhood frame is a tuple F = (X, σ) such that X is a set and σ :

X −→ PPX is a map. For any x ∈ X, any element N ∈ σ(x) is called a neighbourhood of

x. A neighbourhood frame F is monotone if for any x ∈ X, the collection σ(x) is an upward

closed subset of (PX,⊆). A neighbourhood model is a tupleM = (F, v) such that F = (X, σ) is a

neighbourhood frame and v : AtProp −→ PX is a valuation.

Definition 1.13. For any neighbourhood model M = (F, v) and any w ∈ X, the satisfaction of

any formula ϕ ∈ LMML inM at w is defined recursively as follows:

M,w ⊥ never

M,w ⊤ always

M,w p iff w ∈ v(p)

M,w ¬ϕ iff M,w 1 ϕ

M,w ϕ ∨ ψ iff M,w ϕ orM,w ψ

M,w ϕ ∧ ψ iff M,w ϕ andM,w ψ

M,w (∃∀)ϕ iff there exists some C ∈ σ(w) such that, for each c ∈ C, we haveM, c ϕ

M,w (∀∃)ϕ iff for each C ∈ σ(w) there exists some c ∈ C such that we haveM, c ϕ.

The above definition of local satisfaction naturally extends to global satisfaction as follows: for

any formula ϕ ∈ LMML,

M ϕ iff M,w ϕ for any w ∈ X.

The notions of local and global validity are defined as follows: for any formula ϕ ∈ LMML, any

neighbourhood frame F = (X, σ), and any w ∈ X,

F,w ϕ iff (F, v),w ϕ for any valuation v : AtProp −→ X.

F ϕ iff (F, v) ϕ for any valuation v : AtProp −→ X.

All the above definitions of satisfaction and validity can be naturally extended toLMML-inequalities

as follows: for all formulas ϕ, ψ ∈ LMML, and any neighbourhood modelM = (F, v),

M ϕ ≤ ψ iff M,w ϕ impliesM,w ψ for any w ∈ X.

F ϕ ≤ ψ iff for any valuation v and any w ∈ X, if (F, v),w ϕ then (F, v),w ψ.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 36

Remark 1.14. We notice that the definition above is usually adopted only for monotone neigh-

bourhood frames and not for arbitrary neighbourhood frames. Under this definition, any neigh-

bourhood frame behaves like a monotone one. Adopting this definition, rather than the usual

one, is more advantageous for the present treatment, in that it will make it possible to equiv-

alently describe any monotone neighbourhood frame only in terms of the minimal neighbour-

hoods of its states, as detailed in the following paragraph.

Finite monotone neighbourhood frames and finite neighbourhood frames. Our main fo-

cus of interest in the present chapter are finite lattices and their related structures, which

are also finite. For any finite monotone neighbourhood frame F = (X, σ : X −→ PPX),

the collection σ(x), which is an upset of PX, is uniquely identified by the subcollection

of its ⊆-minimal elements. Hence, any F as above can be equivalently represented as

the neighbourhood frame F∗ := (X, σ∗) where σ∗ : X −→ PPX maps each state x to

the ⊆-minimal elements of the collection σ(x). Conversely, any finite neighbourhood

frame F = (X, σ) can be associated with a monotone neighbourhood frame F′ := (X, σ′)

where σ′(x) = ↑⊆σ(x) for any x ∈ X, and moreover, (σ∗)′ = σ for any finite monotone

neighbourhood frame. This correspondence extends to models as follows: for any finite

monotone neighbourhood model M = (F, v), let M∗ := (F∗, v) denote its associated finite

neighbourhood model. Conversely, for any finite neighbourhood model M = (F, v), let

M′ := (F′, v) denote its associated finite monotone neighbourhood model. Thanks to the

slightly non-standard definition of the interpretation of LMML-formulas adopted in the

present paper (cf. Definition 1.13 and Remark 1.14), this equivalent representation be-

haves well with respect to the interpretation of the monotone modal operators. Indeed,

it is easy to show that for every ϕ ∈ LMML, every finite monotone neighbourhood model

M, and every finite neighbourhood model N,

M,w ϕ iff M∗,w ϕ and N,w ϕ iff N′,w ϕ

The proof is done by induction on ϕ. We do not give it in full, and only report on the

case of M and the connectives (∃∀) and (∀∃).

M,w (∃∀)ϕ iff there exists some C ∈ σ(w) such that C ⊆ v(ϕ)

iff there exists some C ∈ min⊆σ(w) such that C ⊆ v(ϕ)

iff M∗,w (∃∀)ϕ.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 37

M,w (∀∃)ϕ iff for each C ∈ σ(w), C ∩ v(ϕ) , ∅

iff for each C ∈ min⊆σ(w), C ∩ v(ϕ) , ∅

iff M∗,w (∃∀)ϕ.

Join-presentations as monotone neighbourhood frames. Join-presentations (cf. Defini-

tion 1.4) of finite lattices bear a very close resemblance to neighbourhood frames. This

resemblance can be spelled out more precisely, which is what we are going to do next.

For any finite lattice L, let (J(L),≤,M) be its join-presentation. The monotone neigh-

bourhood frame associated with L is the tuple FL := (J(L), σM : J(L) −→ PPJ(L)) such

that for each j ∈ J(L),

σM(j) := {S ∈ PPJ(L) | C ⊆ S for some C ∈ M(j)}. (1.4)

Clearly, σM(j) is upward-closed, hence the construction above is well defined. Moreover,

sinceM(j) is a ≪-antichain (see Lemma 1.6.2), for all C and C′ inM(j), if C ⊆ C′ then

C = C′. This immediately implies thatM(j) is the collection min⊆ σM(j) of the ⊆-minimal

elements of σM(j).

Notice that the construction associating a neighbourhood frame with the join-presentation

of a finite lattice L, involves a loss of information. Namely, the order ≤J on the set J(L)

of the join-irreducible elements of L cannot be retrieved from the neighbourhood frame

FL.

For every lattice L, we are only interested in valuations on FL which are the dual coun-

terparts of assignments on L. Recall that L is isomorphic to the lattice LL of closed sets

of the join-presentation associated with L. Hence, we are only interested in valuations

mapping atomic propositions to closed subsets, rather than to arbitrary subsets of FL.

This motivates the following definition.

Definition 1.15. For any finite lattice L, let a model on FL be a tuple ML = (FL, v
∗) such that

v∗ : AtProp −→ LL. We refer to such maps as closed valuations. Then, abusing terminology,

the local and global validity of formulas and inequalities on FL will be understood relative to

closed valuations, that is:

FL, j ϕ iff (FL, v
∗), j ϕ for any closed valuation v∗.

FL ϕ iff FL, j ϕ for any j ∈ J(L).

FL ϕ ≤ ψ iff for any closed valuation v∗ and any j ∈ J(L),

if (FL, v
∗), j ϕ then (FL, v

∗), j ψ.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 38

Let us spell out in detail the correspondence between assignments on L and closed val-

uations on FL. Clearly, given a set of variables AtProp, closed valuations of AtProp on

FL can be identified with assignments of AtProp on LL. The isomorphism L : L −→ LL

defined by the mapping a 7−→ { j ∈ J(L) | j ≤ a}, with inverse defined by the mapping

S 7−→
∨

L S , induce bijections between assignments on L and assignments on LL, de-

fined by post-composition. That is, any assignment v : AtProp −→ L gives rise to the

assignment v∗ : AtProp −→ LL, such that for any x ∈ AtProp,

v∗(x) := { j ∈ J(L) | j ≤ v(x)}. (1.5)

The inverse correspondence maps any assignment/closed valuation u : AtProp −→ LL to

an assignment u′ : AtProp −→ L such that for any x ∈ AtProp,

u′(x) :=
∨

L

u(x). (1.6)

Thus, v∗′ = v, and u′∗ = u for any assignment v on L and any assignment u on LL. Hence,

for all lattice terms s and t over AtProp, for any assignment v on L and any assignment u

on LL,

L, v |= s ≤ t iff LL, v
∗ |= s ≤ t, (1.7)

L, u′ |= s ≤ t iff LL, u |= s ≤ t. (1.8)

1.2.3 The standard translation

Thanks to the duality of the previous subsection, and to the correspondence environment

introduced above, we are now in a position to define the ‘standard translation’ S T from

the language of lattices to the language of monotone modal logic. The aim of this

translation is to have, for any lattice term t, any finite lattice L, any j ∈ J(L) and any

v : AtProp −→ L,

L, v |= j ≤ t iff FL, v
∗, j S T (t), (1.9)

where v∗ is defined as in the discussion after Definition 1.15.

The definition of S T pivots on the duality between lattices and join-presentations. Namely,

any given interpretation of a lattice term t on a finite lattice L translates to an interpre-

tation of t into the lattice LL of the closed sets of the join presentation (J(L),≤,M)

associated with L, via the fact that L is isomorphic to LL. Then, by dually characterizing

the interpretation of t in LL, we retrieve the interpretation of t into the join presentation

(J(L),≤,M). In its turn, this interpretation boils down to the satisfaction clause, on FL,

of certain formulas belonging to a fragment of monotone modal logic, which can be

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 39

recursively defined as follows:

ϕ ::= ⊥ | ⊤ | p | ϕ ∧ ϕ | (∃∀)(ϕ ∨ ϕ).

Let us define S T by the following recursion:

S T (p) = p

S T (⊤) = ⊤

S T (⊥) = ⊥

S T (t ∧ s) = S T (t) ∧ S T (s)

S T (t ∨ s) = (∃∀)(S T (t) ∨ S T (s)).

The definition above recasts [San09, Definition 7.1] into the language of monotone

modal logic.

In what follows, we will find it useful to expand our propositional language with in-

dividual variables of a different sort than propositional variables. These new variables,

denoted j, k, possibly with sub- and superscripts, are to be interpreted as join-irreducible

elements of finite lattices. Let Nom (for nominals) be the collection of such variables,

and let Var := AtProp ∪ Nom. Finite lattice assignments from Var are maps v : Var −→ L

such that v(j) ∈ J(L) for every j ∈ Nom. Each such lattice assignment corresponds to a

valuation from Var to FL as described in the discussion at the end of Section 1.2.2.

Proposition 1.16. Let L be a finite lattice which is different from the one-element lattice. Then,

for any lattice term t over AtProp, any j ∈ J(L), and any assignment v : Var −→ L with v(j) = j,

L, v |= j ≤ t iff FL, v
∗, j S T (t), (1.10)

Proof. By induction on t. If t = ⊤,⊥, then the statement is clearly true. If t = p ∈ AtProp, then

S T (p) = p. Then, the following chain of logical equivalences holds:

L, v |= j ≤ p iff v(j) ≤L v(p)

iff {k ∈ J(L) | k ≤ v(j)} ⊆ {k ∈ J(L) | k ≤ v(p)} (v(j) ∈ {k ∈ J(L) | k ≤ v(j)})

iff v∗(j) ⊆ v∗(p) (definition of v∗)

iff v(j) ∈ v∗(p) (v∗(p) is a downset)

iff FL, v
∗, j p. (v(j) = j)

The inductive step t = t1 ∧ t2 straightforwardly follows from the induction hypothesis.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 40

As for the case t = t1 ∨ t2, assume that the equivalence (1.10) holds for t1 and t2, for every

c ∈ J(L) and for any v : Var −→ L. As discussed in the previous subsection (see equation (1.7)),

we have

L, v |= j ≤ t1 ∨ t2 iff LL, v
∗ |= j ≤ t1 ∨ t2.

Let us recall that the meet ∧∗ and join ∨∗ of LL are respectively defined as follows: for all

S ,T ∈ LL,

T ∧∗ S = T ∩ S and T ∨∗ S = T ∪ S

where T ∪ S is defined in (1.2), that is: T ∪ S = {x ∈ X | ∃C ∈ M(x) : C ⊆ T ∪ S }. Hence, the

following chain of logical equivalences holds:

LL, v
∗ |= j ≤ t1 ∨ t2

iff v∗(j) ⊆ v∗(t1 ∨ t2)

iff j = v(j) ∈ v∗(t1 ∨ t2)

iff j ∈ v∗(t1) ∪ v∗(t2)

iff there exists some C ∈ M(j) such that c ∈ v∗(t1) or c ∈ v∗(t2) for all c ∈ C

iff there exists some C ∈ M(j) such that ↓c ⊆ v∗(t1) or ↓c ⊆ v∗(t2) for all c ∈ C,

where ↓c := {k ∈ J(L) | k ≤ c}. For any c ∈ J(L), let uc be the j-variant of v∗ such that uc(j) = ↓c.

Hence, the previous clause can be equivalently rewritten as follows:

there exists some C ∈ M(j) such that for all c ∈ C, LL, uc |= j ≤ t1 or LL, uc |= j ≤ t2.

By equation (1.8), the clause above can equivalently rewritten as follows:

there exists some C ∈ M(j) such that for all c ∈ C, L, u′c |= j ≤ t1 or L, u′c |= j ≤ t2.

By the induction hypothesis, the clause above is equivalent to the following one:

there exists some C ∈ M(j) such that for all c ∈ C,

FL, (u
′
c)∗, u′c(j) S T (t1) or FL, (u

′
c)∗, u′c(j) S T (t2).

Moreover, as discussed after Definition 1.15, we have that u′c(j) =
∨

L uc(j) =
∨

L ↓c = c, and

(u′c)∗ = uc. Hence, the clause above can be simplified as follows:

there exists some C ∈ M(j) such that for all c ∈ C, FL, uc, c S T (t1) or FL, uc, c S T (t2),

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 41

and then as follows:

there exists some C ∈ M(j) such that for all c ∈ C, c ∈ uc(S T (t1)) or c ∈ uc(S T (t2)).

Since t1 and t2 are lattice terms over AtProp, no nominal variable occurs in them, and hence

uc(S T (t1)) = v∗(S T (t1)) and uc(S T (t2)) = v∗(S T (t2)). Thus, we can equivalently rewrite the

clause above as follows:

there exists some C ∈ M(j) such that for all c ∈ C, c ∈ v∗(S T (t1)) or c ∈ v∗(S T (t2)).

By (1.4), and since M(j) = min⊆ σM(j) (see discussion below (1.4)), the condition above is

equivalent to

there exists some S ∈ σM(j) such that for all c ∈ S , c ∈ v∗(S T (t1)) or c ∈ v∗(S T (t2)).

By definition, this is equivalent to

FL, v
∗, j (∃∀)(S T (t1) ∨ S T (t2)),

as required. �

The following corollary gives semantic justification to the standard translation, and pro-

vides the mathematical basis for our general approach of obtaining dual characteriza-

tion results for finite lattices as instances of correspondence arguments in the language

of monotone modal logic. Recall that, by Definition 1.15,

FL ϕ ≤ ψ iff for any closed valuation v∗ and any j ∈ J(L),

if (FL, v
∗), j ϕ then (FL, v

∗), j ψ.

Corollary 1.17. Let L be a finite lattice. Then, for every lattice term t and s,

L |= t ≤ s iff FL S T (t) ≤ S T (s).

Proof. Notice that finite lattices are join-generated by their join-irreducible elements. Hence,

the condition L |= t ≤ s is equivalent to the following:

for any assignment v : AtProp −→ L, and for any j ∈ J(L), if j ≤ v(t) then j ≤ v(s). (1.11)

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 42

Clause (1.11) is equivalent to the following condition holding for any j ∈ J(L), and for any

valuation v : AtProp ∪ Nom −→ L such that v(j) = j:

if L, v |= j ≤ t, then L, v |= j ≤ s. (1.12)

By Proposition (1.16), clause (1.12) is equivalent to:

if FL, v
∗, v(j) S T (t), then FL, v

∗, v(j) S T (s). (1.13)

Next, we claim that clause (1.13) holding for any j ∈ J(L) and for any valuation v : AtProp ∪

Nom −→ L such that v(j) = j is equivalent to the following:

for any j ∈ J(L), and for any closed valuation u : AtProp −→ LL,

if FL, u, j S T (t), then FL, u, j S T (s).

The latter condition is equivalent to FL S T (t) ≤ S T (s), as desired.

To finish the proof, let us prove the claim. For the direction from top to bottom, fix a closed

valuation u : AtProp −→ LL such that FL, u, j S T (t) and let v : AtProp∪Nom −→ L coincide

with u′ on AtProp (cf. (1.6)) and be such that v(j) = j. By assumption, (1.13) holds for our

choice of v. Since (u′)∗ = u, we have that v∗ coincides with u on AtProp, hence FL, v
∗, v(j)

S T (t). Then, by (1.13), FL, v
∗, v(j) S T (s). Since v∗ coincides with u on AtProp, we have

FL, u, j S T (s) as required. The direction from bottom to top is proved similarly. �

1.2.4 An informal presentation of the algorithm ALBA

In the present subsection, we illustrate how ALBA works. Our presentation is based on

[CP12, CGP14, CFPS14]. Rather than presenting the algorithm formally, in what follows

we will run ALBA on one of the best known examples in correspondence theory, namely

^�p→ �^p. It is well known that for every Kripke frame F = (W,R),

F ^�p→ �^p iff F |= ∀xyz (Rxy ∧ Rxz→ ∃u(Ryu ∧ Rzu)).

As is discussed at length in [CP12, CGP14], every piece of the argument used to prove

this correspondence on Kripke frames can be translated by duality to their complex

algebras (cf. [BdRV01, Definition 5.21]), which, as is well known, are complete atomic

boolean algebras with operators. We will show how this is done in the case of the

example above. First of all, the above validity condition on F translates to its complex

algebra A as [[^�p]] ⊆ [[�^p]] for every assignment of p into A, so this validity clause

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 43

can be rephrased as follows:

A |= ∀p[^�p ≤ �^p]. (1.14)

Since, in a complete atomic boolean algebra, every element is both the join of the com-

pletely join-prime elements (the set of which is denoted J∞(A)) below it and the meet of

the completely meet-prime elements (the set of which is denoted M∞(A)) above it, the

condition above can be equivalently rewritten as follows:

A |= ∀p[
∨
{i ∈ J∞(A) | i ≤ �^p} ≤

∧
{m ∈ M∞(A) | �^p ≤ m}].

By elementary properties of least upper bounds and greatest lower bounds in posets

(cf. [DP02]), this condition is true if and only if every element in the join is less than

or equal to every element in the meet. Thus, the condition above can be equivalently

rewritten as:

A |= ∀p∀i∀m[(i ≤ ^�p & �^p ≤ m)⇒ i ≤ m],

where the variables i and m range over J∞(A) and M∞(A) respectively. Since this presen-

tation is geared towards the treatment in Section 1.5, we find it useful to slightly depart

from the standard treatment in [CP12] and eliminate the conominal m as follows. First,

notice that the clause above is clearly equivalent to the following clause:

A |= [∃p∃i∃m(i ≤ ^�p & �^p ≤ m & i � m)]⇒ false.

Second, notice that, in any complete atomic boolean algebra A, for each i ∈ J∞(A) and

each m ∈ M∞(A), one has i � m iff m = κ(i), where κ(i) =
∨
{ j ∈ J∞(A) | j , i} ∈ M∞(A).

Hence, the clause above is equivalent to the following clause:

A |= [∃p∃i(i ≤ ^�p & �^p ≤ κ(i))]⇒ false. (1.15)

Since A is in particular atomistic, the element of A interpreting �p is the join of the

completely join-prime elements below it. Hence, if i ∈ J∞(A) and i ≤ ^�p, because ^ is

completely join-preserving on A, we have that

i ≤ ^(
∨
{ j ∈ J∞(A) | j ≤ �p}) =

∨
{^ j | j ∈ J∞(A) and j ≤ �p},

which implies that i ≤ ^ j0 for some j0 ∈ J∞(A) such that j0 ≤ �p. Hence, we can

equivalently rewrite the validity clause (1.15) as follows:

A |= [∃p∃i(∃j(i ≤ ^j & j ≤ �p) & �^p ≤ κ(i))]⇒ false,

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 44

and then as follows:

A |= ∀p∀i∀j[(i ≤ ^j & j ≤ �p & �^p ≤ κ(i))⇒ false].

Now we observe that the operation � preserves arbitrary meets in A, which is in par-

ticular a complete lattice. By the general theory of adjunction in complete lattices, this

is equivalent to � being a right adjoint (cf. [DP02, proposition 7.34]). It is also well

known that the left adjoint of � is the operation _, which can be thought of as the back-

ward looking diamond of tense logic. Hence the condition above can be equivalently

rewritten as:

A |= ∀p∀i∀j[(i ≤ ^j & _j ≤ p & �^p ≤ κ(i))⇒ false],

and then as follows:

A |= ∀i∀j[(i ≤ ^j & ∃p(_j ≤ p & �^p ≤ κ(i)))⇒ false]. (1.16)

At this point we are in a position to eliminate the variable p and equivalently rewrite the

previous condition as follows:

A |= ∀i∀j[(i ≤ ^j & �^_j ≤ κ(i))⇒ false]. (1.17)

Let us justify this equivalence: for the direction from top to bottom, fix an interpretation

v, and assume that A, v |= i ≤ ^j and A, v |= �^_j ≤ κ(i). Consider the p-variant v∗ of v

such that v∗(p) = _j. Then it can be easily verified that A, v∗ |= i ≤ ^ j and A, v∗ |= _j ≤ p

and A, v∗ |= �^p ≤ κ(i)), which by assumption leads to an inconsistency.

Conversely, fix an interpretation v such that A, v |= i ≤ ^j and A, v |= ∃p(_j ≤ p & �^p ≤

κ(i)). Then, by monotonicity, the antecedent of (1.17) holds under v, which leads again

to an inconsistency. This is an instance of the following result, known as Ackermann’s

lemma ([Ack35], see also [CGV06]):

Lemma 1.18. Let α, β(p), γ(p) be L-formulas, such that α is p-free, β is positive and γ is nega-

tive in p. For any assignment v on an L-algebra A, the following are equivalent:

1. A, v |= β(α/p) ≤ γ(α/p);

2. there exists a p-variant v∗ of v such that A, v∗ |= α ≤ p and A, v∗ |= β(p) ≤ γ(p).

The proof is similar to that of [CP12, Lemma 4.2]. Whenever, in a reduction, we reach

a shape in which the lemma above (or its order-dual) can be applied, we say that the

condition is in Ackermann shape.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 45

By the definition of κ(i), the inequality ^�_j ≤ κ(i)) is equivalent to i � ^�_j. Hence,

clause (1.17) can be equivalently rewritten as follows:

A |= ∀i∀j[(i ≤ ^j & i � �^_j)⇒ false], (1.18)

and then as follows:

A |= ∀i∀j[i ≤ ^j⇒ i ≤ �^_j]. (1.19)

By the atomicity of A, the clause above is equivalent to:

A |= ∀j[^j ≤ �^_j]. (1.20)

By again applying the fact that � is a right adjoint we obtain

A |= ∀j[_^j ≤ ^_j]. (1.21)

Recalling thatA is the complex algebra of F = (W,R), this gives ∀w(R[R−1[w]] ⊆ R−1[R[w]].

Notice that R[R−1[w]] is the set of all states x ∈ W which have a predecessor z in common

with w, while R−1[R[w]] is the set of all states x ∈ W which have a successor in common

with w. This can be spelled out as

∀x∀w(∃z(Rzx ∧ Rzw)→ ∃y(Rxy ∧ Rwy))

or, equivalently,

∀z∀x∀w((Rzx ∧ Rzw)→ ∃y(Rxy ∧ Rwy))

which is the familiar Church-Rosser condition.

1.3 Algorithmic correspondence for monotone modal logic

A key intermediate step of the present chapter is to adapt the algorithm or calculus

for correspondence ALBA to monotone modal logic. The interest of this adaptation is

independent from the applications to the theory of finite lattices. So, for the sake of

modularity and generality, we work in a more abstract setting than the one associated

with finite lattices, to which this adaptation will be applied. The general strategy un-

derlying this adaptation is to exploit the well known fact that the ‘exists/for all’ and ‘for

all/exists’ quantification patterns in the standard interpretation of the monotone modal

operators make it possible to regard monotone modal operators as suitable concate-

nations of normal modalities. This same observation inspired Helle Hansen’s syntactic

translation [Han03, Definition 5.7] on which her Sahlqvist correspondence theorem for

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 46

monotone modal logic is based. The present section is aimed at making all this precise.

In the next subsection, we introduce two-sorted frames, their associated normal modal

language, and first order correspondence language. We also spell out the relationship

between two-sorted frames and monotone neighbourhood frames, which allows to in-

terpret monotone modal logic on two-sorted frames. In Section 1.3.2, we introduce the

basic adaptation of ALBA to the normal modal language of two-sorted frames.

1.3.1 Two-sorted frames

Definition 1.19. A two-sorted frame is a structure X = 〈X,Y,RXY ,RYX〉 such that X and Y are

sets, RXY ⊆ X × Y and RYX ⊆ Y × X.

The existence of the equivalent representation of any finite monotone neighbourhood

frame F in terms of the finite neighbourhood frame F∗ (cf. paragraph page 36) implies

that we can equivalently encode any monotone neighbourhood frame F as the following

two-sorted structure (X,Y,RXY ,RYX), such that Y = PX, and for every x ∈ X and y ∈ Y,

xRXYy iff y ∈ min
⊆
σ(x) and yRYX x iff x ∈ y.

The definitions above imply that RXY [x] = min⊆ σ(x) for any x ∈ X, and RYX[y] = y for

any y ∈ Y. In the remainder of the chapter, for any relation S ⊆ X ×Y, we sometimes use

the symbols xS and Sy to denote the sets S [x] and S −1[y] respectively.

As is well known, each of the two relations RXY and RYX gives rise to a pair of semantic

normal modal operators:

〈RXY〉 : PY −→ PX [RXY] : PY −→ PX

T 7−→ R−1
XY

[T] T 7−→ (R−1
XY

[T c])c

〈RYX〉 : PX −→ PY [RYX] : PX −→ PY

S 7−→ R−1
YX

[S] S 7−→ (R−1
YX

[S c])c

where

R−1
XY

[T] := {x ∈ X | xRXY ∩ T , ∅} (R−1
XY

[T c])c := {x ∈ X | xRXY ⊆ T }

R−1
YX

[S] := {y ∈ y | yRYX ∩ S , ∅} (R−1
YX

[S c])c := {x ∈ X | xRYX ⊆ S }.

Definition 1.20. The complex algebra of the two-sorted frame X as above is the tuple

(PX,PY, 〈RXY〉, [RXY], 〈RYX〉, [RYX]).

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 47

To make definitions and calculations more readable we introduce the following convention: we

note ≤ the order on PX and � the order on PY .

Two-sorted frames and their complex algebras will be used as (nonstandard) models for

the modal language LMML over AtProp (cf. Definition 1.11), the definition of which we

report here for the reader’s convenience:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∨ φ | φ ∧ φ | (∃∀)φ | (∀∃)φ.

Definition 1.21. A two-sorted model is a tuple M = (X, v) such that X is a two-sorted frame,

and v is a map AtProp −→ PX.

Given a valuation v, its associated extension function is defined by induction as follows:

[[⊥]]v,X = ∅

[[⊤]]v,X = X

[[p]]v,X = v(p)

[[¬φ]]v,X = [[φ]]c

[[φ ∨ ψ]]v,X = [[φ]]v,X ∪ [[ψ]]v,X

[[φ ∧ ψ]]v,X = [[φ]]v,X ∩ [[ψ]]v,X

[[(∃∀)φ]]v,X = 〈RXY〉[RYX][[φ]]v,X (∗)

[[(∀∃)φ]]v,X = [RXY]〈RYX〉[[φ]]v,X (∗∗)

1.3.2 Basic ALBA on two-sorted frames

In order to adapt ALBA to the setting of two-sorted frames, we need to define the sym-

bolic language which ALBA will manipulate. Analogously to what has been done in

[CP12], let us introduce the language L+ as follows:

ϕ ::= ⊥ | ⊤ | p | j | m | j | m | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ r ϕ | ϕ→ ϕ |

〈RXY〉ϕ | [RXY]ϕ | 〈RYX〉ϕ | [RYX]ϕ | [R−1
XY]ϕ | 〈R−1

XY〉ϕ | [R
−1
YX]ϕ | 〈R−1

YX〉ϕ,

where p ∈ AtProp, j ∈ NomX, j ∈ NomY , m ∈ CNomX, m ∈ CNomY . The language above

is shaped on the complex algebra of two-sorted frames. In particular, the variables in

NomX and NomY are to be interpreted as atoms of PX and PY respectively, and the vari-

ables in CNomX and CNomY are to be interpreted as coatoms of PX and PY. Moreover,

the interpretation of the modal operators is the natural one suggested by the notation

and indeed we are using the same symbols to denote both the operators and their in-

terpretations. Finally, clauses (∗) and (∗∗) in Definition 1.21 justifies the definition of

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 48

the obvious translation from formulas of LMML to formulas in L+. In what follows, we

introduce the ALBA rules which are sound on general two-sorted structures.

Adjunction and residuation rules. It is well known that, in the setting of boolean alge-

bras, the interpretation of the conjunction ∧ has a right residual, which is the interpreta-

tion of the implication,→, and the interpretation of the disjunction ∨ has a left residual,

which is the interpretation of the subtraction r. Thus, the following rules are sound and

invertible in the two boolean algebras associated with any two-sorted structure:

α ∧ β ≤ γ

α ≤ β→ γ
RS ∧

α ≤ β ∨ γ

α r β ≤ γ
RS∨

Moreover, it follows from very well known facts in modal logic that, for any two-sorted

structure, 〈RXY〉 (resp. [RXY]) has a right (resp. left) adjoint, which is [RYX] (resp. 〈RYX〉).

Thus, the following rules are sound and invertible on any two-sorted structure:

〈RXY〉α ≤ β

α � [R−1
XY

]β
AJ〈RXY〉

α ≤ [RXY]β

〈R−1
XY
〉α � β

AJ[RXY]

〈RYX〉α � β

α ≤ [R−1
YX

]β
AJ〈RYX〉

α � [RYX]β

〈R−1
YX
〉α ≤ β

AJ[RYX]

Approximation rules. The soundness and invertibility of the rules below straightfor-

wardly follows from the complete join- (resp. meet-)preservation properties of the modal-

ities 〈RXY〉, [RXY], 〈RYX〉 and [RYX], and also from the fact that the boolean algebras PX

and PY are both completely join-generated by their completely join-irreducible elements

and completely meet-generated by their completely meet-irreducible elements. For more

details on this the reader is referred to [CP12].

i ≤ 〈RXY〉α

∃j (i ≤ 〈RXY〉j & j � α)
AP〈RXY〉

[RXY]α ≤ m

∃n (α � n & [RXY]n ≤ m)
AP[RXY]

i � 〈RYX〉α

∃j (i � 〈RYX〉j & j ≤ α)
AP〈RYX〉

[RYX]α � m

∃n (α ≤ n & [RYX]n � m)
AP[RYX]

Splitting rules. The following rules reflect the fact that the logical conjuction and dis-

junction are respectively interpreted with the greatest lower bound and least upper

bound lattice operations, and hence are sound and invertible.

ϕ ≤ ψ1 ∧ ψ2

ϕ ≤ ψ1 & ϕ ≤ ψ2

S P ∧
ψ1 ∨ ψ2 ≤ ϕ

ψ1 ≤ ϕ & ψ2 ≤ ϕ
S P∨

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 49

Ackermann rules. The soundness and invertibility of the following rules (here below is

the right-Ackermann rule) has been discussed in [CP12, Lemmas 4.2 and 4.3].

∃p
[
&n

i=1{αi ≤ p} & &m

j=1{β j(p) ≤ γ j(p)}
]

&m

j=1{β j(
∨n

i=1 αi) ≤ γ j(
∨n

i=1 αi)}
(RAR)

where p does not occur in α1, . . . , αn, the formulas β1(p), . . . , βm(p) are positive in p, and

γ1(p), . . . , γm(p) are negative in p. Here below is the left-Ackermann rule:

∃p
[
&n

i=1{p ≤ αi} & &m

j=1{β j(p) ≤ γ j(p)}
]

&m

j=1{β j(
∧n

i=1 αi) ≤ γ j(
∧n

i=1 αi)}
(LAR)

where p does not occur in α1, . . . , αn, the formulas β1(p), . . . , βm(p) are negative in p, and

γ1(p), . . . , γm(p) are positive in p.

Boolean tautologies. Clearly, the appropriate boolean and lattice tautologies justify the

soundness and invertibility of the following rules. For the sake of conciseness, some of

these rules will be given as formula-rewriting rules rather than as equivalences between

inequalities.

ϕ ∨ ⊥

ϕ
∨ ⊥

ϕ ∨ (ψ1 ∧ ψ2)

(ϕ ∨ ψ1) ∧ (ϕ ∨ ψ2)
D ∨ ∧

¬¬φ

φ
T NN

A ≤ B

(A ∧ B) = A
BA∧

ϕ ∧ ⊤

ϕ
∧ ⊤

ϕ ∧ (ψ1 ∨ ψ2)

(ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2)
D ∧ ∨

x ∨ (y r x)

x ∨ y
T∨

B ≤ A

(A ∨ B) = A
BA∨

ϕ ∨ ψ

ψ ∨ ϕ
C∨

(ϕ ∧ ψ) ∧ χ

ψ ∧ (ϕ ∧ χ)
A∧

x ∧ (x→ y)

x ∧ y
T∧

ϕ ∧ ψ ≤ ⊥

ϕ ≤ ¬ψ
T ∧ ⊥

ϕ ∧ ψ

ψ ∧ ϕ
C∧

(ϕ ∨ ψ) ∨ χ

ψ ∨ (ϕ ∨ χ)
A∨

ξ ∧ (ϕ r ψ) ≤ χ

ξ ∧ ϕ ≤ ψ ∨ χ
Tr

¬(ϕ ∨ ψ)

¬ϕ ∧ ¬ψ
DM

Behaviour of atoms. In any complete atomic boolean algebra, κ(j) coincides with ¬ j

for each completely join-irreducible element j. Thus, the following rules are sound and

invertible in the two boolean algebras associated with any two-sorted structure:

j ∧ s ≤ ⊥

s ≤ κ(j)
AtCoat1

j ∧ s ≤ κ(j)

s ≤ κ(j)
AtCoat2

j ≤ s ∨ t s ≤ κ(j)

j ≤ t s ≤ κ(j)
MT

j ∧ s � ⊥

s � κ(j)
AtCoat1

j ∧ s � κ(j)

s � κ(j)
AtCoat2

j � s ∨ t s � κ(j)

j � t s � κ(j)
MT

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 50

Logical rules. Finally, we find it useful to stress that ALBA is able to perform elementary

equivalent simplifications such as those represented in the rules below:

φ ≤ ψ φ ≤ ψ

φ ≤ ψ
bis

A = B t(A) ≤ s(A)

A = B t(B) ≤ s(B)
S ub

ϕ ≤ ψ ψ ≤ χ

ϕ ≤ ψ ψ ≤ χ ϕ ≤ χ
TR

where t(B) and s(B) are obtained by replacing occurrences of A with B in t and s respec-

tively.

Rules for normal modalities. The soundness and invertibility of the following rules

T BD, T DB and T NM straightforwardly follows from well known validities for classi-

cal normal modal logic. The soundness and invertibility of TRR−1 immediately follows

from the definition of the semantics of 〈R〉 and 〈R−1〉.

[R]X

¬〈R〉¬X
T BD

¬〈R〉¬X

[R]X
T DB

j ≤ 〈R〉j

j ≤ 〈R−1〉j
TRR−1 X ≤ 〈R〉A X ≤ [R]B

X ≤ 〈R〉(A ∧ B) X ≤ [R]B
T NM.

1.4 Enhancing the algorithm for correspondence

We are working towards being able to account for Nation’s characterisation in [Nat90]

as an instance of algorithmic correspondence for the monotone modal logic language

defined in Definition 1.11. As we saw in Section 1.2.3, the validity of a lattice inequality

on any finite lattice L corresponds to the validity of the standard translation (cf. page

1.2.3) of the given inequality on the join-presentation FL associated with L restricted

to closed valuations (cf. Definition 1.15). However, the version of ALBA for mono-

tone neighbourhood frames defined in the previous section is not equipped to recognize

closed valuations and properly treat them. Therefore, in the present section, we enhance

the environment of two-sorted frames with an extra relation which encodes the order

on the join-presentation FL. On this environment, additional ALBA rules can be shown

to be sound, thanks to which closed valuations can be accounted for.

1.4.1 Enriched two-sorted frames

In the present subsection, we introduce the enriched two-sorted frames, and we show

that the join-presentation of any finite lattice can be equivalently represented as an

enriched two-sorted frame.

Definition 1.22. An enriched two-sorted frame is a structure E = 〈X,Y,RXY ,RYX ,RXX〉 such

that 〈X,Y,RXY ,RYX〉 is a two-sorted frame (cf. Definition 1.19), and RXX ⊆ X × X. An enriched

two-sorted frame is

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 51

• ordered if RXX is a partial order;

• minimal if

– it is ordered,

– xRXYy implies that the set yRYX = {x
′ ∈ X | yRYX x′} is a RXX-antichain for every

x ∈ X and y ∈ Y ,

– the collection {yRYX | y ∈ xRXY } is a≪-antichain for any x ∈ X,

where≪ is the refinement relation associated with the partial order (X,RXX) (cf. (1.1)).

• monotone if for all x, x′ ∈ X, and for each y ∈ Y , if x′RXX x and xRXYy, then y′RYX ≪ yRYX

for some y′ ∈ x′RXY ;

• reflexive if for every x ∈ X there exists some y ∈ Y such that xRXYy and yRYX ≪ {x};

• transitive if for every x ∈ X and y ∈ Y , if y ∈ xRXY and yx′ ∈ x′RXY for some x′ ∈ yRYX

then there exists some y′ ∈ Y such that xRXYy′ and y′RYX ≪
⋃
{yx′RYX | x

′ ∈ yRYX};

• direct if it is ordered, minimal, monotone, reflexive and transitive;

Definition 1.23. Any join-presentation AL := (J(L),≤J ,M : J(L) −→ PPJ(L)) can be equiva-

lently represented as an enriched two-sorted frame EL := (X,Y,RXY ,RYX ,RXX) by setting

X := J(L), Y := {S ∈ PJ(L) | S is a ≤J -antichain},

RXY := {(x, y) ∈ X × Y | y ∈ M(x)}, RYX := ∋, and RXX = ≤J .

It can be easily verified that for every finite lattice L, the enriched two-sorted frame EL is direct.

Similarly to what has been discussed at the beginning of Section 1.3.1 (cf. page 46),

each of the three relations RXY , RYX, and RXX gives rise to a pair of semantic normal

modal operators:

〈RXY〉 : PY −→ PX [RXY] : PY −→ PX

T 7−→ R−1
XY

[T] T 7−→ (R−1
XY

[T c])c

〈RYX〉 : PX −→ PY [RYX] : PX −→ PY

S 7−→ R−1
YX

[S] S 7−→ (R−1
YX

[S c])c

〈RXX〉 : PX −→ PX [RXX] : PX −→ PX

S 7−→ R−1
XX

[S] S 7−→ (R−1
XX

[S c])c

where

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 52

R−1
XY

[T] := {x ∈ X | xRXY ∩ T , ∅} (R−1
XY

[T c])c := {x ∈ X | xRXY ⊆ T }

R−1
YX

[S] := {y ∈ Y | yRYX ∩ S , ∅} (R−1
YX

[S c])c := {y ∈ Y | yRYX ⊆ S }

R−1
XX

[S] := {x ∈ X | xRXX ∩ S , ∅} (R−1
XX

[S c])c := {x ∈ X | xRXX ⊆ T }.

Definition 1.24. The complex algebra of the enriched two-sorted frame E as above is the tuple

(PX,PY, 〈RXY〉, [RXY], 〈RYX〉, [RYX], 〈RXX〉, [RXX]).

Definition 1.25. An enriched two-sorted model is a tupleM = (E, v) such that X is an enriched

two-sorted frame, and v is a map AtProp −→ PX.

The advantage of moving from the language of two-sorted frames to the language of

enriched two-sorted frames is that the closure operator cl defined on direct presentations

(see (1.3)) can be expressed in the modal language associated with enriched two-sorted

frames. Indeed, unravelling the definitions involved, it is not difficult to see that for

each subset S ,

cl(S) = ↓≤J
S = (∃∀)↓≤J

S = 〈⊳〉[∋]〈≤J〉S . (1.22)

Recall that any assignment v on a given finite lattice L uniquely gives rise to the assign-

ment v∗ on EL defined by v∗(p) := { j ∈ J(L) | j ≤L v(p)} for every p ∈ AtProp. Then it can

be readily verified that the following identity is satisfied for every p ∈ AtProp:

v∗(p) = 〈⊳〉[∋]〈≤J〉v
∗(p).

The semantic identity above suggests the following definition:

Definition 1.26. A valuation v on an enriched two-sorted model E is closed if

v(p) = 〈RXY〉[RYX]〈RXX〉v(p)

for every p ∈ AtProp. An enriched two-sorted model is closed if its associated valuation is

closed.

Thus, in the case a given enriched two-sorted model M = (EL, v) for some finite lattice

L, the fact that the valuation v arises from a lattice assignment on L can be expressed

in the modal language of enriched two-sorted frames by means of the satisfaction of the

identity p = 〈RXY〉[RYX]〈RXX〉p for every p ∈ AtProp.

Definition 1.27. An enriched two-sorted model is ordered if its underlying enriched two-sorted

frame is ordered and its associated valuation assigns every p ∈ AtProp to a downset of (X,RXX).

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 53

1.4.2 Correspondence rules for enriched two-sorted frames

In the present subsection, we show the soundness of the following extra rules on en-

riched two-sorted frames.
〈RXX〉j ∧ s ≤ κ(j)

s ≤ κ(j)
AtomRXX

Lemma 1.28. The rule AtomRXX is sound and invertible on ordered enriched two-sorted models.

Proof. Fix an ordered enriched two-sorted model M = (E, v). Let x ∈ X such that v(j) = {x},

and assume that 〈RXX〉j ∧ s ≤ κ(j) is satisfied on M. This means that x < (↓RXX
x) ∩ v(s), which

implies that x < v(s). This condition is equivalent to s ≤ κ(j) being satisfied.

Conversely, assume that s ≤ κ(j) is satisfied onM as above. This is equivalent to x < v(s). Since

by assumption v(s) is a downset of (X,RXX), we have that x < v(s) iff ↓RXX
x * v(s). Hence

x < ↓RXX
x ∩ v(s), which is equivalent to 〈RXX〉j ∧ s ≤ κ(j) being satisfied onM, as required. �

j ≤ 〈⊳〉C k ≤ 〈∈〉C

j ≤ 〈⊳〉C k ≤ 〈∈〉C 〈⊳〉[∋]〈≤X〉(〈∈〉C r k) ≤ κ(k)
MinCov2

Lemma 1.29. The rule MinCov2 is sound and invertible on every closed model M = (EL, v)

such that EL = (J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated with some

finite lattice L (cf. Definition 1.23).

Proof. The direction from bottom to top is immediate. Conversely, assume that the inequalities

j ≤ 〈⊳〉C and k ≤ 〈∈〉C are satisfied on M. Let j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j},

v(k) = {k} and v(C) = {C}. Hence, C ∈ M(j) and k ∈ C. By Lemma 1.9.2, this implies that k <

↓≤(C r k), which is equivalent to the satisfaction of the inequality 〈⊳〉[∋]〈≤X〉(〈∈〉C r k) ≤ κ(k)

onM. �

Lemma 1.30. Let s be a L+-term. For every closed model M = (EL, v) such that EL =

(J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated with some finite lattice L

(cf. Definition 1.23),

M (S 1) iff M (S 2),

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 54

where

(S 1) :=

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

〈≤J〉j ∧ 〈≤J〉k ≤ κ(k)

〈≤J〉k ∧ s ≤ κ(k)

,

(S 2) :=

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

〈≤J〉j ∧ 〈≤J〉k ≤ κ(k)

〈≤J〉k ∧ s ≤ κ(k)

j ∧ 〈⊳〉[∋](〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s)) ≤ ⊥

.

Proof. The right to left direction is immediate, since (S 1) is a subset of (S 2). Assume that (S 1)

is satisfied on M. Let j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}.

The assumptions imply that

C ∈ M(j), k ∈ C, k < ↓≤J
j ∩ ↓≤J

k, k < ↓≤J
k ∩ v(φ).

It is enough to show that

j < v(〈⊳〉[∋](〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s))).

Unravelling the definitions of 〈⊳〉 and [∋], the condition above is equivalent to the following:

there exists no D ⊆ J(L) such that D ∈ M(j) and

D ⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s)). (1.23)

The conditions k < ↓≤J
j∩↓≤J

k and k < ↓≤J
k∩v(φ) respectively imply that k < ↓≤J

j and k < v′(s).

Hence, the following chain of inclusions holds:

v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s))

= v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (v′(〈≤J〉j) ∩ v′(〈≤J〉k)) ∪ (v′(〈≤J〉k) ∩ v′(s))

= v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
j ∩ ↓≤J

k) ∪ (↓≤J
k ∩ v′(s)) (by definition of 〈≤J〉)

⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
k r {k}) ∪ (↓≤J

k ∩ v′(s)) (k < ↓≤J
j)

⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
k r {k}) ∪ (↓≤J

k r {k}) (k < v′(s))

⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
k r {k})

⊆ ↓≤J
(C r k) ∪ (↓≤J

k r {k}). (cf. (1.22))

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 55

The fact that C ∈ M(j) and k ∈ C implies, by Lemma 1.9.4, that there is no cover of j which is

included in the set ↓≤J
(C r k) ∪ (↓≤J

k r {k}). This implies that (1.23) holds as required. �

1.4.3 Closed right Ackermann rule

In the present section, we are going to prove the soundness of the following special

version of the Ackermann rule.

∃p
[
&n

i=1{αi ≤ p} & &m

j=1{β j(p) ≤ γ j(p)}
]

&m

j=1{β j(〈⊳〉[∋]〈≤X〉
∨n

i=1 αi) ≤ γ j(〈⊳〉[∋]〈≤X〉
∨n

i=1 αi)}
(RAcl)

Lemma 1.31 (Right Ackermann Lemma for closed models). The rule (RAcl) is sound and

invertible on closed enriched two-sorted models M = (EL, v) such that EL is the enriched two-

sorted frame associated with some finite lattice L.

Proof. Fix a closed enriched two-sorted model M = (EL, v) such that EL is the enriched two-

sorted frame associated with some finite lattice L. For the direction from bottom to top, assume

that for every 1 ≤ j ≤ m,

v(β j(〈⊳〉[∋]〈≤X〉

n∨

i=1

αi)) ⊆ v(γ j(〈⊳〉[∋]〈≤X〉

n∨

i=1

αi)).

Let v′ be the p-variant of v such that v′(p) = 〈⊳〉[∋]〈≤X〉v(
∨n

i=1 αi). As discussed in Section

1.4.1, the composition 〈⊳〉[∋]〈≤X〉 is the operator that maps each set to the closure of its downset.

Hence v′(p) is a closed set and v′ is a closed valuation. Since αi does not contain p, we have

that v′(αi) = v(αi), and hence

v′(αi) ≤ v(α1) ∨ ... ∨ v(αn) ≤ 〈⊳〉[∋]〈≤X〉(v(α1) ∨ ... ∨ v(αn)) = v′(p).

This shows that

v′(αi) ≤ v′(p), for all 1 ≤ i ≤ n.

Moreover, for all 1 ≤ i ≤ m, we have

v′(βi(p)) = v(βi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)) ≤ v(γi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)) = v′(γi(p)).

For the implication from top to bottom, we make use of the fact that the βi are monotone (since

positive) in p, while the γi are antitone (since negative) in p. Since the αi do not contain p, and v

is a p-variant of v′, we have v(αi) = v′(αi) ≤ v′(p), for all 1 ≤ i ≤ n; hence, v(α1) ∨ ... ∨ v(αn) ≤

v′(p). Since v′ is a closed valuation, v′(p) is a closed set, and v(α1) ∨ ... ∨ v(αn) ≤ v′(p) implies

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 56

that

〈⊳〉[∋]〈≤X〉(v(α1) ∨ ... ∨ v(αn)) ≤ v′(p).

Hence,

v(βi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)) ≤ v′(βi(p)) ≤ v′(γi(p)) ≤ v(γi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)).

�

1.5 Characterizing uniform upper bounds on the length of D+-chains

in finite lattices

Definition 1.32. Let L be a finite lattice and let EL = (J(L),PJ(L),⊳, ∋,≤J) be its associated

enriched two-sorted frame (cf. Definition 1.23). Consider the binary relation D+ ⊆ J(L) × J(L)

defined as follows: for any j, k ∈ J(L),

jD+k iff j ⊳C, k ∈ C and k � j for some C ∈ PJ(L).

A D+-chain of length l is a sequence (j0, ..., jl) of elements of J(L) such that jiD
+ ji+1 for each

0 ≤ i ≤ (l − 1).

A notion similar to the one defined above has been used in [Nat90] and [Sem05] to

define a hierarchy of varieties of lattices progressively generalising the variety of dis-

tributive lattices. More discussion about the similarities and differences between Nation

and Semenova’s notion of D-chain and the one above can be found in Section 1.6. In

[San09], the result in [Nat90] and [Sem05] has been generalized, and the existence of

a Sahlqvist-type correspondence mechanism underlying it has been observed. The main

motivation of the present chapter is to provide a formal framework where this observa-

tion can be precisely spelled out, and in the present section, we are ready to obtain a

result similar to Nation’s by means of an ALBA reduction.

Fix enumerations of variables xn, yn for n ∈ N. Consider the following family of lattice

inequalities:

{tn ≤ sn | n ∈ N},

such that the lattice terms tn and sn are recursively defined as follows:

t0 := x0 tn+1 := xn+1 ∧ (yn+1 ∨ tn)

s0 := ⊥ sn+1 := xn+1 ∧ (yn+1 ∨ (xn+1 ∧ xn) ∨ sn).

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 57

The aim of this section is proving the following proposition:

Proposition 1.33. For any finite lattice L and any n ∈ N,

L |= tn ≤ sn iff there is no D+-chain of length n in L.

Proof. For n = 0, we need to prove that, if L is a finite lattice, L |= x0 ≤ ⊥ iff there is no

D+-chain of length 0 in L. This is clear, since the only finite lattice L such that L |= x0 ≤ ⊥ is

the one-element lattice, which is the only finite lattice which has no join-irreducible element.

Let n + 1 ≥ 1. By Corollary 1.17,

L |= tn+1 ≤ sn+1 iff EL S T (tn+1) ≤ S T (sn+1),

where EL = (J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated with L (cf. Defi-

nition 1.23), and the validity on the right-hand side of the equivalence is understood in terms of

satisfaction for every closed valuation.

We will provide ALBAl reductions for each n + 1 ≥ 1 and each inequality tn+1 ≤ sn+1. Since all

the ALBAl rules are sound and invertible on EL, the reduction will output a condition in the first

order correspondence language of EL, which is equivalent to the validity of the input inequality

on L, and which will express the existence of no D-chains of length n + 1 in L.

First of all, using the standard translation introduced in Section 1.2.2, the lattice terms tn+1 and

sn+1 translate into the following monotone modal logic formulas:

S T (t0) := x0 S T (tn+1) := xn+1 ∧ t′
n+1

with t′
n+1

:= (∃∀)(yn+1 ∨ S T (tn))

S T (s0) := ⊥ S T (sn+1) := xn+1 ∧ s′
n+1

with s′
n+1

:= (∃∀)(yn+1 ∨ (xn+1 ∧ xn) ∨ S T (sn)).

Using the notation introduced in Section 1.2.2, the LMML-terms above can be translated into the

modal language of enriched two-sorted frames (cf. Section 1.4.1) as indicated below. For the

sake of simplicity, we use the symbols tn and sn also to indicate the translations of the original

lattice terms.

t0 = x0 tn+1 = xn+1 ∧ t′
n+1

with t′
n+1
= 〈⊳〉[∋](yn+1 ∨ tn)

s0 = ⊥ sn+1 = xn+1 ∧ s′
n+1

with s′
n+1
= 〈⊳〉[∋](yn+1 ∨ (xn+1 ∧ xn) ∨ sn)

Let x stand for the list of variables xn, ..., x0, and y stand for the list of variables yn, ..., y1. ALBAl

transforms the input inequality tn+1 ≤ sn+1 into the following quasi-inequality (cf. Section 1.2.4):

∀xn+1,∀x,∀yn+1,∀y,∀jn+1,

jn+1 ≤ tn+1

sn+1 ≤ κ(jn+1)

⇒ false
 .

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 58

Since tn+1 = xn+1 ∧ t′
n+1

and sn+1 = xn+1 ∧ s′
n+1

, we can rewrite the quasi-inequality above as:

∀xn+1,∀x,∀yn+1,∀y,∀jn+1,

jn+1 ≤ xn+1 ∧ t′

n+1

xn+1 ∧ s′
n+1
≤ κ(jn+1)

⇒ false
 .

Applying the rule (S P∧) to the first inequality yields:

∀xn+1,∀x,∀yn+1,∀y,∀jn+1,

jn+1 ≤ xn+1

jn+1 ≤ t′
n+1

xn+1 ∧ s′
n+1
≤ κ(jn+1)

⇒ false

.

Notice that xn+1 < Var(t′
n+1

) and s′
n+1

is monotone in xn+1. Thus we can apply the Ackermann

rule (RAcl) to eliminate xn+1 via the substitution xn+1 ←− 〈≤J〉jn+1.

∀x,∀yn+1,∀y,∀jn+1,

jn+1 ≤ t′

n+1

〈≤J〉jn+1 ∧ s′
n+1

(〈≤J〉jn+1/xn+1) ≤ κ(jn+1)

⇒ false
 .

Recall that EL is an ordered enriched two-sorted frame and closed valuations assign variables

to downsets. Hence, by Lemma 1.28, the quasi-inequality above is equivalent to the quasi-

inequality below by applying the rule (AtomRXX).

∀x,∀yn+1,∀y,∀jn+1,

jn+1 ≤ t′

n+1

s′
n+1

(〈≤J〉jn+1/xn+1) ≤ κ(jn+1)

⇒ false
 .

By Lemma 1.34, the quasi-inequality above is equivalent to

∀jn+1, ..., j0,∀Cn,Cn−1, ...,C0

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈≤J〉jn+1 ∧ jn ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

. (1.24)

Notice that, for 0 ≤ i ≤ n, the following inequalities:

ji+1 ≤ 〈⊳〉Ci, ji ≤ 〈∈〉Ci, 〈≤J〉ji+1 ∧ ji ≤ ⊥

are respectively equivalent to the following atomic formulas in the first order correspondence

language of enriched two-sorted frames (cf. Section 1.4.1):

ji+1 ⊳Ci, ji ∈ Ci, ji � ji+1.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 59

By Definition 1.32, the conditions above yield ji+1D+ ji for each 0 ≤ i ≤ n. Hence the quasi-

inequality (1.24) is equivalent to the following quasi-inequality:

∀ jn+1, ..., j0 [(jn+1D+ jn . . . j1D+ j0)⇒ false],

which expresses the condition that there is no D+-chain of length n + 1. �

The proof of the proposition above relies on the following lemma, the proof of which

can be found in Appendix A.

Lemma 1.34. For every n ≥ 1, ALBAl succeeds on the quasi-inequality

∀xn−1, ..., x0,∀yn, ..., y0,∀jn,

jn ≤ t′n

s′n(〈≤J〉jn/xn) ≤ κ(jn)

⇒ false
 ,

and produces

∀jn, ...j0,∀Cn−1, ...C0

jn ≤ 〈⊳〉Cn−1

jn−1 ≤ 〈∈〉Cn−1

〈≤J〉jn ∧ jn−1 ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

.

1.6 Conclusions and further directions

Conclusions. In the present chapter, the algorithmic correspondence theory revolving

around ALBA (cf. [CP12, CGP14]) has been adapted and extended, so as to provide

an adequate environment in which to formalize the observation (cf. [San09]) of the

existence of a Sahlqvist-type mechanism underlying dual characterization results for

finite lattices.

The treatment of lattice inequalities in the setting of ALBA is mediated by monotone

modal logic, thanks to the existence of a duality-on-objects between finite lattices and

join-presentations (cf. Definition 1.4), and the fact that join-presentations are closely

related to (monotone) neighbourhood frames.

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 60

A key step towards the main result of the present chapter is the adaptation of ALBA to

monotone modal logic, semantically justified by the introduction of two-sorted struc-

tures and their associated correspondence language. In this setting, the Sahlqvist corre-

spondence theory of [Han03] can be embedded and generalized.

Comparison with Nation’s results. As mentioned early on, our result is similar to Na-

tion’s dual characterization of uniform upper bounds on the length of D-chains in finite

lattices:

Definition 1.35. Let L be a finite lattice. Let D ⊆ J(L) × J(L) be the binary relation defined as

follows: for any j, k ∈ J(L),

jDk iff j ⊳C, k ∈ C and k , j for some C ∈ PJ(L).

A D-chain of length l is a sequence (j0, ..., jl) of elements of J(L) such that jiD ji+1 for each

0 ≤ i ≤ (l − 1).

The dual characterization of Section 1.5 is different from Nation’s [Nat90] and is not

covered by the result in [San09], which generalizes Nation’s. As far as we know, it is

original.

Clearly, D+ is included in D for any finite lattice L. Hence, the validity on a finite lattice

L of Nation’s inequalities for a given n is a sufficient condition for L having D+-chains

of length at most n. However, in the remainder of the paragraph, we are going to show

that this upper bound is not accurate. Indeed, the maximal length of D+-chains starting

from a given join-irreducible element in a lattice can be strictly smaller than the one

for D-chains starting from the same join-irreducible element. Consider the lattice L the

Hasse diagram of which is given by the figure. In this example, it can be easily verified

that

J(L) := { a, b, c, d, e },

M(c) := { { c }, { a, b } },

M(e) := { { e }, { a, d }, { c, d } }.

The only D+-chain starting from e is eD+d, whereas there are D-chains of length 2 start-

ing from e, for instance eDcDb.

Further directions. The present chapter is a first step towards the fully-fledged au-

tomatization of dual characterization results for finite lattices. Significant extensions

Chapter 1. Dual Characterizations for Finite Lattices via Correspondence Theory for

Monotone Modal Logic 61

⊤

e

l d

c

a

b

⊥

Figure 1.1: The Hasse diagram of the lattice L

of Nation’s dual characterization results appear e.g. in [Sem05] and [San09, Proposi-

tion 8.5]. Hence, natural directions worth pursuing are (a) extending the results of the

present chapter so as to account for [San09, Proposition 8.5], and (b) analyzing the

technical machinery introduced in the present chapter from an algorithmic perspective.

The latter point involves e.g. establishing whether the present set of rules is minimal, or

whether some rules can actually be derived.

Related to both these directions, but more on the front of methodology, are outstanding

open questions about Lemma A.1. This lemma provides the soundness and invertibility

of a rule by means of which variable elimination is effected via instantiation. So far,

all rules of this type in ALBA have been proved sound and invertible thanks to one or

another version of Ackermann’s lemma. However, it is not clear whether Lemma A.1 can

be accounted for in terms of Ackermann’s lemma, and hence whether the rule justified

in Lemma A.1 can be regarded as an Ackermann-type rule. Moreover, while Lemma A.1

is rooted and has an intuitive understanding in the semantics of minimal coverings, at

the moment it is not clear whether and how more general versions of this rule can be

formulated, which would be of a wider applicability. Giving answers to these questions

would significantly enlarge the scope of algorithmic correspondence theory, and is also

a worthwhile future direction.

Part II

Proof Theory

63

Chapter 2

A Proof-Theoretic Semantic Analysis

of Dynamic Epistemic Logic

2.1 Introduction

In recent years, driven by applications in areas spanning from program semantics to

game theory, the logical formalisms pertaining to the family of dynamic logics [HKT00,

vDvdHK07] have been very intensely investigated, giving rise to a proliferation of vari-

ants.

Typically, the language of a given dynamic logic is an expansion of classical propositional

logic with an array of modal-type dynamic operators, each of which takes an action as

a parameter. The set of actions plays in some cases the role of a set of indexes or

parameters; in other cases, actions form a quantale-type algebra. When interpreted

in relational models, the formulas of a dynamic logic express properties of the model

encoding the present state of affairs, as well as the pre- and post-conditions of a given

action. Actions formalize transformations of one model into another one, the updated

model, which encodes the state of affairs after the action has taken place.

Dynamic logics have been investigated mostly w.r.t. their semantics and complexity,

while their proof-theoretic aspects have been comparatively not so prominent. How-

ever, the existing proposals of proof systems for dynamic logics witness a varied enough

array of methodologies that a methodological evaluation is now timely.

The starting point of the present chapter is precisely the evaluation of the current pro-

posals of proof-systems for the best-known dynamic epistemic logics from the viewpoint

of proof-theoretic semantics.

65

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 66

Proof-theoretic semantics [SH13] is a theory of meaning which assigns formal proofs or

derivations an autonomous semantic content. That is, formal proofs are treated as enti-

ties in terms of which meaning can be accounted for. Proof-theoretic semantics has been

very influential in an area of research in structural proof theory which aims at defining

the meaning of logical connectives in terms of an analysis of the behaviour of the logical

connectives inside the derivations of a given proof system. Such an analysis is possible

only in the context of proof systems which perform well w.r.t. certain criteria. Hence,

one of the main themes in this area is to identify design criteria which both guarantee

that the proof system enjoys certain desirable properties such as normalization or cut-

elimination, and which make it possible to speak about the proof-theoretic meaning for

given logical connectives.

An analysis of dynamic logics from a proof-theoretic semantic viewpoint is beneficial

both for dynamic logics and for structural proof theory. Indeed, such an analysis pro-

vides dynamic logics with sound methodological and foundational principles, and with

an entirely novel perspective on the topic of dynamics and change, which is independent

from the dominating model-theoretic methods. Moreover, such an analysis provides

structural proof theory with a novel array of case studies against which to test the gen-

erality of its proof-theoretic semantic principles, and with the opportunity to extend its

modus operandi to still uncharted settings, such as the multi-type calculi introduced in

Chapter 3.

Motivated by this proof theoretic semantic analysis, we propose a display calculus for

the logic of Epistemic Knowledge and Actions and develop its theory.

Organization and results. In Section 2.2, we introduce the basic ideas of proof-theoretic

semantics, as well as some of the principles in structural proof theory that were inspired

by it, and we explain their consequences and spirit, in view of their applications in the

following sections. In Section 2.3, we prove a generalization of Belnap’s cut elimination

metatheorem. In Section 2.4, we review some of the most significant proposals of proof

systems for dynamic epistemic logics, focusing mainly on the logic of Public Announce-

ments (PAL) [Pla07] and the logic of Epistemic Knowledge and Actions (EAK) [BMS99],

and we critically reflect on them in the light of the principles of proof-theoretic seman-

tics stated in Section 2.2, in particular in Section 2.4.4, we focus on the display-type

calculus D.EAK for PAL/EAK introduced in [GKP13]: we highlight its critical issues—the

main of which being that a smooth (Belnap-style) proof of cut elimination is not readily

available for it. In Section 2.5, we expand on the final coalgebra semantics for D.EAK,

since it is relevant for the subsequent developments of the present and the next chapter.

In Section 2.6, we propose a revised version of D.EAK, discuss why the revision is more

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 67

adequate for proof-theoretic semantics, and finally prove the cut elimination theorem

for the revised version as a consequence of the metatheorem proven in Section 2.6.3.

In Section 2.7, we collect some conclusions and indicate further directions. Most of the

proofs and derivations are collected in Appendices C, D and E.

2.2 Preliminaries on proof-theoretic semantics and Display Calculi

In the present section, we review and discuss the proof-theoretic notions which will

be used in the further development of the chapter. In the following subsection, we

outline the conceptual foundations of proof-theoretic semantics; in Subsection 2.2.2,

Belnap-style display calculi will be discussed; in Subsection 2.2.3 a refinement of Bel-

nap’s analysis, due to Wansing, will be reported on. Our presentation is certainly not

exhaustive, and will limit itself to targeting the issues needed in the further develop-

ment of the thesis. The reader is referred to [SH13, SH06] for a detailed presentation

of proof-theoretic semantics, and to [Wan98, Wan00] for a discussion of proof-theoretic

semantic principles in structural proof theory.

2.2.1 Basic ideas in proof-theoretic semantics

Proof-theoretic semantics is a line of research which covers both philosophical and tech-

nical aspects, and is concerned with methodological issues. Proof-theoretic semantics

is based on the idea that a purely inferential theory of meaning is possible. That is,

that the meaning of expressions (in a formal language or in natural language) can be

captured purely in terms of the proofs and the inference rules which participate in the

generation of the given expression, or in which the given expression participates. This

inferential view is opposed to the mainstream denotational view on the theory of mean-

ing, and is influential in e.g. linguistics, linking up to the idea, commonly attributed to

Wittgenstein, that ‘meaning is use’. In proof theory, this idea links up with Gentzen’s fa-

mous observation about the introduction and elimination rules of his natural deduction

calculi:

‘The introductions represent, as it were, the definitions of the symbols con-

cerned, and the eliminations are no more, in the final analysis, than the

consequences of these definitions. This fact may be expressed as follows:

In eliminating a symbol, we may use the formula with whose terminal sym-

bol we are dealing only in the sense afforded it by the introduction of that

symbol’. ([Gen69] p. 80)

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 68

In the proof-theoretic semantic literature, this observation is brought to its consequences:

rather than viewing proofs as entities the meaning of which is dependent on denota-

tion, proof-theoretic semantics assigns proofs (in the sense of formal deductions) an

autonomous semantic role; that is, proofs are entities in terms of which meaning can be

accounted for.

Proof-theoretic semantics has inspired and unified much of the research in structural

proof theory focusing on the purely inferential characterization of logical constants (i.e.

logical connectives) in the setting of a given proof system.

2.2.2 Display calculi

Display calculi are among the approaches in structural proof theory aimed at the uni-

form development of an inferential theory of meaning of logical constants aligned with

the ideas of proof-theoretic semantics. Display calculi have been successful in giving

adequate proof-theoretic accounts of logics—such as modal logics and substructural

logics—which have notoriously been difficult to treat with other approaches. In par-

ticular, the contributions in this line of research which are most relevant to our analysis

are Belnap’s [Bel82], Wansing’s [Wan98], Goré’s [Gor98], and Restall’s [Res00].

Display Logic. Nuel Belnap introduced the first display calculus, which he calls Display

Logic [Bel82], as a sequent system augmenting and refining Gentzen’s basic observations

on structural rules. Belnap’s refinement is based on the introduction of a special syntax

for the constituents of each sequent. Indeed, his calculus treats sequents X ⊢ Y where

X and Y are so-called structures, i.e. syntactic objects inductively defined from formu-

las using an array of special connectives. Belnap’s basic idea is that, in the standard

Gentzen formulation, the comma symbol ‘,’ separating formulas in the precedent and in

the succedent of sequents can be recognized as a metalinguistic connective, of which the

structural rules define the behaviour.

Belnap took this idea further by admitting not only the comma, but also several other

connectives to keep formulas together in a structure, and called them structural con-

nectives. Just like the comma in standard Gentzen sequents is interpreted contextually

(that is, as conjunction when occurring on the left-hand side and as disjunction when

occurring on the right-hand side), each structural connective typically corresponds to a

pair of logical connectives, and is interpreted as one or the other of them contextually

(more of this in Sections 2.5 and 2.6.1). Structural connectives maintain relations with

one another, the most fundamental of which take the form of adjunctions and residua-

tions. These relations make it possible for the calculus to enjoy the powerful property

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 69

which gives it its name, namely, the display property. Before introducing it formally, let

us agree on some auxiliary definitions and nomenclature: structures are defined much in

the same way as formulas, taking formulas as atomic components and closing under the

given structural connectives; therefore, each structure can be uniquely associated with

a generation tree. Every node of such a generation tree defines a substructure. A sequent

X ⊢ Y is a pair of structures X,Y. The display property was introduced by Belnap, see

Theorem 3.2 of [Bel82] (where X ⊢ Y is called a consecution and X the antecedent and

Y the consequent):

Definition 2.1. A proof system enjoys the display property iff for every sequent X ⊢ Y and every

substructure Z of either X or Y , the sequent X ⊢ Y can be equivalently transformed, using the

rules of the system, into a sequent which is either of the form Z ⊢ W or of the form W ⊢ Z,

for some structure W. In the first case, Z is displayed in precedent position, and in the second

case, Z is displayed in succedent position. The rules enabling this equivalent rewriting are called

display postulates.

Thanks to the fact that display postulates are based on adjunction and residuation, in

display calculi exactly one of the two alternatives mentioned in the definition above

occurs. In other words, in a system enjoying the display property, any substructure

of any sequent X ⊢ Y is always displayed either only in precedent position or only

in succedent position. This is why we can talk about occurrences of substructures in

precedent or in succedent position, even if they are nested deep within a given sequent,

as illustrated in the following example:

Y ⊢ X > Z
X ; Y ⊢ Z

Y ; X ⊢ Z

X ⊢ Y > Z

In the derivation above, the structure X is on the right side of the turnstile, but it is

displayable on the left, and therefore is in precedent position. As discussed in Section 4

(on page 7), the display property is a crucial technical ingredient for display calculi cut

elimination metatheorem, but it is also at the basis of Belnap’s methodology for charac-

terizing operational connectives: according to Belnap, any logical connective should be

introduced in isolation, i.e., when it is introduced, the context on the side it has been

introduced must be empty. The display property guarantees that this condition is not

too restrictive.

Canonical cut elimination. In [Bel82], a metatheorem is proven, which gives sufficient

conditions in order for a sequent calculus to enjoy cut elimination.1 This metatheorem

1Note that, as Belnap observed on pag. 389 in [Bel82]: ‘The eight conditions are supposed to be a reminiscent of

those of Curry’ in [Cur63].

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 70

captures the essentials of the Gentzen-style cut elimination procedure, and is the main

technical motivation for the design of Display Logic. Belnap’s metatheorem gives a set

of eight conditions on sequent calculi, which are relatively easy to check, since most of

them are verified by inspection on the shape of the rules. Together, these conditions

guarantee that the cut is eliminable in the given sequent calculus, and that the calculus

enjoys the subformula property. When Belnap’s metatheorem can be applied, it provides

a much smoother and more modular route to cut elimination than the Gentzen-style

proofs. Moreover, as we will see later, a Belnap style cut elimination theorem is robust

with respect to adding structural rules and with respect to adding new logical connec-

tives, whereas a Gentzen-style cut elimination proof for the modified system cannot be

deduced from the old one, but must be proved from scratch.

In a slogan, we could say that Belnap-style cut elimination is to ordinary cut elimination

what canonicity is to completeness: indeed, canonicity provides a uniform strategy to

achieve completeness. In the same way, the conditions required by Belnap’s metatheo-

rem ensure that one and the same given set of transformation steps is enough to achieve

Gentzen-style cut elimination for any system satisfying them.2

In what follows, we review and discuss eight conditions which are stronger in certain

respects than those in [Bel82],3 and which define the notion of proper display calculus

in [Wan98].4

C1: Preservation of formulas. This condition requires each formula occurring in a

premise of a given inference to be the subformula of some formula in the conclusion

of that inference. That is, structures may disappear, but not formulas. This condition is

not included in the list of sufficient conditions of the cut elimination metatheorem, but,

in the presence of cut elimination, it guarantees the subformula property of a system.

Condition C1 can be verified by inspection on the shape of the rules.

C2: Shape-alikeness of parameters. This condition is based on the relation of congru-

ence between parameters (i.e., non-active parts) in inferences; the congruence relation is

an equivalence relation which is meant to identify the different occurrences of the same

formula or substructure along the branches of a derivation [Bel82, Section 4], [Res00,

Definition 6.5]. Condition C2 requires that congruent parameters be occurrences of the

same structure. This can be understood as a condition on the design of the rules of

the system if the congruence relation is understood as part of the specification of each

2The relationship between canonicity and Belnap-style cut elimination is in fact more than a mere analogy, see

[Kra96, Theorem 20].
3See also [Bel90, Res00] and the ‘second formulation’ of condition C6/7 in Section 4.4 of [Wan98].
4See the ‘first formulation’ of conditions C6, C7 in Section 4.1 of [Wan98].

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 71

given rule; that is, each rule of the system comes with an explicit specification of which

elements are congruent to which (and then the congruence relation is defined as the

reflexive and transitive closure of the resulting relation). In this respect, C2 is nothing

but a sanity check, requiring that the congruence is defined in such a way that indeed

identifies the occurrences which are intuitively “the same”.

C3: Non-proliferation of parameters. Like the previous one, also this condition is actu-

ally about the definition of the congruence relation on parameters. Condition C3 requires

that, for every inference (i.e. rule application), each of its parameters is congruent to at

most one parameter in the conclusion of that inference. Hence, the condition stipulates

that for a rule such as the following,

X ⊢ Y
X, X ⊢ Y

the structure X from the premise is congruent to only one occurrence of X in the conclu-

sion sequent. Indeed, the introduced occurrence of X should be considered congruent

only to itself. Moreover, given that the congruence is an equivalence relation, condition

C3 implies that, within a given sequent, any substructure is congruent only to itself.

Remark 2.2. Conditions C2 and C3 make it possible to follow the history of a formula along the

branches of any given derivation. In particular, C3 implies that the the history of any formula

within a given derivation has the shape of a tree, which we refer to as the history-tree of that

formula in the given derivation. Notice, however, that the history-tree of a formula might have

a different shape than the portion of the underlying derivation corresponding to it; for instance,

the following application of the Contraction rule gives rise to a bifurcation of the history-tree

of A which is absent in the underlying branch of the derivation tree, given that Contraction is a

unary rule.

...

A, A ⊢ X

A ⊢ X

C4: Position-alikeness of parameters. This condition bans any rule in which a (sub)structure

in precedent (resp. succedent) position in a premise is congruent to a (sub)structure in

succedent (resp. precedent) position in the conclusion.

C5: Display of principal constituents. This condition requires that any principal occur-

rence be always either the entire antecedent or the entire consequent part of the sequent

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 72

in which it occurs. In the following section, a generalization of this condition will be dis-

cussed, in view of its application to the main focus of interest of the present chapter.

The following conditions C6 and C7 are not reported below as they are stated in the

original paper [Bel82], but as they appear in [Wan98, Section 4.1]. More about this

difference is discussed in Section 2.7.2.

C6: Closure under substitution for succedent parameters. This condition requires each

rule to be closed under simultaneous substitution of arbitrary structures for congruent

formulas which occur in succedent position. Condition C6 ensures, for instance, that if

the following inference is an application of the rule R:

(X ⊢ Y)
(
[A]suc

i
| i ∈ I

)
R

(X′ ⊢ Y ′)[A]suc

and
(
[A]suc

i
| i ∈ I

)
represents all and only the occurrences of A in the premiss which are

congruent to the occurrence of A in the conclusion5, then also the following inference is

an application of the same rule R:

(X ⊢ Y)
(
[Z/A]suc

i
| i ∈ I

)
R

(X′ ⊢ Y ′)[Z/A]suc

where the structure Z is substituted for A.

This condition caters for the step in the cut elimination procedure in which the cut

needs to be “pushed up” over rules in which the cut-formula in succedent position is

parametric. Indeed, condition C6 guarantees that, in the picture below, a well-formed

subtree π1[Y/A] can be obtained from π1 by replacing any occurrence of A correspond-

ing to a node in the history tree of the cut-formula A by Y, and hence the following

transformation step is guaranteed go through uniformly and “canonically”:

... π
′
1

X′ ⊢ A

... π1

X ⊢ A

... π2

A ⊢ Y
X ⊢ Y

... π
′
1

X′ ⊢ A

... π2

A ⊢ Y
X′ ⊢ Y

... π1[Y/A]

X ⊢ Y

if each rule in π1 verifies condition C6.

5Clearly, if I = ∅, then the occurrence of A in the conclusion is congruent to itself.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 73

C7: Closure under substitution for precedent parameters. This condition requires each

rule to be closed under simultaneous substitution of arbitrary structures for congruent

formulas which occur in precedent position. Condition C7 can be understood analo-

gously to C6, relative to formulas in precedent position. Therefore, for instance, if the

following inference is an application of the rule R:

(X ⊢ Y)
(
[A]

pre

i
| i ∈ I

)
R

(X′ ⊢ Y ′)[A]pre

then also the following inference is an instance of R:

(X ⊢ Y)
(
[Z/A]

pre

i
| i ∈ I

)
R

(X′ ⊢ Y ′)[Z/A]pre

Similarly to what has been discussed for condition C6, condition C7 caters for the step

in the cut elimination procedure in which the cut needs to be “pushed up” over rules in

which the cut-formula in precedent position is parametric.

C8: Eliminability of matching principal constituents. This condition requests a standard

Gentzen-style checking, which is now limited to the case in which both cut formulas

are principal, i.e. each of them has been introduced with the last rule application of

each corresponding subdeduction. In this case, analogously to the proof Gentzen-style,

condition C8 requires being able to transform the given deduction into a deduction with

the same conclusion in which either the cut is eliminated altogether, or is transformed

in one or more applications of cut involving proper subformulas of the original cut-

formulas.

Rules introducing logical connectives. In display calculi, these rules, sometimes referred

to as operational rules as opposed to the structural rules, typically occur in two flavors:

operational rules which translate one structural connective in the premises in the cor-

responding connective in the conclusion, and operational rules in which both the oper-

ational connective and its structural counterpart are introduced in the conclusion. An

example of this pattern is provided below for the case of the modal operator ‘diamond’:

◦A ⊢ X
^L

^A ⊢ X
X ⊢ A

^R
◦X ⊢ ^A

This introduction pattern obeys very strict criteria, which will be expanded on in the

next subsection. From this example, it is clear that the introduction rules capture the

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 74

rock bottom behavior of the logical connective in question; additional properties (for

instance, normality, in the case in point), which might vary depending on the logical

system, are to be captured at the level of additional (purely structural) rules. This

enforces a clear-cut division of labour between operational rules, which only encode the

basic proof-theoretic meaning of logical connectives, and structural rules, which account

for all extra relations and properties, and which can be modularly added or removed,

thus accounting for the space of logics.

Summing up, the two main benefits of display calculi are a “canonical” proof of cut

elimination, and an explicit and modular account of logical connectives.

2.2.3 Wansing’s criteria

In [Wan98, subsubsection 1.3], referring to the well known idea that ‘a proof-theoretic

semantics exemplifies the Wittgensteinian slogan that meaning is use’, Wansing stresses

that, for this slogan to serve as a conceptual basis for a general inferential theory of

meaning, ‘use’ should be understood as ‘correct use’. The consequences of the idea of

meaning as correct use then precipitate into the following principles for the introduction

rules for operational connectives, which he discusses in the same subsection and which

are reported below. These principles are hence to be understood as the general require-

ments a (sequent-style) proof system needs to satisfy in order to encode the correct use,

and hence for being suitable for proof-theoretic semantics.

Separation. This principle requires that the introduction rules for a given connective f

should not exhibit any other connective rather than f . Hence the meaning of a given

operational connective cannot be dependent from any other operational connectives.

For instance, the following rule does not satisfy separation:

�Γ ⊢ A,^∆

�Γ ⊢ �A ,^∆

This criterion does not ban the possibility of defining composite connectives; however, it

ensures that the dependence relation between connectives creates no vicious circles. In

fact, as it is formulated, this criterion is much stronger, since it requires every connective

to be independent of any other.

Isolation. This is a stronger requirement than separation, and stipulates that, in ad-

dition, the precedent (resp. succedent) of the conclusion sequent in a left (resp. right)

introduction rule must not exhibit any structure operation. In [Bel82], Belnap explains

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 75

this requirement by remarking that an introduction rule with nonempty context on the

principal side would fail to account for the meaning of the logical connective involved

in a context-independent way.

Segregation. This is an even stronger requirement than isolation, and stipulates that,

in addition, also the auxiliary formulas in the premise(s) must occur within an empty

context. This property appears under the name of visibility in [BFS00].6

Weak symmetry. This requirement stipulates that each introduction rule for a given

connective f should either belong to a set of rules (f ⊢) which introduce f on the left-

hand side of the turnstile ⊢ in the conclusion sequent, or to a set of rules (⊢ f) which

introduce f on the right-hand side of the turnstile ⊢ in the conclusion sequent. Un-

derstanding the either-or as exclusive disjunction, this criterion prevents an operational

connective to be introduced on both sides by the application of one and the same rule.

Thus, weak symmetry stipulates that the sets (f ⊢) and (⊢ f) be disjoint. However, weak

symmetry does not exclude that either (f ⊢) or (⊢ f) be empty.

Symmetry. This condition strengthens weak symmetry by requiring both (f ⊢) and (⊢ f)

to be nonempty for each connective f . Rather than a requirement on individual rules,

this principle is a requirement on the set of the introduction rules for any given connec-

tive. Notice that symmetry does not exclude the possibility of having, for instance, two

rules that introduce a given connective on the left and one that introduces it on the right

side of the turnstile.

Weak explicitness. An introduction rule for f is weakly explicit if f occurs only in the

conclusion of a rule and not in its premisses.

Explicitness. An introduction rule for f is explicit if it is weakly explicit and in addition

to this, f appears only once in the conclusion of the rule.

The following principles are of a more global nature, which involves the proof system as

a whole:
6In Chapter 4, following ideas from [BFS00], the visibility property is identified as an essential ingredient to

generalise Belnap’s metatheorem beyond display calculi.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 76

Unique characterization. This principle requires each logical connective to be uniquely

characterized by its behaviour in the system, in the following sense. Let Λ be a logical

system with a syntactic presentation S in which f occurs. Let S ∗ be the result of rewriting

f everywhere in S as f ∗, and let ΛΛ∗ be the system presented by the union S S ∗ of S

and S ∗ in the combined language with both f and f ∗. Let A f denote a formula (in

this language) that contains a certain occurrence of f , and let A f ∗ denote the result

of replacing this occurrence of f in A f by f ∗. The connectives f and f ∗ are uniquely

characterized in ΛΛ∗ (cfr. [Wan98, Subsubsection 1.4]) if for every formula A f in the

language of ΛΛ∗, A f is provable in S S ∗ iff A f ∗ is provable in S S ∗.

Došen’s principle. Hilbert style presentations are modular in the following sense: if Λ1

and Λ2 are finitely axiomatizable logics over the same language and Λ1 is stronger than

Λ2, then an axiomatization of Λ2 can be obtained from one of Λ1 by adding finitely

many axioms to it. This makes it possible to modularly generate all finite axiomatic ex-

tensions of a given logic. Although it is arguably more difficult to achieve an analogous

degree of modularity in the sequent calculi presentation, a principle aimed to achieve it

has been advocated by Wansing under the name of Došen’s principle (cfr. [Wan98, Sub-

subsection 1.5]): “The rules for the logical operations are never changed; all changes

are made in the structural rules”. Thus, suitable finite axiomatic extensions of a given

logic L can be captured by adding structural rules to the proof system associated with

L. Display calculi are particularly suitable to implement Došen’s principle. As remarked

early on, besides featuring structural rules which encode properties of single structural

connectives (which is the case e.g. of the rule exchange), display calculi typically fea-

ture rules which concern the interaction between different structural connectives (the

adjunction between two structural connectives is an example of the latter type of rule,

see for instance the rules applied in the example on page 69).

Cut-eliminability. Finally, Wansing considers the eliminability of the cut rule as an im-

portant requirement for the proof-theoretic semantics of logical connectives.

2.3 Belnap-style metatheorem for quasi-proper display calculi

In the present section, we discuss a slight extension of Wansing’s notion of proper dis-

play calculus (cf. Section 2.2.2), and prove its associated Belnap-style cut elimination

metatheorem. The cut elimination for the calculus D’.EAK introduced in Section 2.6.3

(see also Appendix D) will be derived as an instance of the metatheorem below.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 77

2.3.1 Quasi-proper display calculi

Definition 2.3. A sequent calculus is a quasi proper display calculus if it verifies conditions C1,

C2, C3, C4, C6, C7, C8 of Section 2.2.2, and moreover it satisfies the following conditions C′
5
,

C′′
5

and C′′
8

:

C′
5
: Quasi-display of principal constituents. If a formula A is principal in the conclusion

sequent s of a derivation π, then A is in display, unless π consists only of its conclusion sequent

s (i.e. s is an axiom).

C′′
5

: Display-invariance of axioms. If a display rule can be applied to an axiom s, the result

of that rule application is again an axiom.

C′′
8

: Closure of axioms under cut. If X ⊢ A and A ⊢ Y are axioms, then X ⊢ Y is again an

axiom.

Notice that condition C5 in Section 2.2.2 is stronger than both C′
5

and C′′
5
, and that the

strength of condition C′
5

is intermediate between that of C5 and of the following one,

appearing in [Res00, Definition 6.8]:

C′′′
5

: Single principal constituents. This condition requires that, in the conclusion of any

rule, there be at most one non-parametric formula—which is the formula introduced by

the application of the rule in question—unless the rule is an axiom.

The above condition C′′′
5

is introduced in [Res00] within a setting accounting for sequent

calculi which do not necessarily enjoy the full display property. The calculi considered

in [Res00] are such that the introduction rules do not need to enjoy the requirement of

isolation (cf. Chapter 6), and the (multiple) cut rule applies at any depth. The calculus

introduced in Section 2.6.1 enjoys the full display property, therefore the following cut

rule, in which both cut formulas occur in isolation:

X ⊢ A A ⊢ Y
Cut

X ⊢ Y

will be taken as primitive in it without loss of generality, as is standardly done in display

calculi. However, the calculus in Section 2.6.1 fails to enjoy the property of isolation,

which typically plays a role in the cut elimination metatheorem for display calculi, and

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 78

indeed appears in [Wan98] as condition C5. In the next subsection, we show that, even

when the cut rule is the one above, requiring the combination of C′
5

and C′′
5

suffices.7

2.3.2 Belnap-style metatheorem

The aim of the present subsection is to prove the following theorem:

Theorem 2.4. Any calculus satisfying conditions C2, C3, C4, C′
5
, C′′

5
, C6, C7, C8, and C′′

8
enjoys

cut elimination. If C1 is also satisfied, then the calculus enjoys the subformula property.

Proof. This is a generalization of the proof in [Wan02, Section 3.3, Appendix A]. For the sake

of conciseness, we will expand only on the parts of the proof which depart from that treatment.

Our original derivation is

... π1

X ⊢ A

... π2

A ⊢ Y
X ⊢ Y

Principal stage: both cut formulas are principal. There are three subcases.

If the end sequent X ⊢ Y is identical to the conclusion of π1 (resp. π2), then we can eliminate the

cut simply replacing the derivation above with π1 (resp. π2).

If the premises X ⊢ A and A ⊢ Y are axioms, then, by C′′
8

, the conclusion X ⊢ Y is an axiom,

therefore the cut can be eliminated by simply replacing the original derivation with X ⊢ Y .

If one of the two premises of the cut in the original derivation is not an axiom, then, by C8, there

is a proof of X ⊢ Y which uses the same premise(s) of the original derivation and which involves

only cuts on proper subformulas of A.

Parametric stage: at least one cut formula is parametric. There are two subcases: either

one cut formula is principal or they are both parametric.

Consider the subcase in which one cut formula is principal. W.l.o.g. we assume that the cut-

formula A is principal in the the left-premise X ⊢ A of the cut in the original proof (the other case

is symmetric). As discussed in Remark 2.2, conditions C2 and C3 make it possible to consider

the history-tree of the right-hand-side cut formula A in π2. The situation can be pictured as

follows:

7In Chapter 3, we give a metatheorem which is based on a different tradeoff: on the one hand, we will not require

the full display property, but on the other hand we will require a condition close to segregation.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 79

... π1

X ⊢ A

... π2.i

Ai ⊢ Yi

. . .

... π2. j

(X j ⊢ Y j)[A j]
pre

...

... π2.k

(Xk ⊢ Yk)[Ak]pre

. .
.

. . .
... . .
. π2

A ⊢ Y
X ⊢ Y

where, for i, j, k ∈ {1, . . . , n}, the nodes

Ai ⊢ Yi, (X j ⊢ Y j)[A j]
pre, and (Xk ⊢ Yk)[Ak]pre

represent the three ways in which the leaves Ai, A j and Ak in the history-tree of A in π2 can

be introduced, and which will be discussed below. The notation A and (resp. A) indicates that

the given occurrence is principal (resp. parametric). Notice that condition C4 guarantees that all

occurrences in the history of A are in precedent position in the underlying derivation tree.

Let Al be introduced as a parameter (as represented in the picture above in the conclusion of

π2.k for Al = Ak). Assume that (Xk ⊢ Yk)[Ak] is the conclusion of an application inf of the rule

Ru (for instance, in the calculus of Section 2.6.1, this situation arises if Ak has been introduced

with an application of Weakening). Since Ak is a leaf in the history-tree of A, we have that Ak

is congruent only to itself in Xk ⊢ Yk. Hence, C7 implies that it is possible to substitute X for

Ak by means of an application of the same rule Ru. That is, (Xk ⊢ Yk)[Ak] can be replaced by

(Xk ⊢ Yk)[X/Ak].

Let Al be introduced as a principal formula. The corresponding subcase in [Wan02] splits into

two subsubcases: either Al is introduced in display or it is not.

If Al is in display (as represented in the picture above in the conclusion of π2.i for Al = Ai), then

we form a subderivation using π1 and π2.i and applying cut as the last rule.

If Al is not in display (as represented in the picture above in the conclusion of π2. j for Al = A j),

then condition C′
5

implies that (X j ⊢ Y j)[A j]
pre is an axiom (so, in particular, there is at least

another occurrence of A in succedent position), and C′′
5

implies that some axiom A j ⊢ Y ′
j

exists,

which is display-equivalent to the first axiom, and in which A j occurs in display. Let π′ be the

derivation which transforms A j ⊢ Y ′
i

into (X j ⊢ Y j)[A j]
pre. We form a subderivation using π1

and A j ⊢ Y ′
j

and joining them with a cut application, then attaching π′[X/A j]
pre below the new

cut.

The transformations just discussed explain how to transform the leaves of the history tree of A.

Finally, condition C7 implies that substituting X for each occurrence of A in the history tree of

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 80

the cut formula A in π2 (or in a display-equivalent proof π′) gives rise to an admissible derivation

π2[X/A]pre (use C6 for the symmetric case).

Summing up, this procedure generates the following proof tree:

... π1

X ⊢ A

... π2.i

Ai ⊢ Yi

X ⊢ Yi

. . .

... π1

X ⊢ A A j ⊢ Y ′[A]suc

X ⊢ Y ′[A]suc

... π
′[X/A]pre

(X j ⊢ Y j)[X/A j]
pre[A]suc

...

... π2.k

(Xk ⊢ Yk)[X/Ak]pre

. .
.

. . .
... . .
. π2[X/A]pre

X ⊢ Y

If, in the original derivation, the history-tree of the cut formula A (in the right-hand-side premise

of the given cut application) contains at most one leaf Al which is principal, then the height of

the new cuts is lower than the height of the original cut.

If, in the original derivation, the history-tree of the cut formula A (in the right-hand-side premise

of the given cut application) contains more than one leaf Al which is principal, then we cannot

conclude that the height of the new cuts is always lower than the height of the original cut (for

instance, in the calculus introduced in Section 2.6.1, this situation may arise when two ancestors

of a cut formula are introduced as principal, and then are identified via an application of the rule

Contraction). In this case, we observe that in each newly introduced application of the cut rule,

both cut formulas are principal. Hence, we can apply the procedure described in the Principal

stage and transform the original derivation in a derivation in which the cut formulas of the newly

introduced cuts have strictly lower complexity than the original cut formula.

Finally, as to the subcase in which both cut formulas are parametric, consider a proof with at

least one cut. The procedure is analogous to the previous case. Namely, following the history of

one of the cut formulas up to the leaves, and applying the transformation steps described above,

we arrive at a situation in which, whenever new applications of cuts are generated, in each such

application at least one of the cut formulas is principal. To each such cut, we can apply (the

symmetric version of) the Parametric stage described so far. �

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 81

2.4 Dynamic Epistemic Logics and their proof systems

In the present section, we first review the two best known logical systems in the family

of dynamic epistemic logics, namely public announcement logic (PAL) [Pla07], and the

logic of epistemic actions and knowledge (EAK) [BMS99], focusing mainly on the latter

one. Our presentation in Subsection 2.4.1 is different but equivalent to the original ver-

sion from [BMS99] (without common knowledge), and rather follows the presentation

given in [MPS13] and in [GKP13]. In Subsection 2.4.2, we present the intuitionistic

version of EAK. In Subsections 2.4.3 and 2.4.4 we discuss their existing proof-theoretic

formalizations, particularly in relation to the viewpoint of proof-theoretic semantics, and

mention the system D.EAK as a promising approximation of a setting for proof-theoretic

semantics. Finally, in Subsection 2.5, we discuss the final coalgebra semantics, since this

is a semantic environment in which all connectives of the language of D.EAK (and of its

improved version D’.EAK) can be naturally interpreted.

2.4.1 The logic of epistemic actions and knowledge

The logic of epistemic actions and knowledge (further on EAK) is a logical framework

which combines a multi-modal classical logic with a dynamic-type propositional logic.

Static modalities in EAK are parametrized with agents, and their intended interpretation

is epistemic, that is, 〈a〉A intuitively stands for ‘agent a thinks that A might be the case’.

Dynamic modalities in EAK are parametrized with epistemic action-structures (defined

below) and their intended interpretation is analogous to that of dynamic modalities in

e.g. Propositional Dynamic Logic. That is, 〈α〉A intuitively stands for ‘the action α is

executable, and after its execution A is the case’. Informally, action structures loosely

resemble Kripke models, and encode information about epistemic actions such as e.g.

public announcements, private announcements to a group of agents, with or without

(actual or suspected) wiretapping, etc. Action structures consist of a finite nonempty

domain of action-states, a designated state, binary relations on the domain for each

agent, and a precondition map. Each state in the domain of an action structure α rep-

resents the possible appearance of the epistemic action encoded by α. The designated

state represents the action actually taking place. Each binary relation of an action struc-

ture represents the type, or degree, of uncertainty entertained by the agent associated

with the given binary relation about the action taking place; for instance, the agents’

knowledge, ignorance, suspicions. Finally, the precondition function maps each state in

the domain to a formula, which is intended to describe the state of affairs under which

it is possible to execute the (appearing) action encoded by the given state. This formula

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 82

encodes the preconditions of the action-state. The reader is referred to [BMS99] for

further intuition and concrete examples.

Let AtProp be a countable set of atomic propositions, and Ag be a nonempty set (of

agents). The set L of formulas A of the logic of epistemic actions and knowledge (EAK),

and the set Act(L) of the action structures α over L are defined simultaneously as follows:

A := p ∈ AtProp | ¬A | A ∨ A | 〈a〉A | 〈α〉A (α ∈ Act(L), a ∈ Ag),

where an action structure over L is a tuple α = (K, k, (αa)a∈Ag, Preα), such that K is a finite

nonempty set, k ∈ K, αa ⊆ K × K and Preα : K → L.

The symbol Pre(α) stands for Preα(k). For each action structure α and every i ∈ K, let

αi := (K, i, (αa)a∈Ag, Preα). Intuitively, the family of action structures {αi | kαai} encodes

the uncertainty of agent a about the action α = αk that is actually taking place. Per-

haps the best known epistemic actions are public announcements, formalized as action

structures α such that K = {k}, and αa = {(k, k)} for all a ∈ Ag. The logic of public an-

nouncements (PAL) [Pla07] can then be subsumed as the fragment of EAK restricted to

action structures of the form described above. The connectives ⊤, ⊥, ∧, → and ↔ are

defined as usual.

Standard models for EAK are relational structures M = (W, (Ra)a∈Ag,V) such that W is a

nonempty set, Ra ⊆ W×W for each a ∈ Ag, and V : AtProp→ P(W). The interpretation of

the static fragment of the language is standard. For every Kripke frame F = (W, (Ra)a∈Ag)

and each action structure α, let the Kripke frame
∐

α F := (
∐

K W, ((R × α)a)a∈Ag) be

defined as follows:
∐

K W is the |K|-fold coproduct of W (which is set-isomorphic to

W × K), and (R × α)a is a binary relation on
∐

K W defined as

(w, i)(R × α)a(u, j) iff wRau and iαa j.

For every model M and each action structure α, let

∐

α

M := (
∐

α

F ,
∐

K

V)

be such that
∐

α F is defined as above, and (
∐

K V)(p) :=
∐

K V(p) for every p ∈ AtProp.

Finally, let the update of M with the action structure α be the submodel

Mα := (Wα, (Rα
a
)a∈Ag,V

α)

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 83

of
∐

α M the domain of which is the subset

Wα := {(w, j) ∈
∐

K

W | M,w Preα(j)}.

Given this preliminary definition, formulas of the form 〈α〉A are interpreted as follows:

M,w 〈α〉A iff M,w Preα(k) and Mα, (w, k) A.

The model Mα is intended to encode the (factual and epistemic) state of affairs after the

execution of the action α. Summing up, the construction of Mα is done in two stages: in

the first stage, as many copies of the original model M are taken as there are ‘epistemic

potential appearances’ of the given action (encoded by the action states in the domain

of α); in the second stage, states in the copies are removed if their associated original

state does not satisfy the preconditions of their paired action-state.

A complete axiomatization of EAK consists of copies of the axioms and rules of the

minimal normal modal logic K for each modal operator, either epistemic or dynamic,

plus the following (interaction) axioms:

〈α〉p ↔ (Pre(α) ∧ p); (2.1)

〈α〉¬A ↔ (Pre(α) ∧ ¬〈α〉A); (2.2)

〈α〉(A ∨ B) ↔ (〈α〉A ∨ 〈α〉B); (2.3)

〈α〉〈a〉A ↔ (Pre(α) ∧
∨
{〈a〉〈αi〉A | kαai}). (2.4)

The interaction axioms above can be understood as attempts at defining the meaning of

any given dynamic modality 〈α〉 in terms of its interaction with the other connectives. In

particular, while axioms (2.2) and (2.3) occur also in other dynamic logics such as PDL,

axioms (2.1) and (2.4) capture the specific behaviour of epistemic actions. Specifically,

axiom (2.1) encodes the fact that epistemic actions do not change the factual state of

affairs, and axiom (2.4) plausibly rephrases the fact that ‘after the execution of α, agent

a thinks that A might be the case’ in terms of ‘there being some epistemic appearance of

α to a such that a thinks that, after its execution, A is the case’. An interesting aspect

of these axioms is that they work as rewriting rules which can be iteratively used to

transform any EAK-formula into an equivalent one free of dynamic modalities. Hence,

the completeness of EAK follows from the completeness of its static fragment, and EAK

is not more expressive than its static fragment. However, and interestingly, there is

an exponential gap in succinctness between equivalent formulas in the two languages

[Lut06].

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 84

Action structures are one among many possible ways to represent actions. Following

[GKP13], we prefer to keep a black-box perspective on actions, and to identify agents a

with the indistinguishability relation they induce on actions; so, in the remainder of the

article, the role of the action-structures αi for kαi will be played by actions β such that

αaβ, allowing us to reformulate (2.4) as

〈α〉〈a〉A ↔ (Pre(α) ∧
∨
{〈a〉〈β〉A | αaβ}).

2.4.2 The intuitionistic version of EAK

In [MPS13, KP13], an analysis of PAL and EAK has been given from the point of view of

algebraic semantics, resulting in the definition of the intuitionistic counterparts of PAL

and EAK. In the present subsection, we briefly review the definition of the latter one, as

it reveals a more subtle interaction between the various modalities, thus preparing the

ground for the even richer picture that will arise from the proof-theoretic analysis.

Let AtProp be a countable set of atomic propositions, and let Ag be a nonempty set (of

agents). The set L(m-IK) of the formulas A of the multi-modal version m-IK of Fischer

Servi’s intuitionistic modal logic IK are inductively defined as follows:

A := p ∈ AtProp | ⊥ | A ∨ A | A ∧ A | A→ A | 〈a〉A | [a]A (a ∈ Ag)

The logic m-IK is the smallest set of formulas in the language L(m-IK) (where ¬A abbre-

viates as usual A → ⊥) containing the axioms in Table 2.1 (page 85) and closed under

modus ponens and necessitation rules.

To define the language of the intuitionistic counterpart of EAK, let AtProp be a countable

set of atomic propositions, and let Ag be a nonempty set. The set L(IEAK) of the formu-

las A of the intuitionistic logic of epistemic actions and knowledge (IEAK), and the set

Act(L) of the action structures α over L are defined simultaneously as follows:

A := p ∈ AtProp | ⊥ | A→ A | A ∨ A | A ∧ A | 〈a〉A | [a]A | 〈α〉A | [α]A,

where a ∈ Ag, and an action structure α over L(IEAK) is defined in just the same way

as action structures in Section 2.4.1. Then, the logic IEAK is defined in a Hilbert-style

presentation which includes the axioms and rules of m-IK plus the Fischer Servi axioms

FS1 and FS2 for each dynamic modal operator, plus the axioms and rules in Table 2.2

(page 86).

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 85

Axioms

A→ (B→ A)

(A→ (B→ C))→ ((A→ B)→ (A→ C))

A→ (B→ A ∧ B)

A ∧ B→ A

A ∧ B→ B

A→ A ∨ B

B→ A ∨ B

(A→ C)→ ((B→ C)→ (A ∨ B→ C))

⊥ → A

[a](A→ B)→ ([a]A→ [a]B)

〈a〉(A ∨ B)→ 〈a〉A ∨ 〈a〉B

¬〈a〉⊥

FS1 〈a〉(A→ B)→ ([a]A→ 〈a〉B)

FS2 (〈a〉A→ [a]B)→ [a](A→ B)

Inference Rules

MP if ⊢ A→ B and ⊢ A, then ⊢ B

Nec if ⊢ A, then ⊢ [a]A

Table 2.1: Axioms and inference rules of the logic m-IK

2.4.3 Proof theoretic formalisms for PAL and DEL

In the present subsection, we discuss the most relevant existing proof-theoretic accounts

[BvDHdL10, NM10, NM11, BCS07, DST13, Auc10, Auc11, AMS12] for the logic of

public announcements [Pla07] and for the logic of epistemic actions and knowledge

[BMS99].

Labelled tableaux for PAL. In [BvDHdL10], a labelled tableaux system is proposed

for public announcement logic. This system is sound and complete with respect to the

semantics of PAL. Moreover, the computational complexity of this tableaux system is

shown to be optimal for satisfiability checking in the language of PAL. The system ma-

nipulates triples, called labelled formulas, of the form 〈µ, n, φ〉 such that µ is a (possibly

empty) list of PAL-formulas, n is a natural number, and φ is a PAL-formula. Intuitively,

the tuple 〈µ, n〉 stands for an epistemic state of the model updated with a sequence of an-

nouncements encoded by µ. To give a closer impression of this tableaux system, consider

the following rule:

〈(α1, ..., αk), n,¬KaA〉
RK̂ n′ fresh

〈ǫ, n′,¬[α1]...[αk]A〉 : 〈a, n, n′〉

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 86

Interaction Axioms

〈α〉p↔ Pre(α) ∧ p

[α]p↔ Pre(α)→ p

〈α〉⊥ ↔ ⊥

〈α〉⊤ ↔ Pre(α)

[α]⊤ ↔ ⊤

[α]⊥ ↔ ¬Pre(α)

[α](A ∧ B)↔ [α]A ∧ [α]B

〈α〉(A ∧ B)↔ 〈α〉A ∧ 〈α〉B

〈α〉(A ∨ B)↔ 〈α〉A ∨ 〈α〉B

[α](A ∨ B)↔ Pre(α)→ (〈α〉A ∨ 〈α〉B)

〈α〉(A→ B)↔ Pre(α) ∧ (〈α〉A→ 〈α〉B)

[α](A→ B)↔ 〈α〉A→ 〈α〉B

〈α〉〈a〉A↔ Pre(α) ∧
∨
{〈a〉〈β〉A | αaβ}

[α]〈a〉A↔ Pre(α)→
∨
{〈a〉〈β〉A | αaβ}

[α][a]A↔ Pre(α)→
∧
{[a][β]A | αaβ}

〈α〉[a]A↔ Pre(α) ∧
∧
{[a][β]A | αaβ}

Inference Rules

Nec if ⊢ A, then ⊢ [α]A

Table 2.2: Axioms and inference rules of the logic IEAK

This rule can be read as follows: if a state n does not satisfy KaA after the sequence

of announcements α1, ..., αk, then at least one of its Ra-successor states n′ in the orig-

inal model, represented by the tuple 〈ǫ, n′〉 in the rule, must survive the updates and

not satisfy A. Hence, 〈ǫ, n′〉 must satisfy the formula 〈α1〉...〈αk〉¬A, which is classically

equivalent to ¬[α1]...[αk]A.

Clearly, rules such as this one incorporate the relational semantics of PAL. This is not

satisfactory from the point of view of proof-theoretic semantics, since it prevents these

rules from providing an independent contribution to the meaning of the logical con-

nectives. A second issue, of a more technical nature, is that the statement of this rule

is grounded on the classical interdefinability between the box-type and diamond-type

modalities. This implies that if we dispense with the classical propositional base, we

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 87

would need to reformulate this rule. Hence the calculus is non-modular in the sense

discussed in Section 2.2.3.

Labelled sequent calculi for PAL. In [NM10] and [NM11], cut-free labelled sequent

calculi for PAL are introduced with truthful and non-truthful announcements, respec-

tively. Also in this case, the statement of the rules of these calculi incorporates the

relational semantics. For instance, this is illustrated here below for the case of truthful

announcements.

w :µ,α A,w :µ [α]A,w :µ α,Γ ⊢ ∆
L[]:µ

w :µ [α]A,w :µ α,Γ ⊢ ∆

w :µ α,Γ ⊢ ∆,w :µ,α A
R[]:µ

Γ ⊢ ∆,w :µ [α]A

In the rules above, symbols such as w :µ A can be rearranged and then understood as the

labelled formulas 〈µ,w, A〉 in the tableaux system presented before. The only difference

is that w is an individual variable which stands for a given state of a relational structure,

and not for a natural number; however, this difference is completely nonessential. Under

this interpretation, it is clear that e.g. the rule L[]:µ encodes the relational satisfaction

clause of [α]A, when α is a truthful announcement. The following rules are also part of

the calculi.

v : A,w : KaA,wRav,Γ ⊢ ∆
LKa

w : KaA,wRav,Γ ⊢ ∆

wRav,Γ ⊢ ∆, v : A
RKa

Γ ⊢ ∆,w : KaA

Besides the individual variables w and v, the rules above feature the binary relation sym-

bol Ra encoding the epistemic uncertainty of the agent a. Since the relational semantics

is imported in the definitions of the rules, the same issues pointed out in the case of the

tableaux system appear also here. On the other hand, importing the relational seman-

tics allows for some remarkable extra power. Indeed, the interaction axiom (2.4) can

be derived from the four rules above, which deal with static and dynamic modalities in

complete independence of one another.

Merging different logics. In [BCS07] and [DST13], sequent calculi have been defined

for dynamic logics arising in an algebraic way, motivated by program semantics, with

a methodology introduced by [AV93]. Essentially, this approach is based on the idea

of merging a linear-type logic of actions (more precisely, [Moo95]) with a classical or

intuitionistic logic of propositions. Following the treatment of [AV93], this logic arises

semantically as the logic of certain quantale-modules, namely of maps ⋆ : M × Q → M,

preserving complete joins in each coordinate, where Q is a quantale and M is a complete

join-semilattice. Each q ∈ Q induces a completely join-preserving operation (−⋆q) : M →

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 88

M, which, by general order-theoretic facts, has a unique right adjoint [q] : M → M. That

is, for every m,m′ ∈ M,

m ⋆ q ≤ m′ iff m ≤ [q]m′. (2.5)

Intuitively, the elements of Q are actions (or rather, inverses of actions), and M is an

algebra interpreting propositions, which in the best known cases arises as the complex

algebra of some relational structure, and therefore will be e.g. a complete and atomic

Boolean algebra with operators. Thus the framework of [BCS07] and [DST13] is vastly

more general than dynamic epistemic logic as it is usually understood. A remarkable

feature of this setting is that the dynamic operations which are intended as the inter-

pretation of the primitive dynamic connectives arise in this setting as adjoints of “more

primitive” operations; thus, and much more importantly, every dynamic modality comes

with its adjoint. Moreover, every epistemic modality (parametrized as usual with an

agent) comes in two copies: one as an operation on Q and one as an operation on M, and

these two copies are stipulated to interact in a suitable way. More formally, the semantic

structures are defined as tuples (M,Q, { fA}A∈Ag), where M and Q are as above, and for

every agent A, fA is a pair of completely join preserving maps (f M
A

: M → M, f
Q

A
: Q→ Q)

such that the following three conditions hold:

f
Q

A
(q · q′) ≤ f

Q

A
(q) · f

Q

A
(q′) (2.6)

f M
A (m ⋆ q) ≤ f M

A (m) ⋆ f
Q

A
(q) (2.7)

1 ≤ f
Q

A
(1). (2.8)

Intuitively, for every agent A, the operation f M
A

is the diamond-type modal operator

encoding the epistemic uncertainty of A, and f
Q

A
is the diamond-type modal operator

encoding the epistemic uncertainty of A about the action that is actually taking place.

Given this understanding, condition (2.7) hardcodes the following well-known DEL-

axiom in the semantic structures above:

∧
{[A][q′]m | qAq′} ⊢ [q][A]m. (2.9)

where the notation qAq′ means that the action q′ is indistinguishable from q for the

agent A. In (2.7), the element f
Q

A
(q) encodes the join of all such actions. Because ⋆ is

bilinear, we get:

f M
A (m) ⋆ f

Q

A
(q) = f M

A (m) ⋆
∨

Q

{q′ | qAq′} =
∨

M

{ f M
A (m) ⋆ q′ | qAq′}.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 89

Hence, (2.7) can be equivalently rewritten in the form of a rule as follows:

∨
{ f M

A
(m) ⋆ q′ | qAq′} ⊢ m′

f M
A

(m ⋆ q) ⊢ m′

Applying adjunction to the premise and to the conclusion gets us to:

m ⊢
∧
{[A][q′]m′ | qAq′}

m ⊢ [q][A]m′

Finally, rewriting the rule above back as an inequality gets us to (2.9). The first pioneer-

ing proposal is the sequent calculus developed in [BCS07]. This calculus manipulates

two kinds of sequents: Q-sequents, of the form Γ ⊢Q q, where q is an action and Γ is

a sequence of actions and agents, and M-sequents, of the form Γ ⊢M m, where m is a

proposition and Γ is a sequence of propositions, actions and agents. These different en-

tailment relations need to be brought together by means of rules of hybrid type, such as

the left one below.

m′ ⊢M m ΓQ ⊢Q q
DyL

[q]m′,ΓQ ⊢M m

Γ, q ⊢M m
DyR

Γ ⊢M [q]m

As to the soundness of the rule DyL, let us identify the logical symbols with their inter-

pretation, assume that the inequalities m ≤ m′ and ΓQ ≤ q are satisfied on given M and

Q respectively,8 and prove that [q]m′,ΓQ ≤ m in M. Indeed,

[q]m′ ⋆ ΓQ ≤ [q]m′ ⋆ q ≤ m′ ≤ m.

The first inequality follows from ΓQ ≤ q and ⋆ being order-preserving in its second

coordinate; the second inequality is obtained by applying the right-to-left direction of

(2.5) to the inequality [q]m′ ≤ [q]m′; the last inequality holds by assumption. The

soundness of DyR follows likewise from the left-to-right direction of (2.5).

This calculus is shown to be both sound and complete w.r.t. this algebraic semantics. The

setting illustrated above is powerful enough that sufficiently many epistemic actions can

be encoded in it to support the formalisation of various variants of the Muddy Children

Puzzle in which children might be cheating. However, cut elimination for this system

has not been proven.

In [DST13], a similar framework is presented which exploits the same basic ideas, and

results in a system with more explicit proof-theoretic performances and which is shown

8where ΓQ now stands for a suitable product in Q of the interpretations of its individual components.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 90

to be cut-free. However, like its previous version, this system focuses on a logic se-

mantically arising from an algebraic setting which is vastly more general than the usual

relational setting. The issue about how it precisely restricts to the usual setting, and

hence how the usual DEL-type logics can be captured within this more general calculus,

is left largely implicit. The semantic setting of [BCS07], where propositions are inter-

preted as elements of a right module M on a quantale Q, specialises in [DST13] to a

setting in which M = (A, {�A, �A : A ∈ Ag}), where A is a Heyting algebra and, for every

agent A, the modalities �A and �A are adjoint to each other. Notice that ^A, which in the

classical case is defined as ¬�A¬, cannot be expressed any more in this way, and needs

to be added as a primitive connective, which has not been done in [DST13].

As mentioned before, the design of this calculus gives a more explicit account than its

previous version to certain technical aspects which come from the semantic setting; for

instance, the semantic setting motivating both papers features two domains of interpre-

tation (one for the actions and one for the propositions), which are intended to give rise

to two consequence relations which are to be treated on a par and then made to inter-

act. In [BCS07], the calculus manipulates sequents which are made of heterogeneous

components. For instance, in action-sequents Γ ⊢Q q, the precedent Γ is a sequence in

which both actions and agents may occur. Since Γ is to be semantically interpreted as

an element of Q, they need to resort to a rather clumsy technical solution which consists

in interpreting, e.g. the sequence (q, A, q′) as the element f
Q

A
(q) · q′. In [DST13], the cal-

culus is given in a deep-inference format; namely, rules of this calculus make it possible

to manipulate formulas inside a given context. This more explicit bookkeeping makes it

possible to prove the cut elimination, following the original Gentzen strategy. However,

the presence of two different consequence relations and the need to account for their

interaction calls for the development of an extensive theory-of-contexts, in which no less

than five different types of contexts need to be introduced. This also causes a prolifera-

tion of rules, since the possibility of performing some inferences depends on the type of

context under which they are to be performed.

Calculi for updates. In [Auc10], a formal framework accounting for dynamic revisions

or updates is introduced, in which the revisions/updates are formalized using the turn-

stile symbol. This framework has aspects similar to Hoare logic: indeed, it manipu-

lates sequent-type structures of the form φ, φ′ |= φ′′, such that φ and φ′′ are formulas

of proposition-type, and φ′ is a formula of event-type. This formalism has also com-

mon aspects to [BCS07] and [DST13]: indeed, both proposition-type and event-type

(i.e. action-type) formulas allow epistemic modalities for each agent, respectively ac-

counting for the agent’s epistemic uncertainty about the world and about the actions

actually taking place.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 91

In [AMS12] and [Auc11], three formal calculi are introduced, manipulating the syn-

tactic structures above. Given that the turnstile encodes the update rather than a con-

sequence relation or entailment, the syntactic structures above are not sequents in a

proper sense. Rather than sequent calculi, these calculi should be rather regarded as be-

ing of natural deduction-type. As such, the design of these calculi presents many issues

from a proof-theoretic semantic viewpoint; to mention only one, multiple connectives

are introduced at the same time, for instance in the following rule:

φ, φ′ ⊢ φ′′
R5.

〈B j〉(φ ∧ Pre(p′)), 〈B j〉(φ′ ∧ p′) ⊢ 〈B j〉φ′′

These calculi are shown to be sound and complete w.r.t. three semantic consequence

relations, respectively.

2.4.4 First attempt at a display calculus for EAK

In [GKP13], a display-style sequent calculus D.EAK has been introduced, which is sound

with respect to the final coalgebra semantics (cf. Section 2.5), and complete w.r.t. EAK,

of which it is a conservative extension. Moreover, Gentzen-style cut elimination holds

for D.EAK. Finally, this system is defined independently of the relational semantics of

EAK, and therefore is suitable for a fine-grained proof-theoretic semantic analysis.

Here below, we are not going to report on it in detail, but we limit ourselves to mention

the structural rules which capture the specific features of EAK:

Structural Rules with Side Conditions

Pre(α) ; {α}A ⊢ X
reduceL

{α}A ⊢ X

X ⊢ Pre(α) > {α}A
reduceR

X ⊢ {α}A

Pre(α) ; {α}{a}X ⊢ Y
swap-inL

Pre(α) ; {a}{β}αaβ X ⊢ Y

Y ⊢ Pre(α) > {α}{a}X
swap-inR

Y ⊢ Pre(α) > {a}{β}αaβ X

(
Pre(α) ; {a}{β} X ⊢ Y | αaβ

)
swap-outL

Pre(α) ; {α}{a}X ⊢ ;
(
Y | αaβ

)

(
Y ⊢ Pre(α) > {a}{β} X | αaβ

)
swap-outR

;
(
Y | αaβ

)
⊢ Pre(α) > {α}{a}X

The swap-out rules do not have a fixed arity; they have as many premises as there are

actions β such that αaβ. In the conclusion, the symbol ;
(
Y | αaβ

)
refers to a string

(· · · (Y ; Y) ; · · · ; Y) with n occurrences of Y, where n = |{β | αaβ}|.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 92

Operational Rules with Side Conditions

Pre(α) ; {α}A ⊢ X
reverseL

Pre(α) ; [α]A ⊢ X

X ⊢ Pre(α) > {α}A
reverseR

X ⊢ Pre(α) > 〈α〉A

The main issues of D.EAK from the point of view of Wansing’s criteria are linked with the

presence of the formula Pre(α): namely, the swap-in and swap-out rules violate the prin-

ciple that all parametric variables should occur unrestricted. Indeed, the occurrences

of the formula Pre(α) in these rules is easily seen to be parametric, since Pre(α) occurs

both in the premises and in the conclusion. Since Pre(α) is (the metalinguistic abbrevi-

ation of) a formula, it is a structure of a very restricted shape. As to the swap-out rules,

it is not difficult to see, e.g. semantically (cf. [KP13, Definition 4.2.]), that the occur-

rences of Pre(α) can be removed both in the premises and in the conclusion without

affecting either the soundness of the rule or the proof power of the system; this entirely

remedies the problem. Likewise, as to swap-in, it is not difficult to see that the occur-

rences of Pre(α) can be removed in the premises, but not in the conclusion. However,

even modified in this way, the swap-in rules would not be satisfactory. Indeed, the new

form of swap-in would introduce Pre(α) in the conclusion. Since Pre(α) is a metalin-

guistic abbreviation of a formula which as such has no other specific restrictions, the

occurrence of Pre(α) in the conclusion of swap-in must also be regarded as parametric.

However, we still would not be able to substitute arbitrary structures for it, which is the

source of the problem. This problem would be solved if Pre(α) could be expressed, as a

structure, purely in terms of the parameter α and structural constants (but no structural

variables). If this was the case, swap-in would encode the relations between all these

logical constants, and all the occurring structural variables would be unrestricted.

Secondly, the rules reduce violate condition C1: indeed, in each of them, a formula

in the premisses, namely Pre(α), is not a subformula of any formula occurring in the

conclusion. Together with the cut elimination, condition C1 guarantees the subformula

property (cf. [Bel82, Theorem 4.3]), but is not itself essential for the cut elimination,

and indeed, cut elimination has been proven for D.EAK (albeit not à la Belnap). The

specific way in which reduce violates C1 is also not a very serious one. Indeed, if the

formula Pre(α) could be expressed in a structural way, this violation would disappear.

This solution cannot be implemented in D.EAK because the language of D.EAK does not

have enough expressivity to talk about Pre(α) in any other way than as an arbitrary

formula, which needs to be introduced via weakening or via identity (if atomic). Being

able to account for Pre(α) in a satisfactory way from a proof-theoretic semantic perspec-

tive would require being able to state rules which, for any α, would introduce Pre(α)

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 93

specifically, thus capturing its proof-theoretic meaning. Thus, by having structural and

operational rules for Pre(α), we would solve many problems in one stroke: on the one

hand, we would gain the practical advantage of achieving the satisfaction of C1, thus

guaranteeing the subformula property; on the other hand, and more importantly, from

a methodological perspective, we would be able to have a setting in which the occur-

rences of Pre(α) are not to be regarded as side formulas, but rather, they would occur as

structures, on a par with all the other structures they would be interacting with.

Finally, the only operational rules violating Wansing’s separation principle (cf. Section

2.2.3) are the reverse rules:

Pre(α); {α}A ⊢ X
revL

Pre(α); [α]A ⊢ X

X ⊢ Pre(α) > {α}A
revR

X ⊢ Pre(α) > 〈α〉A

Here again, the problem comes from the fact that the language is not expressive enough

to capture the principles encoded in the rules above at a purely structural level. In this

operational formulation, these rules are to participate, in our view improperly, in the

proof-theoretic meaning of the connectives [α] and 〈α〉. Thus, it would be desirable that

the rules above could be either derived, so that they disappear altogether, or alterna-

tively, be reformulated as structural rules.

2.5 Final coalgebra semantics of dynamic logics

In order to provide a justification for the soundness of the display postulates involving

the dynamic connectives, in [GKP13] the final coalgebra was used as a semantic envi-

ronment for the calculus D.EAK. Specifically, the final coalgebra was there used to show

that D.EAK is sound, and conservatively extends EAK. In the present section, we briefly

review the needed preliminaries on the final coalgebra, and then the interpretation of

EAK-formulas in the final coalgebra, which we will use in Section 2.6.2 to show that

D’.EAK is sound, and conservatively extends EAK.9

2.5.1 The final coalgebra

The general notion of a coalgebra, as an arrow

W → FW

9This semantics specifically applies to the classical base. Analogous ideas can be developed for weaker proposi-

tional bases, but in the present chapter we do not pursue them further.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 94

is given w.r.t. a functor F : C → C on an arbitrary category C, and much of the theory of

coalgebras is devoted to establishing results on coalgebras parametric in that functor F.

For example, important notions such as bisimilarity and Hennessy-Milner logics can be

given for arbitrary functors on the category of sets (and many other concrete categories).

But even if one is interested, as in our case here, only in one particular functor, the notion

of a final coalgebra is of value, as we are going to see.

Aczel [Acz88] observed that coalgebras

W → PW

for the powerset functor P (which maps a set W to the set PW of subsets of W) are

exactly Kripke frames. Indeed, a map W → PW equivalently encodes a binary relation

R on W. More importantly, the category theoretic notion of a coalgebra morphism coin-

cides with the notion of bounded (or p-) morphism in modal logic, and the coalgebraic

notion of bisimulation coincides with the notion in modal logic. This observation gener-

alises easily to Kripke models over a set AtProp of atomic propositions and with multiple

relations indexed by a set of agents Ag, which are exactly coalgebras

W → (PW)Ag × ∈AtProp.

As shown by [AM89], one can construct a ‘universal model’ Z by taking the disjoint

union of all coalgebras M and quotienting by bisimilarity. This coalgebra Z is final, that

is, for any coalgebra M there is exactly one morphism M → Z. The property of finality

characterises Z up to isomorphism.

Z may be a proper class. In [AM89], any functor F on sets is extended to classes and

it is shown that the extended functor always has a final coalgebra, constructed as the

bisimilarity collapse of the disjoint union of all coalgebras. In [Bar93], the same con-

struction is recast in terms of an inaccessible cardinal, staying inside the set-theoretic

universe without using classes. In [AMV05] these results are generalized from sets to

other similar categories such as posets, and in [AMV04], it is shown that any functor F

on classes is the extension of a functor F on sets.

Z classifies bisimilarity. The importance of the theorems above is not merely the exis-

tence of the final coalgebra. Since all of these theorems involve two functors, one on

‘large’ sets extending another one on ‘small’ sets, and since one is interested in the notion

of bisimilarity associated with the small functor, the existence of a final coalgebra for the

large functor is not in itself the result one is interested in. But it is a fact, expressed for

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 95

example as the small subcoalgebra lemma in [AM89], that in all of the constructions

above, the final coalgebra for the large functor classifies the notion of bisimilarity as-

sociated with the small functor. In other words, passing from small to large does not

extend—up to bisimilarity—the range of available models.

Frame conditions on Z. Often, one is interested in Kripke models satisfying additional

frame conditions such as reflexivity, transitivity, equivalence, etc. A sufficient condition

for the existence of a final coalgebra under such additional conditions is that these

conditions can be formulated by modal axioms or rules, see [Kur02, Kur01] for details.

2.5.2 Final coalgebra semantics of modal logic

Summing up the discussion in the previous subsection, there is a one-to-one correspon-

dence between subsets of the final coalgebra and unary predicates invariant under bisim-

ilarity. Therefore, whenever we know that A is a formula invariant under bisimilarity,

we may declare the subset [[A]]Z = {z ∈ Z | Z, z A} of the final coalgebra as the (final)

semantics of A and recover [[A]]M ⊆ W as

[[A]]M = f −1([[A]]Z), (2.10)

where f is the unique homomorphism

f : M→ Z

provided by the property of Z being final. Let us note that this approach is quite general:

it only needs a notion of bisimilarity tied to the morphisms of some category (see [KR05]

for a general definition) and a notion of modal formula whose semantics is invariant

under this notion of bisimilarity.

Final coalgebra semantics of dynamic modalities. Dynamic logics add to Kripke seman-

tics a facility for updating the Kripke model interpreting a formula. Typically, despite

seemingly increasing the expressiveness of modal logic, such dynamic logics also enjoy

bisimulation invariance and can therefore be interpreted in the final coalgebra.

Whereas the Kripke semantics of an action α is a relation between pointed models, the

final coalgebra semantics of an action α is simply a relation on the carrier Z of the final

coalgebra Z. The precise relationship between Kripke semantics and final coalgebra

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 96

semantics of actions is as follows. Let us write

zαZ z′

to express that the two points z, z′ of the final coalgebra are related by α, formalising that

in z the action α can happen and has z′ as a successor. Then zαZ z′ iff there are pointed

models (M,w) and (M′,w′) related by the action α such that the unique morphismsM→

Z and M′ → Z map w to z and w′ to z′.

Specific desiderata for epistemic actions. The specific feature of epistemic actions ver-

sus arbitrary actions is that epistemic actions do not change the factual states of affairs.

Semantically, this motivates the additional requirement that if αZ ⊆ Z ×Z is the interpre-

tation of an epistemic action α and z, z′ ∈ Z are such that zαZz′, then

{p ∈ AtProp | z p} = {p ∈ AtProp | z′ p}.

Adjoints of dynamic modalities. To semantically justify the full display property of dis-

play calculi for dynamic logics, adjoints need to be available not only for the standard

modalities, but also for the dynamic ones. Now, it is well known that modalities induced

by a relation come in adjoint pairs. Let us recall

Proposition 2.5. Every relation R ⊆ X × Y gives rise to the modal operators

〈R〉, [R] : PY → PX and 〈R◦〉, [R◦] : PX → PY

defined as follows: for every V ⊆ X and every U ⊆ Y,

〈R〉U = {x ∈ X | ∃y . xRy & y ∈ U} [R]U = {x ∈ X | ∀y . xRy ⇒ y ∈ U}

〈R◦〉V = {y ∈ Y | ∃x . xRy & x ∈ V} [R◦]V = {y ∈ Y | ∀x . xRy ⇒ x ∈ V}.

These operators come in adjoint pairs:

〈R〉U ⊆ V iff U ⊆ [R◦]V (2.11)

〈R◦〉V ⊆ U iff V ⊆ [R]U. (2.12)

In order to apply this proposition to dynamic modalities, we need to consider the relation

corresponding to an action α. Kripke semantics suggests to consider α as a relation on

all pointed Kripke models (M,w), but this would introduce a two-tiered semantics: with

the semantics of an ordinary modality given by a relation on the carrier of a model M

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 97

Structural if in precedent if in succedent

connective position position

I ⊤ ⊥

A ; B A ∧ B A ∨ B

A > B A

∧

B A→ B

{a}A 〈a〉A [a]A

{a

}

A 〈a

〉

A [a

]

A

{α}A 〈α〉A [α]A

{α
}

A 〈α

〉

A [α

]

A

Table 2.3: Translation of structural connectives into logical connectives

and the semantics of a dynamic modality given by a relation on the set of all pointed

models (M,w). In the final coalgebra semantics all relations are relations on the final

coalgebra Z and we can directly apply the above proposition to both static and dynamic

modalities (with the X and Y of the proposition being the carrier of the final coalgebra).

Soundness of the display postulates. Let us expand on how to interpret display-type

structures and sequents in the final coalgebra. Structures will be translated into for-

mulas, and formulas will be interpreted as subsets of the final coalgebra. In order to

translate structures as formulas, structural connectives need to be translated as logical

connectives; to this effect, structural connectives are associated with pairs of logical

connectives and any given occurrence of a structural connective is translated as one or

the other, according to which side of the sequent the given occurrence can be displayed

on as main connective, as reported in Table 2.3. These logical connectives in turn are

interpreted in the final coalgebra in the standard way. For example,

[[〈α〉A]]Z = 〈αZ〉[[A]]Z [[[α]A]]Z = [αZ][[A]]Z

[[〈α

〉

A]]Z = 〈αZ
◦〉[[A]]Z [[[α

]

A]]Z = [αZ
◦][[A]]Z

where the notation on the right-hand sides refers to the one defined in Proposition 2.5.

Sequents A ⊢ B will be interpreted as inclusions [[A]]Z ⊆ [[B]]Z; rules (Ai ⊢ Bi | i ∈ I)/C ⊢ D

will be interpreted as implications of the form “if [[Ai]]Z ⊆ [[Bi]]Z for every i ∈ I, then

[[C]]Z ⊆ [[D]]Z”. As a direct consequence of the adjunctions (2.11) and (2.12), the following

display postulates are sound under the interpretation above.

{α}X ⊢ Y {α}

{α

}

X ⊢ {α

}

Y

X ⊢ {α}Y

{α

}

{α}

{α

}

X ⊢ Y

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 98

u
p, r

u
p, r

v
q

Figure 2.1: The modelsMα andM.

Remark. On the other hand, standard Kripke models are not in general closed under

(the interpretations of) α and α◦. As a direct consequence of this fact, we can show that

e.g. the display postulate
(
{α}

{α

}
)

is not sound if we interpret it in a Kripke modelM for any

interpretation of formulas of the form [α

]

B in M.

Indeed, consider the model M represented on the right-hand side of the Figure 2.1 and

let the action α be so that updating (M, u) gives the model Mα depicted on the left-hand

side of the figure. In other words, α is the public announcement (cf. [BMS99]) of the

atomic proposition r. Further, let A := [a]p and B := q, where a is the agent whose

equivalence relation is depicted by the arrows of the figure. Let i : Mα ֒→ M be the

submodel injection map. Clearly, [[[a]p]]M = ∅, which implies that the inclusion [[A]]M ⊆

[[[α

]

B]]M trivially holds for any interpretation of [α

]

B in M; however, i[[[[a]p]]Mα] = {u},

hence [[〈α〉[a]p]]M = V(r)∩ {u} = {u} * {v} = [[q]]M, which falsifies the inclusion [[〈α〉A]]M ⊆

[[B]]M. This proves our claim.

Related work. Final coalgebra semantics for dynamic logics was employed by Ger-

brandy and Groeneveld [GG97], Gerbrandy [Ger99], Baltag [Bal03], and Cîrstea and

Sadrzadeh [CS07]. Adjoints of dynamic modalities with Kripke semantics were consid-

ered in Baltag, Coecke, Sadrzadeh [BCS07]. To guarantee the soundness of the rules in-

volving the adjoints, they have to close the Kripke models under actions, which amounts,

from our point of view, to generating a subcoalgebra of the final coalgebra closed un-

der actions. The arguments reported here in favour of the final coalgebra semantics for

treating dynamic modalities with their adjoints are taken from [GKP13].

2.6 Proof-Theoretic Semantics for EAK

In the present section, we introduce the calculus D’.EAK for the logic EAK, which is

a revised and improved version of the calculus D.EAK discussed in Section 2.4.4. We

argue that D’.EAK satisfies the requirements discussed in Section 2.2.3. On the basis of

this, we propose D’.EAK as an adequate calculus from the viewpoint of proof-theoretic

semantics. We also verify that D’.EAK is a quasi proper display calculus (cf. Definition

2.3), and hence its cut elimination theorem follows from Theorem 2.4.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 99

2.6.1 The calculus D’.EAK

As is typical of display calculi, D’.EAK manipulates sequents of type X ⊢ Y, where X and

Y are structures, i.e. syntactic objects inductively built from formulas using structural

connectives, or proxies. Every proxy is typically associated with two logical (operational)

connectives, and is interpreted contextually as one or the other of the two, depending on

whether it occurs in precedent or in succedent position (cf. Sefinition 2.1). The design

of D’.EAK follows Došen’s principle (cf. Section 2.2.3); consequently, D’.EAK is modular

along many dimensions. For instance, the space of the versions of EAK on nonclassical

bases, down to e.g. the Lambek calculus, can be captured by suitably removing structural

rules. Moreover, also w.r.t. static modal logic, the space of properly displayable normal

modal logics (cf. [Kra96]) can be reconstructed by adding or removing structural rules

in a suitable way. Finally, different types of interaction between the dynamic and the

epistemic modalities can be captured by changing the relative structural rules.

In order to highlight this modularity, we will present the system piecewise. First we give

rules for the propositional base, divided into structural rules and operational rules; then

we do the same for the static modal operators; finally, we introduce the rules for the

dynamic modalities.

In the table below, we give an overview of the logical connectives of the propositional

base and their proxies.

Structural symbols < > ; I

Operational symbols ∧ ←

∧

→ ∧ ∨ ⊤ ⊥

Table 2.4 (on page 100) contains the structural rules for the propositional base.

The top-to-bottom direction of each I-rule is a special case of the corresponding weak-

ening rule. However, we state them all the same for the sake of modularity, since they

might still be part of a calculus for a substructural logic without weakening. The weaken-

ing rules are not given in the usual shape; the present version has the advantage that the

new structure is introduced in isolation; nevertheless, the standard version is derivable

from the display postulates, as shown below:

X ⊢ Z
Y ⊢ Z < X

Y ; X ⊢ Z

Having both versions of weakening as primitive rules is useful for reducing the size

of derivations. In the following table, we include the display postulates linking the

structural connective ; with > and <:

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 100

Display Postulates

X ; Y ⊢ Z
(; , <)

X ⊢ Z < Y

Z ⊢ X; Y
(<, ;)

Z < Y ⊢ X

X ; Y ⊢ Z
(; , >)

Y ⊢ X > Z

Z ⊢ X ; Y
(>, ;)

X > Z ⊢ Y

In the current presentation, more connectives with their associated rules are accounted

for than in [GKP13]. The additional rules can be proved to be derivable from the re-

maining ones in the presence of the rules exchange EL and ER. Likewise, as is well

known, by dispensing with contraction, weakening and associativity, an even wider array

of connectives would ensue (for instance, dispensing with weakening and contraction

would separate the additive and the multiplicative versions of each connective, etc.).

We are not going to expand on these well known ideas any further, but only point out

that, in the context of the whole system that we are going to introduce below, this

would give a modular account of different versions of EAK with different substructural

Structural Rules

Id p ⊢ p
X ⊢ A A ⊢ Y

Cut
X ⊢ Y

X ⊢ Y
I1

L
I ⊢ Y < X

X ⊢ Y
I1
R

X < Y ⊢ I

X ⊢ Y
I2

L
I ⊢ X > Y

X ⊢ Y
I2
R

Y > X ⊢ I

I ⊢ X
IWL

Y ⊢ X
X ⊢ I

IWR
X ⊢ Y

X ⊢ Z
W1

L Y ⊢ Z < X
X ⊢ Z

W1
RX < Z ⊢ Y

X ⊢ Z
W2

L Y ⊢ X > Z
X ⊢ Z

W2
RZ > X ⊢ Y

X ; X ⊢ Y
CL

X ⊢ Y

Y ⊢ X ; X
CR

Y ⊢ X

Y ; X ⊢ Z
EL

X ; Y ⊢ Z

Z ⊢ X ; Y
ER

Z ⊢ Y ; X

X ; (Y ; Z) ⊢ W
AL

(X ; Y) ; Z ⊢ W

W ⊢ (Z ; Y) ; X
AR

W ⊢ Z ; (Y ; X)

Table 2.4: Structural rules for the propositional base of D’.EAK

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 101

logics as propositional base. The calculus introduced here is amenable to this line of

investigation. A natural question in this respect would be to relate these ensuing proof

formalisms with the semantic settings of [BCS07].

In line with this modular perspective on the propositional base for EAK, the classical

base is obtained by adding the so-called Grishin rules (following e.g. [Gor00]), encoding

validities which are classical but not intuitionistic:

Grishin rules

X > (Y; Z) ⊢ W
GriL

(X > Y); Z ⊢ W

W ⊢ X > (Y; Z)
GriR

W ⊢ (X > Y); Z

This modular treatment can be regarded as an application of Došen’s principle: cal-

culi for versions of EAK with stronger and stronger propositional bases are obtained by

progressively adding structural rules, but keeping the same operational rules. As a con-

sequence, cut elimination for the different versions will follow immediately from the cut

elimination metatheorem without having to verify condition C8 again.

The following table shows the operational rules for the propositional base:

Operational Rules

⊥L
⊥ ⊢ I

X ⊢ I
⊥R

X ⊢ ⊥

I ⊢ X
⊤L
⊤ ⊢ X

⊤R
I ⊢ ⊤

A ; B ⊢ Z
∧L

A ∧ B ⊢ Z

X ⊢ A Y ⊢ B
∧R

X ; Y ⊢ A ∧ B

A ⊢ X B ⊢ Y
∨L

A ∨ B ⊢ X ; Y

Z ⊢ A ; B
∨R

Z ⊢ A ∨ B

B ⊢ Y X ⊢ A←L
B← A ⊢ Y < X

Z ⊢ B < A ←R
Z ⊢ B← A

B < A ⊢ Z

∧ L
B ∧ A ⊢ Z

Y ⊢ B A ⊢ X

∧ R
Y < X ⊢ B ∧ A

X ⊢ A B ⊢ Y→L
A→ B ⊢ X > Y

Z ⊢ A > B →R
Z ⊢ A→ B

A > B ⊢ Z∧

L
A

∧

B ⊢ Z
A ⊢ X Y ⊢ B ∧

R
X > Y ⊢ A

∧

B

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 102

As is well known, in the presence of exchange, the connectives← and ∧ are identified

with → and

∧

, respectively. Notice that the rules ⊥R and ⊤L are derivable in the

presence of weakening and the I-rules. An example of such a derivation is given below:

X ⊢ I
I > X ⊢ ⊥

X ⊢ I ;⊥

X < ⊥ ⊢ I
X ⊢ ⊥

The rules for the normal epistemic modalities can be added to the system above or to

any of its variants discussed early on. To this end, the language is now expanded with

two contextual proxies and four operational connectives for every agent a, as follows:

Structural symbols {a} {a

}

Operational symbols 〈a〉 [a] 〈a
〉

[a

]

The proxies {a} and {a

} are translated into diamond-type modalities when occurring

in precedent position and into box-type modalities when occurring in succedent posi-

tion. The structural rules, the display postulates, and the operational rules for the static

modalities are respectively given in the following three tables:

Structural Rules

I ⊢ X
nec

ep

L
{a} I ⊢ X

X ⊢ I
nec

ep

RX ⊢ {a} I

I ⊢ XepnecL

{a

}

I ⊢ X

X ⊢ I epnecR

X ⊢ {a

}

I

{a}Y > {a}Z ⊢ X
FS

ep

L
{a}(Y > Z) ⊢ X

Y ⊢ {a}X > {a}Z
FS

ep

RY ⊢ {a}(X > Z)

{a}X ; {a}Y ⊢ Z
mon

ep

L
{a}(X ; Y) ⊢ Z

Z ⊢ {a}Y ; {a}X
mon

ep

RZ ⊢ {a}(Y ; X)

{a

}

Y > {a

}

X ⊢ Z
epFS L

{a

}

(Y > X) ⊢ Z

Y ⊢ {a

}

X > {a

}

Z
epFS R

Y ⊢ {a

}

(X > Z)

{a

}

X ; {a

}

Y ⊢ Z
epmonL

{a

}

(X ; Y) ⊢ Z

Z ⊢ {a

}

Y ; {a

}

X
epmonR

Z ⊢ {a

}

(Y ; X)

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 103

Notice that the mon-rules (the soundness of which is due to the monotonicity of 〈α〉 and

[α]) are derivable from the FS -rules in the presence of non restricted weakening and

contraction.

The FS -rules above encode the following Fischer Servi-type axioms:

〈a〉A→ [a]B ⊢ [a](A→ B) 〈a

〉

A→ [a

]

B ⊢ [a

]

(A→ B)

〈a〉(A

∧

B) ⊢ [a]A

∧

〈a〉B 〈a

〉

(A

∧

B) ⊢ [a

]

A

∧

〈a

〉

B.

These axioms encode the link between 〈a〉 and [a] (and 〈a

〉 and [a

]

), namely, that they

are interpreted semantically using the same relation in a Kripke frame. This link can be

alternatively expressed by conjugation axioms, given below both in the diamond- and in

the box-version:

〈a〉A ∧ B ⊢ 〈a〉(A ∧ 〈a

〉

B) 〈a

〉

A ∧ B ⊢ 〈a

〉

(A ∧ 〈a〉B), (2.13)

[a]([a

]

A ∨ B) ⊢ (A ∨ [a]B) [a
]

([a]A ∨ B) ⊢ (A ∨ [a

]

B), (2.14)

which in turn can be encoded in the following conjugation rules:

{a}(X ; {a

}

Y) ⊢ Z
con j

{a}X ; Y ⊢ Z

X ⊢ {a}(Y ; {a

}

Z)
con j

X ⊢ {a}Y ; Z

{a

}

(X ; {a}Y) ⊢ Z
con j

{a

}

X ; Y ⊢ Z

X ⊢ {a

}

(Y ; {a}Z)
con j

X ⊢ {a

}

Y ; Z

The con j-rules and the FS -rules can be shown to be interderivable thanks to the follow-

ing display postulates.

Display Postulates

{a}X ⊢ Y
({a}, {a

}

)
X ⊢ {a

}

Y

X ⊢ {a}Y
({a

}

, {a})

{a

}

X ⊢ Y

The display postulates above directly come from the fact in the final coalgebra semantic

for EAK the dynamic connectives [α] and 〈α〉 are parts of adjoint pairs. Specifically, we

have the following adjunction relations 〈α〉 ⊣ [α

]

and 〈α

〉

⊣ [α]: for all formulas A, B,

〈α〉A ⊢ B iff A ⊢ [α

]

B 〈α

〉

A ⊢ B iff A ⊢ [α]B (2.15)

The reader is referred to Section 2.5 for a detailed discussion.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 104

Operational Rules

{a}A ⊢ X
〈a〉L

〈a〉A ⊢ X

X ⊢ A
〈a〉R

{a}X ⊢ 〈a〉A

A ⊢ X
[a]L

[a]A ⊢ {a}X

X ⊢ {a}A
[a]R

X ⊢ [a]A

{a

}

A ⊢ X
〈a
〉

L

〈a

〉

A ⊢ X

X ⊢ A

〈a

〉

R

{a

}

X ⊢ 〈a

〉

A

A ⊢ X

[a

]

L

[a

]

A ⊢ {a
}

X

X ⊢ {a

}

A

[a

]

R

X ⊢ [a

]

A

The rules presented so far are essentially adaptations of display calculi of Goré’s [Gor00].

Let us turn to the dynamic part of the calculus D’.EAK: the language is now expanded

by adding, for each action α:

- two contextual proxies, together with their four corresponding operational unary con-

nectives;

- one constant symbol and its corresponding structural proxy:

Structural symbols {α} {α

}

Φα

Operational symbols 〈α〉 [α] 〈α

〉

[α

]

1α

As in the previous version D.EAK, the proxies {α} and {α

} are translated into diamond-

type modalities when occurring in precedent position, and into box-type modalities

when occurring in succedent position. An important difference between D.EAK and

D’.EAK is the introduction of the structural and operational constants Φα and 1α; in-

deed, the additional expressivity they provide is used to capture the proof-theoretic

behaviour of the metalinguistic abbreviation Pre(α) at the object-level. As was the case

of Pre(α) in D.EAK, the rules below will be such that the proxy Φα can occur only in

precedent position. Hence, the Φα can never be interpreted as anything else than 1α.

However, a natural way to extend D’.EAK would be to introduce an operational constant

0α, intuitively standing for the postconditions of α for each action α, and dualize the

relevant rules so as to capture the behaviour of postconditions. In the present chapter,

this expansion is not pursued any further.

The two tables below introduce the structural rules for the dynamic modalities which

are analogous to those for the static modalities given early on.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 105

Structural Rules

I ⊢ X
nec

dyn

L {α} I ⊢ X
X ⊢ I

nec
dyn

RX ⊢ {α} I

I ⊢ XdynnecL

{α

}

I ⊢ X

X ⊢ I dynnecR

X ⊢ {α

}

I

{α}Y > {α}Z ⊢ X
FS

dyn

L {α}(Y > Z) ⊢ X

Y ⊢ {α}X > {α}Z
FS

dyn

RY ⊢ {α}(X > Z)

{α}X ; {α}Y ⊢ Z
mon

dyn

L {α}(X ; Y) ⊢ Z

Z ⊢ {α}Y ; {α}X
mon

dyn

RZ ⊢ {α}(Y ; X)

{α

}

Y > {α
}

X ⊢ Z
dynFS L

{α

}

(Y > X) ⊢ Z

Y ⊢ {α

}

X > {α

}

Z
dynFS R

Y ⊢ {α

}

(X > Z)

{α

}

X ; {α

}

Y ⊢ Z
dynmonL

{α

}

(X ; Y) ⊢ Z

Z ⊢ {α

}

Y ; {α

}

X
dynmonR

Z ⊢ {α
}

(Y ; X)

Analogous considerations as those made for the epistemic FS - and mon-rules apply to

the dynamic FS - and mon-rules above, also in relation to analogous conjugation rules.

Display Postulates

{α}X ⊢ Y
({α}, {α

}

)
X ⊢ {α

}

Y

Y ⊢ {α}X
({α

}

, {α})

{α

}

Y ⊢ X

Next, we introduce the structural rules which are to capture the specific behaviour of

epistemic actions

Atom

atom
Γp ⊢ ∆p

where Γ and ∆ are arbitrary finite sequences of the form (α1) . . . (αn), such that each (α j)

is of the form {α j} or of the form

{

αj

}

, for 1 ≤ j ≤ n. Intuitively, the atom rules capture

the requirement that epistemic actions do not change the factual state of affairs (in the

Hilbert-style presentation of EAK, this is encoded in the axiom (2.1) in Section 2.4.1).

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 106

Structural Rules for Epistemic Actions

X ⊢ Y
balance

{α}X ⊢ {α}Y

{α} {α

}

X ⊢ Y
compα

L
Φα; X ⊢ Y

X ⊢ {α} {α

}

Y
compα

R
X ⊢ Φα > Y

Φα; {α}X ⊢ Y
reduce’L

{α}X ⊢ Y

Y ⊢ Φα > {α}X
reduce’R

Y ⊢ {α}X

{α}{a}X ⊢ Y
swap-in’L

Φα; {a}{β}αaβ X ⊢ Y

Y ⊢ {α}{a}X
swap-in’R

Y ⊢ Φα > {a}{β}αaβ X

(
{a}{β} X ⊢ Y | αaβ

)
swap-out’L

{α}{a}X ⊢ ;
(
Y | αaβ

)

(
Y ⊢ {a}{β} X | αaβ

)
swap-out’R

;
(
Y | αaβ

)
⊢ {α}{a}X

The swap-in’ rules are unary and should be read as follows: if the premise holds, then

the conclusion holds relative to any action β such that αaβ. The swap-out’ rules do

not have a fixed arity; they have as many premises10 as there are actions β such that

αaβ. In the conclusion, the symbol ;
(
Y | αaβ

)
refers to a string (· · · (Y ; Y) ; · · · ; Y) with

n occurrences of Y, where n = |{β | αaβ}|. The swap-in and swap-out rules encode the

interaction between dynamic and epistemic modalities as it is captured by the interaction

axioms in the Hilbert style presentation of EAK (cf. (2.4) in Section 2.4.1 and similarly

in Section 2.4.2). The reduce rules encode well-known EAK validities such as 〈α〉A →

(Pre(α) ∧ 〈α〉A).

Finally, the operational rules for 〈α〉, [α], and 1α are given in the table below:

Operational Rules

{α}A ⊢ X
〈α〉L

〈α〉A ⊢ X

X ⊢ A
〈α〉R

{α}X ⊢ 〈α〉A

A ⊢ X
[α]L

[α]A ⊢ {α}X

X ⊢ {α}A
[α]R

X ⊢ [α]A

Φα ⊢ X
1αL

1α ⊢ X
1αR

Φα ⊢ 1α

10The swap-out rule could indeed be infinitary if action structures were allowed to be infinite, which in the present

setting, as in [BMS99], is not the case.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 107

2.6.2 Properties of D’.EAK

Soundness. The calculus D’.EAK can be readily shown to be sound with respect to the

final coalgebra semantics. The general procedure has been outlined in Section 2.5.

The soundness of most of the rules of D’.EAK can be shown entirely analogously to the

soundness of the corresponding rules in D.EAK, which is outlined in [GKP13].

As for rules not involving {α

} , we will rely on the following observation, which is based

on the invariance of EAK-formulas under bisimulation (cf. Section 2.4.1):

Lemma 2.6. The following are equivalent for all EAK-formulas A and B:

(1) [[A]]Z ⊆ [[B]]Z;

(2) [[A]]M ⊆ [[B]]M for every model M.

Proof. The direction from (2) to (1) is clear; conversely, fix a model M, and let f : M → Z be the

unique arrow; then (1) immediately implies that [[A]]M = f −1([[A]]Z) ⊆ f −1([[B]]Z) = [[B]]M. �

In the light of the lemma above, and using the translations provided in Table 2.3, the

soundness of unary rules A ⊢ B/C ⊢ D not involving {α

} , such as balance, 〈α〉R and [α]L,

can be straightforwardly checked as implications of the form “if [[A]]M ⊆ [[B]]M on every

model M, then [[C]]M ⊆ [[D]]M on every model M”. As an example, let us check the

soundness of balance: Let A, B be EAK-formulas such that [[A]]M ⊆ [[B]]M on every model

M. Let us fix a model M, and show that [[〈α〉A]]M ⊆ [[[α]B]]M. As discussed in [KP13,

Section 4.2], the following identities hold in any standard model:

[[〈α〉A]]M = [[Pre(α)]]M ∩ ι
−1
k [i[[[A]]Mα]], (2.16)

[[[α]A]]M = [[Pre(α)]]M ⇒ ι−1
k [i[[[A]]Mα]], (2.17)

where the map i : Mα →
∐

α M is the submodel embedding, and ιk : M →
∐

α M is the

embedding of M into its k-colored copy. Letting g(−) := ι−1
k

[i[−]], we need to show that

[[Pre(α)]]M ∩ g([[A]]Mα) ⊆ [[Pre(α)]]M ⇒ g([[B]]Mα).

This is a direct consequence of the Heyting-valid implication “if b ≤ c then a∧b ≤ a→ c”,

the monotonicity of g, and the assumption that [[A]]M ⊆ [[B]]M holds on every model,

hence on Mα.

Actually, for all rules (Ai ⊢ Bi | i ∈ I)/C ⊢ D not involving {α

} except balance, 〈α〉R and

[α]L, stronger soundness statements can be proven of the form “for every model M, if

[[Ai]]M ⊆ [[Bi]]M for every i ∈ I, then [[C]]M ⊆ [[D]]M” (this amounts to the soundness

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 108

w.r.t. the standard semantics). This is the case for all display postulates not involving
{α

} , the soundness of which boils down to the well known adjunction conditions holding

in every model M. As to the remaining rules not involving {α

} , thanks to the following

general principle of indirect (in)equality, the stronger soundness condition above boils

down to the verification of inclusions which interpret validities of IEAK [KP13], and

hence, a fortiori, of EAK. Same arguments hold for the Grishin rules, except that their

soundness boils down to classical but not intuitionistic validities.

Lemma 2.7. (Principle of indirect inequality) Tfae for any preorder P and all a, b ∈ P:

(1) a ≤ b;

(2) x ≤ a implies x ≤ b for every x ∈ P;

(3) b ≤ y implies a ≤ y for every y ∈ P.

As an example, let us verify s-outL: fix a model M, fix EAK-formulas A and B, and assume

that for every action β, if αaβ then [[〈a〉〈β〉A]]M ⊆ [[B]]M, i.e., that
⋃
{[[〈a〉〈β〉A]]M | αaβ} ⊆

[[B]]M; we need to show that [[〈α〉〈a〉A]]M ⊆ [[B]]M. By the principle of indirect inequality,

it is enough to show that [[〈α〉〈a〉A]]M ⊆
⋃
{[[〈a〉〈β〉A]]M | αaβ}. Indeed, since axiom (2.4)

is valid on any model, we have:

[[〈α〉〈a〉A]]M ⊆ [[Pre(α)]]M ∩
⋃
{[[〈a〉〈β〉A]]M | αaβ} ⊆

⋃
{[[〈a〉〈β〉A]]M | αaβ}.

The soundness of the operational rules of 1α is immediate; the soundness of atom can

be proven directly on the final coalgebra by induction on the length of Γ and ∆ using

the fact, mentioned on page 96, that epistemic actions do not change the valuations of

atomic formulae. For instance, as to the base case of this induction, let us argue for

the soundness of {α

}

p ⊢ p and p ⊢ {α

}

p: indeed, let αZ ⊆ Z × Z be the interpretation

of the epistemic action α on the final coalgebra, then the left-hand side of the atom-

sequent above is interpreted as the set αZ[[[p]]Z]. Because of the assumption on αZ

mentioned above it immediately follows that αZ[[[p]]Z] ⊆ [[p]]Z, and αZ[[[p]]c
Z] ⊆ [[p]]c

Z.

The former inclusion gives the soundness of {α

}

p ⊢ p, while the latter is equivalent to

[[p]]Z ⊆ (αZ[[[p]]c
Z])c, which gives the soundness of p ⊢ {α

}

p.

The soundness of the comp rules is given in Appendix C.2.

Finally, the soundness of the rules which do involve {α

} remains to be shown. The

soundness of the display postulates immediately follows from Proposition 2.5. As an

example, let us verify the soundness of dynFS L: translating the structures into formulas,

it boils down to verifying that, for all EAK-formulas A, B and C, if [[[α

]

A]]Z

∧

[[〈α

〉

B]]Z ⊆

[[C]]Z, then [[〈α

〉

(A

∧

B)]]Z ⊆ [[C]]Z. By applying the appropriate adjunction rules, the

implication above is equivalent to the following implication: if [[B]]Z ⊆ [[[α]([α

]

A ∨C)]]Z

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 109

then [[B]]Z ⊆ [[A ∨ [α]C]]Z. By applying the principle of indirect inequality, we are reduced

to showing the inclusion

[[[α]([α

]

A ∨C)]]Z ⊆ [[A ∨ [α]C]]Z ,

which is the soundness of the box-version of a conjugation condition (see the shape of

(2.14) for epistemic modalities), and is true in Z since [α

]

is interpreted as [α◦].

Completeness and conservativity. The completeness of D’.EAK w.r.t. the Hilbert presen-

tation of EAK (cf. Sections 2.4.1 and 2.4.2) is achieved by showing that the axioms of

(the intuitionistic version of) EAK are derivable in D’.EAK. These derivations are col-

lected in Appendix E.

Again, as was the case for D.EAK, the fact that D’.EAK is a conservative extension of

EAK can be argued as follows: let A, B be EAK-formulas such that A ⊢D′.EAK B, and

let Z be the final coalgebra. By the soundness of D’.EAK w.r.t. the Z, this implies that

[[A]]Z ⊆ [[B]]Z, which, by the bisimulation invariance of EAK (cf. [GKP13, Lemma 1]),

implies that [[A]]M ⊆ [[B]]M for every Kripke model M, which, by the completeness of

EAK w.r.t. the standard Kripke semantics, implies that A ⊢EAK B.

Adequacy of D’.EAK w.r.t. Wansing’s criteria. It is easy to see that the calculus D’.EAK

enjoys the display property (cf. Definition 2.1). Like its previous version, D’.EAK is de-

fined independently of the relational semantics of EAK, and therefore is suitable for a

fine-grained proof-theoretic semantic analysis. It can be readily verified by inspection

that all operational rules satisfy Wansing’s criteria of separation, symmetry and explicit-

ness (cf. Section 2.2.3).

Moreover, a clear-cut division of labour has been achieved between the operational

rules, which are to encode the proof-theoretic meaning of the new connectives, and

the structural rules, which are to express the relations entertained between the different

connectives by way of their proxies.

Another important proof-theoretic feature of D’.EAK is modularity. As discussed in Sec-

tion 2.6.1, by suitably removing structural rules for the propositional base of D’.EAK,

the substructural versions of EAK can be modularly defined. Moreover, by adding struc-

tural rules corresponding to properly displayable modal logics (cf. [Kra96]), different

assumptions can be captured on the behaviour of the epistemic modalities.11

11Note that Balance, comp, reduce, swap-in and swap-out are the only specific structural rules for epistemic ac-

tions; the monotonicity and Fischer-Servi rules respectively encode the conditions that box and diamond are mono-

tone and interpreted by means of the same relation; the necessitation can be considered as a special case of atom and

IW can be eliminated if, e.g., ⊥ ⊢ 〈α〉⊥ and [α]⊤ ⊢ ⊤ are introduced as zeroary rules.

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 110

Notwithstanding the fact that the old reverse rules, offending segregation, are derived

rules in D’.EAK, still the system D’.EAK does not satisfy segregation. However, the only

rule in D’.EAK offending segregation is atom because one of the two principal formulas

in each atom axioms might not occur in display. Even if the most rigid proof-theoretic

semantic principle is not met, D’.EAK is a quasi-proper display calculus, and hence it

enjoys Belnap-style cut elimination, as will be shown in the next subsection.

2.6.3 Belnap-style cut elimination for D’.EAK

In the present subsection, we prove that D’.EAK is a quasi proper display calculus (cf.

Section 2.3.1), that is, the rules of D’.EAK satisfy conditions C1, C2, C3, C4, C′
5
, C′′

5
, C6,

C7, C8. By Theorem 2.4, this is enough to establish that the calculus enjoys the cut

elimination and the subformula property.

The rules reverse are now derivable, and all the rules with the side condition Pre(α)

have been reformulated so as to either remove Pre(α) altogether, or to replace it with its

structural counterpart. This has been achieved by expanding the language so that the

meta-linguistic abbreviation Pre(α) can be replaced by an operational constant and its

corresponding structural connective. Hence, it can be readily verified that all rules are

closed under simultaneous substitution of arbitrary structures for congruent parameters,

which satisfies conditions C6 and C7. It is easy to see that the operational rules for 1α

and the comp rules satisfy the criteria C1–C7. The atom axioms can be readily seen to

verify condition C′′
5

as given in Section 2.3.1.

Finally, as to condition C8, let us show the cases involving the new connective 1α. All

the other cases are reported in Appendix D.

Φα ⊢ 1α

... π

Φα ⊢ X

1α ⊢ X

Φα ⊢ X

... π

Φα ⊢ X

2.7 Conclusions and further directions

2.7.1 Conclusions

In the present chapter, we provide an analysis, conducted adopting the viewpoint of

proof-theoretic semantics, of the state-of-the-art deductive systems for dynamic epis-

temic logic, focusing mainly on Baltag-Moss-Solecki’s logic of epistemic actions and

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 111

knowledge (EAK). We start with an overview of the general research agenda in proof-

theoretic semantics, and then we focus on display calculi, as a proof-theoretic paradigm

which has been successful in accounting for difficult logics, such as modal logics and

substructural logics. We discuss the requirements which a proof system should satisfy

to provide adequate proof-theoretic semantics to logical constants, and, as an original

contribution, we introduce the notion of quasi proper display calculus, and prove its

corresponding Belnap-style cut elimination metatheorem. We then evaluate the main

existing proof systems for PAL/EAK according to the previously discussed requirements.

As the second original contribution, we propose a revised version of one such system,

namely of the system D.EAK (cf. Section 2.4.4), and we argue that our revised system

D’.EAK adequately meets the proof-theoretic semantic requirements for all the logical

constants involved. We also show that D’.EAK is sound w.r.t. the final coalgebra se-

mantics, complete w.r.t. EAK, of which it is a conservative extension. These three facts

together guarantee that D’.EAK exactly captures EAK. Finally, we verify that D’.EAK is a

quasi proper display calculus. Hence, the generalized metatheorem applies, and D’.EAK

is thus shown to enjoy Belnap-style cut elimination (which was not argued for in the

case of the original system D.EAK) and the subformula property. The main ingredient of

this revision is an expansion of the language of the original system, aimed at achieving

an independent proof-theoretic account of the preconditions Pre(α). This account is in-

dependent both in the sense that it is given purely in terms of the resources of D’.EAK,

and in the sense that the metalinguistic abbreviation Pre(α) is treated as a first-class

citizen of the revised system. Indeed, Pre(α) is endowed with both an operational and a

structural representation, both of which well-behaving.

2.7.2 Further directions

Uniform proof-theoretic account for dynamic logics. As we mentioned early on, the re-

sults collected in the present chapter form the basis of a larger research program aimed

at providing dynamic logics with a uniform proof-theoretic account. As we will see in

the following chapters, this methodology has been extended to monotone modal logic

and PDL. Other interesting case studies are Concurrent Propositional Dynamic Logic

[Gol92b], Game Logic [Par85], Coalition Logic [Pau01, Pau02], Concurrent Dynamic

Epistemic Logic [vDvdHK03], and variants of Dynamic epistemic logics with non-normal

epistemic operators.

Multi-type display-style calculi. The metatheorem proven in the present chapter applies

to a class of display calculi (the quasi-proper display calculi) which generalize Wansing’s

notion of proper display calculi by relaxing the property of isolation. However, in both

Chapter 2. A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic 112

quasi proper and proper display calculi, rules are required to be closed under simultane-

ous substitution of arbitrary structures for congruent formulas. This requirement occurs

in a weaker form in both the original [Bel82, Theorem 4.4] and in some of its subse-

quent versions [Bel90, Res00, Wan98]. Indeed, these metatheorems apply to display

calculi admitting rules for which the closure under substitution may be not arbitrary,

but restricted to structures satisfying certain conditions. This weaker requirement pri-

marily concerns rules; however, it is encoded in the notion of regular formula and asks

every formula to be regular. The condition given in terms of regular formulas is key to

accounting for important logics such as linear logic. On the other hand, it ingeniously

relies on very special features of the signature of linear logic, and hence it is of diffi-

cult application outside that setting. We conjecture that logics such as linear logic can

be alternatively accounted for by display-type calculi all the rules of which are closed

under simultaneous substitution of arbitrary structures for parametric operational terms

(formulas). We conjecture that this is possible thanks to the introduction of a suitable

multi-type environment, in which every derivable sequent/consecution is required to be

type-uniform (i.e., both the antecedent and the consequent of any sequent/consecution

must belong to the same type). The requirement formulated in terms of regular for-

mulas would then be encoded in the multi-type setting in terms of the condition that,

in each given rule, parametric constituents (of a given and unambiguously determined

type) can be uniformly replaced by structures which are arbitrary within that same type,

so as to obtain instances of the same rule. An example of such a multi-type environment

is introduced in Chapter 3. The adaptation of the multi-type setting to the case of linear

logic is work in progress.

Chapter 3

Multi-Type Display Calculus for

Dynamic Epistemic Logic

3.1 Introduction

In the previous chapter, we have analyzed Baltag-Moss-Soilecki’s logic of Epistemic Ac-

tions and Knowledge (EAK) from a proof-theoretic semantic perspective, and in partic-

ular we have been confronted with the fact that, as is the case of other dynamic logics,

the hurdles preventing its standard proof-theoretic development are due precisely to the

very features which make it interesting and suitable for applications, such as e.g. its not

being closed under uniform substitution, or the existence of certain interactions between

logical connectives which cannot be expressed within the language itself.

Indeed, EAK prominently features non schematic axioms such as

[α]p↔ (Pre(α)→ p),

where the variable p ranges over atomic propositions, and Pre(α) is a meta-linguistic

abbreviation for an arbitrary formula, and axioms such as

[α][a]A↔ (Pre(α)→
∧
{[a][β]A | αaβ}),

in which the extra-linguistic label αaβ expresses the fact that actions α and β are indis-

tinguishable for agent a.

Difficulties posed by features such as these caused the existing proposals of calculi in

the literature to be often ad hoc, not easily generalizable e.g. to other logics, and more

in general lacking a smooth proof-theoretic behaviour. In particular, the difficulty in

113

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 114

smoothly transferring results from one logic to another is a problem in itself, since logics

such as EAK typically come in large families. Hence, proof-theoretic approaches which

uniformly apply to each logic in a given family are in high demand.

Contribution. The present chapter focuses on the core technical aspects of a proof-

theoretic methodology and set-up closely linked to Belnap’s display calculi [Bel82].

Specifically, the main contribution here is the introduction of a methodology for the

design of display calculi based on multi-type languages. In the case study provided by

EAK, we start by observing that having to resort to the label αaβ is symptomatic of the

fact that the language of EAK lacks the necessary expressivity to autonomously capture

the piece of information encoded in the label.

In order to provide the desired additional expressivity, we introduce a language in which

not only formulas are generated from formulas and actions (as it happens in the symbol

〈α〉A) and formulas are generated from formulas and agents (as it happens in the symbol

〈a〉A), but also actions are generated from the interaction between agents and actions,

which is precisely what the label αaβ is about.

In the multi-type language for EAK introduced in the present chapter, each generation

step mentioned above is explicitly accounted for via special connectives taking argu-

ments of different types. In principle, more than one alternative is possible in this re-

spect; our choice for the present setting consists of the following types: Ag for agents,

Fnc for functional actions, Act for actions, and Fm for formulas. Hence, the present set-

ting introduces a separation between functional, i.e. deterministic actions, of type Fnc,

and possibly non-deterministic actions, of type Act (see discussion at the end of Section

3.3).

The proposed calculus provides an interesting and in our opinion very promising metho-

dological platform towards the uniform development of a general proof-theoretic ac-

count of all dynamic logics, and also, from a purely structurally proof-theoretic view-

point, for clarifying and sharpening the formulation of criteria leading to the statement

and proof of meta-theoretic results such as Belnap-style cut elimination (see Section

3.7).

Organization and results. For preliminaries on display calculi, EAK, the intuitionistic

version of EAK and the (single-type) display calculus D’.EAK, the reader is referred to

Sections 2.2.2, 2.4.1, 2.4.2, and 2.6.1 respectively. In Section 3.2, we sketch the general

features of the environment of multi-type display calculi, extend Wansing’s definition

of quasi-proper display calculi to the multi-type setting, and prove the corresponding

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 115

extension of Belnap’s cut elimination metatheorem. In Section 3.3, we propose a novel

display calculus for EAK, which we refer to as Dynamic Calculus, and which concretely

exemplifies the notion of multi-type display calculus. In Sections 3.4, 3.5 and 3.6, we

prove that the Dynamic Calculus adequately captures EAK, and enjoys Belnap-style cut

elimination. In Section 3.7, we collect some conclusions and indicate further directions.

The routine proofs and derivations are collected in the Appendices F and G.

3.2 Multi-type calculi, and cut elimination metatheorem

The present section is aimed at introducing the environment of multi-type display cal-

culi. Our treatment will be very general, and in particular, no signature will be speci-

fied. However, the calculus introduced in Section 3.3 is a concrete instantiation of this

abstract description.

3.2.1 Multi-type calculi

Our starting point is a propositional language, the terms of which form n pairwise dis-

joint types T1 . . .Tn, each of which with its own signature. We will use a, b, c and x, y, z

to respectively denote operational and structural terms of unspecified (possibly differ-

ent) type. Further, we assume that operational connectives and structural connectives

are given both within each type and also between different types, so that the display

property holds.

In the applications we have in mind, the need will arise to support types that are seman-

tically ordered by inclusion. For example, in Section 3.3 we will introduce, beside the

type Fm of formulas, two types Fnc and Act of functional and general actions, respec-

tively. The need for enforcing the distinction between functional and general actions in

the specific situation of Section 3.3 arises because of the presence of the rule balance

(see page 134 for more details on this topic). The semantic point of view suggests to

treat Fnc as a proper subset of Act, but our syntactic stipulations, although will be sound

w.r.t. this state of affairs, will be tuned for the more general situation in which the sets

Fnc and Act are disjoint. This is convenient as each term can be assigned a unique

type unambiguously. This is a crucial requirement for the Belnap-style cut elimination

theorem of the next section, and will be explicitly stated in condition C’2 below.

Definition 3.1. A sequent x ⊢ y is type-uniform if x and y are of the same type T. In this case,

we will say that x ⊢ y is of type T.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 116

A fundamental and very natural desideratum for rules in a multi-type display calculus

is that they preserve type-uniformity, that is, each rule should be such that if all the

premises are type uniform, then the conclusion is type uniform. As we will see, all rules

in the multi-type calculus introduced in Section 3.3 preserve type uniformity.

Finally, in a display calculus, the cut rule is typically of the following form:

X ⊢ A A ⊢ Y
Cut

X ⊢ Y

where X,Y are structures and A is a formula. This translates straightforwardly to the

multi-type environment, by the stipulation that cut rules of the form

x ⊢ a a ⊢ y
Cutx ⊢ y

are allowed in the given multi-type system for each type. These cut rules will be asked

to satisfy the following additional requirement:

Definition 3.2. A rule is strongly type-uniform if its premises and conclusion are of the same

type.

3.2.2 Relativized display property

As discussed in Section 4 (on page 7), the full display property is a key ingredient in

the proof of the cut elimination metatheorem. Indeed, it enables a system enjoying it to

meet Belnap’s condition C8 of the cut elimination metatheorem. However, it turns out

that an analogously good behaviour can be guaranteed of any sequent calculus enjoying

the following weaker property:

Definition 3.3. A proof system enjoys the relativized display property iff for every derivable

sequent X ⊢ Y and every substructure Z of either X or Y , the sequent X ⊢ Y can be transformed,

using the rules of the system, into a logically equivalent sequent which is either of the form

Z ⊢ W or of the form W ⊢ Z, for some structure W.

The calculus defined in Section 3.3 does not enjoy the full display property, but does

enjoy the relativized display property above (more about this in Sections 3.3 and 3.6),

which enables it to verify the condition C’8 (see Section 3.2.3). More details about it are

collected in Appendix F. Finally, notice that the definition of substructures in precedent

or succedent position within each sequent can be given in a way which does not rely

on the full display property. It is enough to rely on the polarity of the coordinates of

each structural connective: if these polarities are assigned, then for any sequent X ⊢ Y,

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 117

if Z is a substructure of X, then Z is in precedent (resp. succedent) position if, in the

generation tree of X, the path from Z to the root goes through an even (resp. odd)

number of coordinates with negative polarity. If Z is a substructure of Y, then Z is in

succedent (resp. precedent) position if, in the generation tree of Y, the path from Z to

the root goes through an even (resp. odd) number of coordinates with negative polarity.

3.2.3 Quasi-proper multi-type display calculi

In Chapter 2, to show that Belnap-style cut elimination holds for the display calculus

D’.EAK, the definition of quasi-proper display calculi is given (generalizing Wansing’s

definition of properly displayable calculi [Wan98, Section 4.2]), and its corresponding

Belnap style metatheorem is discussed. We are working towards the proof that the multi-

type display calculus introduced in Section 3.3 enjoys cut elimination Belnap-style. The

aim of the present subsection is then to extend the notion of quasi-proper display calculi

to the multi-type environment. Let a quasi-proper multi-type display calculus be any

display calculus in a multi-type language satisfying the following list of conditions1:

C1: preservation of operational terms. Each operational term occurring in a premise of

an inference rule inf is a subterm of some operational term in the conclusion of inf.

C2: Shape-alikeness of parameters. Congruent parameters2 are occurrences of the same

structure.

C’2: Type-alikeness of parameters. Congruent parameters have exactly the same type.

This condition bans the possibility that a parameter changes type along its history.

C’3: Restricted non-proliferation of parameters. Each parameter in an inference rule

inf is congruent to at most one constituent in the conclusion of inf. This restriction does

not need to apply to parameters of any type T such that the only applications of cut with

cut terms of type T are of the following shapes:

1See Chapter 2 for a discussion on C’5 and C”5.
2The congruence relation is an equivalence relation which is meant to identify the different occurrences of the

same formula or substructure along the branches of a derivation [Bel82, Section 4], [Res00, Definition 6.5]. Con-

dition C2 can be understood as a condition on the design of the rules of the system if the congruence relation is

understood as part of the specification of each given rule; that is, each rule of the system should come with an ex-

plicit specification of which elements are congruent to which (and then the congruence relation is defined as the

reflexive and transitive closure of the resulting relation). In this respect, C2 is nothing but a sanity check, requiring

that the congruence is defined in such a way that indeed identifies the occurrences which are intuitively “the same”.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 118

...

X ⊢ a a ⊢ a
X ⊢ a

a ⊢ a

...

a ⊢ Y
a ⊢ Y

C4: Position-alikeness of parameters. Congruent parameters are either all antecedent

or all succedent parts of their respective sequents.

C’5: Quasi-display of principal constituents. If an operational term a is principal in the

conclusion sequent s of a derivation π, then a is in display, unless π consists only of its

conclusion sequent s (i.e. s is an axiom).

C”5: Display-invariance of axioms. If a display rule can be applied to an axiom s, the

result of that rule application is again an axiom.

C’6: Closure under substitution for succedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms

occurring in succedent position, within each type.

C’7: Closure under substitution for precedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms

occurring in precedent position, within each type.

Condition C6 (and likewise C’7) ensures, for instance, that if the following inference is

an application of the rule R:

(x ⊢ y)
(
[a]suc

i
| i ∈ I

)
R

(x′ ⊢ y′)[a]suc

and
(
[a]suc

i
| i ∈ I

)
represents all and only the occurrences of the operational term a in

the premiss which are congruent to the occurrence of a in the conclusion3, then also the

following inference is an application of the same rule R:

(x ⊢ y)
(
[z/a]suc

i
| i ∈ I

)
R

(x′ ⊢ y′)[z/a]suc

where the structure z is substituted for a, and z and a have the same type.

3Clearly, if I = ∅, then the occurrence of a in the conclusion is congruent to itself.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 119

C’8: Eliminability of matching principal constituents. This condition requests a stan-

dard Gentzen-style checking, which is now limited to the case in which both cut for-

mulas are principal, and hence each of them has been introduced with the last rule

application of each corresponding subdeduction. In this case, analogously to the proof

Gentzen-style, condition C’8 requires being able to transform the given deduction into a

deduction with the same conclusion in which either the cut is eliminated altogether, or

is transformed in one or more applications of the cut rule, involving proper subterms of

the original operational cut-term. In addition to this, specific to the multi-type setting is

the requirement that the new application(s) of the cut rule be also strongly type-uniform

(cf. condition C10 below).

C”8: Closure of axioms under cut. If x ⊢ a and a ⊢ y are axioms, then x ⊢ y is again an

axiom.

C9: Type-uniformity of derivable sequents. Each derivable sequent is type-uniform.

C10: Strong type-uniformity of cut rules. All cut rules are strongly type-uniform (cf.

Definition 3.2).

3.2.4 Belnap-style metatheorem for multi-types

In the present subsection, we state and prove the Belnap-style metatheorem which we

will appeal to when establishing the cut elimination Belnap-style for the calculus we will

introduce in the next section.

Theorem 3.4. Any multi-type display calculus satisfying C2, C’2, C’3, C4, C’5, C”5, C’6, C’7,

C’8, C”8, C9 and C10 is cut-admissible. If also C1 is satisfied, then the calculus enjoys the

subformula property.

Proof. This is a generalization of the proof in [Wan02, Section 3.3, Appendix A]. For the sake of

conciseness, we will expand only on the parts of the proof which depart from that treatment. As

usual, the proof is done by induction on the ordered pair of parameters given by the complexity

of the cut term and the height of the cut. Our original derivation is

... π1

x ⊢ a

... π2

a ⊢ y

x ⊢ y

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 120

Principal stage: both cut formulas are principal. There are three subcases.

If the end sequent x ⊢ y is identical to the conclusion of π1 (resp. π2), then we can eliminate the

cut simply replacing the derivation above with π1 (resp. π2).

If the premises x ⊢ a and a ⊢ y are axioms, then, by C”8, the conclusion x ⊢ y is an axiom,

therefore the cut can be eliminated by simply replacing the original derivation with x ⊢ y.

If one of the two premises of the cut in the original derivation is not an axiom, then, by C’8,

there is a proof of x ⊢ y which uses the same premise(s) of the original derivation and which

involves only strongly uniform cuts on proper subterms of a.

Parametric stage: at least one cut term is parametric. There are two subcases: either one

cut term is principal or they are both parametric.

Consider the subcase in which one cut term is principal. W.l.o.g. we assume that the cut-term a is

principal in the left-premise x ⊢ a of the cut in the original proof (the other case is symmetric).

We can assume w.l.o.g. that the conclusion of the cut is different from either of its premises.

Then, conditions C2 and C’3 make it possible to trace the history-tree of the occurrences of the

cut-term a in π2 (cf. Remark 2.2 on page 71), and by conditions C’2 and C4, any ancestor of a

is of the same type and in the same position (that is, is in precedent position). The situation can

be pictured as follows:

... π1

x ⊢ a

... π2.i

ai ⊢ yi

. . .

... π2. j

(x j ⊢ y j)[a j]
pre

...

... π2.k

(xk ⊢ yk)[ak]pre

. .
.

. . .
... . .
. π2

a ⊢ y

x ⊢ y

where, for i, j, k ∈ {1, . . . , n}, the nodes

ai ⊢ yi, (x j ⊢ y j)[a j]
pre, and (xk ⊢ yk)[ak]pre

represent the three ways in which the leaves ai, a j and ak in the history-tree of a in π2 can

be introduced, and which will be discussed below. The notation a (resp. a) indicates that the

given occurrence is principal (resp. parametric). Notice that condition C4 guarantees that all

occurrences in the history of a are in precedent position in the underlying derivation tree, and

condition C’2 guarantees that the type of a never changes along its history. Let al be introduced

as a parameter (as represented in the picture above in the conclusion of π2.k for al = ak). Assume

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 121

that (xk ⊢ yk)[ak]pre is the conclusion of an application inf of the rule Ru (for instance, in the

calculus of Section 3.3, this situation arises if ak is of type Fm and has been introduced with an

application of Weakening, or if ak is of type Fnc and has been introduced with an application of

Atom, or Balance). Since ak is a leaf in the history-tree of a, we have that ak is congruent only

to itself in xk ⊢ yk. Notice that the assumption that every derivable sequent is type-uniform (C9),

and the type-alikeness of parameters (C’2) imply that the sequent a1, ak and x have the same

type. Hence, C’7 implies that it is possible to substitute x for ak by means of an application of

the same rule Ru. That is, (xk ⊢ yk)[ak] can be replaced by (xk ⊢ yk)[x/ak].

Let al be introduced as a principal formula. The corresponding subcase in [Wan02] splits into

two subsubcases: either al is introduced in display or it is not.

If al is in display (as represented in the picture above in the conclusion of π2.i for al = ai), then

we form a subderivation using π1 and π2.i and applying cut as the last rule. The assumptions

that the original cut is strongly type-uniform (C10), that every derivable sequent is type-uniform

(C9), and the type-alikeness of parameters (C’2) imply that the sequent ai ⊢ yi is of the same

type as the sequents x ⊢ a and a ⊢ y. Hence, the new cut is strongly type-uniform.

If al is not in display (as represented in the picture above in the conclusion of π2. j for al = a j),

then condition C’5 implies that (x j ⊢ y j)[a j]
pre is an axiom, and C”5 implies that some axiom

a j ⊢ y′
j

exists, which is display-equivalent to the first axiom, and in which a j occurs in display.

Let π′ be the derivation which transforms a j ⊢ y′
i

into (x j ⊢ y j)[a j]
pre. We form a subderivation

using π1 and a j ⊢ y′
j

and joining them with a cut application, then attaching π′[x/a j]
pre below

the new cut.

The transformations just discussed explain how to transform the leaves of the history tree of a.

Finally, since, as discussed above, x has the same type of a, condition C’7 implies that substitut-

ing x for each occurrence of a in the history tree of the cut term a in π2 (and in each occurring

π′ as above) gives rise to an admissible derivation π2[x/a]pre (use C’6 for the symmetric case).

Summing up, this procedure generates the following proof tree:

... π1

x ⊢ a

... π2.i

ai ⊢ yi

x ⊢ yi

. . .

... π1

x ⊢ a a j ⊢ y′

x ⊢ y′[a]suc

... π
′[x/a]pre

(x j ⊢ y j)[x/a j]
pre

...

... π2.k

(xk ⊢ yk)[x/ak]pre

. .
.

. . .
... . .
. π2[x/a]pre

x ⊢ y

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 122

We observe that in each newly introduced application of the cut rule, both cut terms are principal.

Hence, we can apply the procedure described in the Principal stage and transform the original

derivation in a derivation in which the cut terms of the newly introduced cuts have strictly lower

complexity than the original cut terms. When the newly introduced applications of cut are of

lower height than the original one, we do not need to resort to the Principal stage.4

Finally, as to the subcase in which both cut terms are parametric, consider a proof with at least

one cut. The procedure is analogous to the previous case. Namely, following the history of

one of the cut terms up to the leaves, and applying the transformation steps described above,

we arrive at a situation in which, whenever new applications of cuts are generated, in each such

application at least one of the cut formulas is principal. To each such cut, we can apply (the

symmetric version of) the Parametric stage described so far.

�

3.3 The Dynamic Calculus for EAK

As mentioned in the introduction, the key idea is to introduce a language in which

not only formulas are generated from formulas and actions (as it happens in the symbol

〈α〉A) and formulas are generated from formulas and agents (as it happens in the symbol

〈a〉A), but also actions are generated from the interactions between agents and actions.

An algebraically motivated introduction. In the present section, we define a multi-type

language into which the language of (I)EAK translates, and in which each generation

step mentioned above is explicitly accounted for via special binary connectives taking

arguments of different types. More than one alternative is possible in this respect; our

choice for the present setting consists of the following types: Ag for agents, Fnc for

functional actions, Act for actions, and Fm for formulas. We also stipulate that Ag, Act,

Fm and Fnc are pairwise disjoint. The new connectives, and their types, are:

△ 0, N0 : Fnc × Fm→ Fm (3.1)

△ 1, N1 : Act × Fm→ Fm (3.2)

△ 2, N2 : Ag × Fm→ Fm (3.3)

△ 3, N3 : Ag × Fnc→ Act (3.4)

4 This is for instance the case if, in the original derivation, the history-tree of the cut term a (in the right-hand-

side premise of the given cut application) contains at most one leaf al which is principal. However, the procedure

described above in the Parametric stage does not always produce cuts of lower height. For instance, in the calculus

introduced in Section 3.3, this situation may arise when two ancestors of a cut term of type Fm are introduced as

principal along the same branch, and then are identified via an application of the rule Contraction.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 123

We stipulate that the interpretations of the connectives are maps preserving existing

joins in each coordinate (see below) with algebras as domains and codomains suitable

to interpret (functional) actions, formulas, and agents respectively. For instance, suit-

able choices for domains of interpretation for formulas can be complete atomic Boolean

algebras or perfect Heyting algebras (cf. [KP13]); in the setting of e.g. epistemic action

logic (cf. [vDvdHK07]), following [BCS07], the domain of interpretation for actions

can be a quantale or a relation algebra (of which the functional actions can be a sub-

monoid). In the setting of EAK, in which no algebraic structure is required of actions and

agents, a suitable domain of interpretation can be a complete join-semilattice, which is

completely join-generated by a given subset (interpreting the functional actions), and

the domain of interpretation of agents can be a set.5

In Section 3.4, the final coalgebra Z (more details on the final coalgebra in Section 2.5)

is taken as semantic environment for the Dynamic Calculus. In this setting, the boolean

algebra PZ is taken as the domain of interpretation for Fm-type terms, Fnc-type terms

are interpreted as graphs of partial functions on Z, subject to certain restrictions, and

the domain of interpretation of Act-type terms is the complete
⋃

-semilattice generated

by the domain of interpretation of Fnc.

In all the domains of interpretation which are complete lattices (i.e. the algebras inter-

preting terms of type Fm and Act), the fact that the interpretation of each connective △

and N is completely join-preserving in its second coordinate implies that it has a right

adjoint in its second coordinate. These right adjoints provide natural interpretation for

the following additional connectives:

−◮0 , −⊲0 : Fnc × Fm→ Fm (3.5)

−◮1 , −⊲1 : Act × Fm→ Fm (3.6)

−◮2 , −⊲2 : Ag × Fm→ Fm. (3.7)

The assumptions above imply that △ 1 and N 1 have right adjoints also in their first co-

ordinate. Hence, each of the following connectives can be naturally interpreted, in the

setting above, as the right adjoint of △ 1 and N 1 respectively:

◭1 , ⊳1 : Fm × Fm→ Act. (3.8)

Intuitively, for all formulas A, B, the term B◭1A denotes the weakest epistemic action

γ such that, if A was true before γ was performed, then B is true after any successful

execution of γ. This is also related to to Vaughn Pratt’s notion of weakest preserver (cf.

5Notice also that for other dynamic logics the domain of interpretation of agents might be endowed with some

algebraic structure; for instance, in the case of game logic (cf. [PP03]), the set of agents consists of two elements, on

which a negation-type operation can be assumed.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 124

[Pra91, Section 4.2]) However, we cannot assume that more adjoints exist, which would

provide semantic interpretation for the following symbols:

◭∼0 , ⊳∼0 : Fm × Fm→ Fnc

◭∼2 , ⊳∼2 : Fm × Fm→ Ag

◭∼3 , ⊳∼3 : Act × Fnc→ Ag

∼◮3 , ∼⊲3 : Ag × Act→ Fnc.

Virtual adjoints. We adopt the following notational convention about the three differ-

ent shapes of arrows introduced so far. Arrows with a straight tail (−⊲ and −◮) stand

for connectives which have a semantic counterpart and which are included in the lan-

guage of the Dynamic Calculus (see the grammar of operational terms on page 127);

arrows with no tail (e.g. ◭ and ⊳) do have a semantic interpretation but are not in-

cluded in the language, and arrows with a squiggly tail (∼⊲ , ⊳∼ , ∼◮ and ◭∼) stand for

syntactic objects, called virtual adjoints, which do not have a semantic interpretation,

but will play an important role, namely guaranteeing the Dynamic Calculus to enjoy the

relativized display property (cf. Definition 3.3). In what follows, virtual adjoints will be

introduced only as structural connectives. That is, they will not correspond to any oper-

ational connective, and they will not appear actively in any rule schema other than the

display postulates (cf. Definition 2.1). As will be shown in Section 3.6, these limitations

keep the calculus sound even if virtual adjoints do not have an independent semantic

interpretation.

The △ ⊣ −◮ and N ⊣ −⊲ adjunction relations stipulated above translate into the fol-

lowing clauses for every agent a, every functional action α, every action γ, and every

formula A:

α△ 0A ≤ B iff A ≤ α−◮0 B αN0 A ≤ B iff A ≤ α−⊲0 B (3.9)

γ△ 1A ≤ B iff A ≤ γ−◮1 B γN1 A ≤ B iff A ≤ γ−⊲1 B (3.10)

a△ 2A ≤ B iff A ≤ a−◮2 B aN2 A ≤ B iff A ≤ a−⊲2 B. (3.11)

The adjunction relations △ 1 ⊣ ◭ 1 and N1 ⊣ ⊳ 1 translate into the following clauses for

every action γ and every formula A:

γ△ 1A ≤ B iff γ ≤ B◭1A γN1 A ≤ B iff γ ≤ B⊳1A. (3.12)

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 125

As we will see, the display postulates corresponding to triangle- and arrow-shaped con-

nectives are modelled over the conditions (3.9)-(3.12) above. Also the display postulates

involving virtual adjoints are shaped in the same way, which explains their name.

Translating D’.EAK into the multi-type setting. The intended link between the language

of D’.EAK (cf. Section 2.6.1) and the language of the Dynamic Calculus is illustrated in

the following table:

〈α〉A becomes α△ 0A 〈α

〉

A becomes αN0 A

〈a〉A becomes a△ 2A 〈a

〉

A becomes aN2 A

[α]A becomes α−⊲0 A [α

]

A becomes α−◮0 A

[a]A becomes a−⊲2 A [a

]

A becomes a−◮2 A

1α becomes α△ 0⊤.

The table above can be extended to the definition of a formal translation between the op-

erational language of D’.EAK and that of the Dynamic Calculus, simply by preserving the

non modal propositional fragment. We omit the details of this straightforward inductive

definition. In Section 3.4,this translation will be elaborated on, and the interpretation of

the language of the Dynamic Calculus in the final coalgebra will be defined so that the

translation above preserves the validity of sequents. In the light of this translation, the

adjunction conditions in clauses (3.9) correspond to the adjunction conditions (2.15) in

D’.EAK, which, in their turn, motivate the display postulates reported on in Section 2.5:

〈α〉 ⊣ [α

]

〈α

〉

⊣ [α].

The connectives △ 3 and N 3 have no counterpart in the language of D’.EAK, but the

introduction of N 3 is exactly what brings the additional expressiveness we need in order

to eliminate the label. Indeed, we stipulate that for every a and α as above,

aN3 α =
∨
{β | αaβ}. (3.13)

A way to understand this stipulation is in the light of the discussion in Section 2.4.3 after

clause (2.8). There, in the context of a discussion about the proof system in [BCS07],

the link between the semantic condition f M
A

(m ⋆ q) ≤ f M
A

(m) ⋆ f
Q

A
(q) (cf. [BCS07, Def-

initions 2.2(2) and 2.3]) and the axiom (2.4)—which in [BCS07] was left implicit—is

made more explicit, by understanding the action f
Q

A
(q) as the join, taken in Q, of all the

actions q′ which are indistinguishable from q for the agent A. In the present setting,

the stipulation (3.13) says that aN3 α encodes exactly the same information encoded

in f
Q

A
(q), namely, the non-deterministic choice between all the actions that are indistin-

guishable from α for the agent a.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 126

Additional conditions. As was the case in the setting of D’.EAK, in order to express in

this new language that e.g. 〈α〉 and [α] are “interpreted over the same relation”, Sahlqvist

correspondence theory (cf. e.g. [CP12, CPS, CGP14] for a state-of-the art-treatment)

provides us with two alternatives: one of them is that we impose the following Fischer

Servi-type conditions to hold for every a ∈ Ag, α ∈ Fnc, γ ∈ Act and A, B ∈ Fm:

(α△ 0A)→ (α−⊲0 B) ≤ α−⊲0 (A→ B) (αN0 A)→ (α−◮0 B) ≤ α−◮0 (A→ B)

(γ△ 1A)→ (γ−⊲1 B) ≤ γ−⊲1 (A→ B) (γN1 A)→ (γ−◮1 B) ≤ γ−◮1 (A→ B)

(a△ 2A)→ (a−⊲2 B) ≤ a−⊲2 (A→ B) (aN2 A)→ (a−◮2 B) ≤ a−◮2 (A→ B).

α△ 0(A

∧

B) ≤ (α−⊲0 A)

∧

(α△ 0B) αN0 (A
∧

B) ≤ (α−◮0 A)

∧

(αN0 B)

γ△ 1(A

∧

B) ≤ (γ−⊲1 A)

∧

(γ△ 1B) γN1 (A

∧

B) ≤ (γ−◮1 A)

∧

(γN1 B)

a△ 2(A

∧

B) ≤ (a−⊲2 A)

∧

(a△ 2B) aN2 (A

∧

B) ≤ (a−◮2 A)

∧

(aN2 B).

To see that the conditions above correspond to the usual Fischer Servi axioms in standard

modal languages, one can observe that the conditions in the first and third line above

are images, under the translation discussed above, of the Fischer Servi axioms reported

on in Section 2.4.2). The second alternative is to impose that, for every 0 ≤ i ≤ 2, the

connectives △ i and N i yield conjugated diamonds (cf. discussion in Section 2.6.2); that

is, the following inequalities hold for all a ∈ Ag, α, β ∈ Fnc, and A, B ∈ Fm:

(α△ 0A) ∧ B ≤ α△ 0(A ∧ αN0 B) (αN0 A) ∧ B ≤ αN0 (A ∧ α△ 0B)

(γ△ 1A) ∧ B ≤ γ△ 1(A ∧ γN1 B) (γN1 A) ∧ B ≤ γN1 (A ∧ γ△ 1B)

(a△ 2A) ∧ B ≤ a△ 2(A ∧ aN2 B) (aN2 A) ∧ B ≤ aN2 (A ∧ a△ 2B).

α−⊲ 0(A ∨ α−◮0 B) ≤ (α−⊲ 0A) ∨ B α−◮0 (A ∨ α−⊲ 0B) ≤ (α−◮0 A) ∨ B

γ−⊲ 1(A ∨ γ−◮1 B) ≤ (γ−⊲ 1A) ∨ B γ−◮1 (A ∨ γ−⊲ 1B) ≤ (γ−◮1 A) ∨ B

a−⊲ 2(A ∨ a−◮2 B) ≤ (a−⊲ 2A) ∨ B a−◮2 (A ∨ a−⊲ 2B) ≤ (a−◮2 A) ∨ B.

The conditions in the first and third line above are images, under the translation dis-

cussed above, of the conjugation conditions reported on in Section 2.6.2.

The operational language, formally. Let us introduce the operational terms of the multi-

type language by the following simultaneous induction, based on sets AtProp of atomic

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 127

propositions, Fnc of functional actions, and Ag of agents:

Fm ∋ A ::= p | ⊥ | ⊤ | A ∧ A | A ∨ A | A→ A | A

∧

A |

α△ 0A | α−⊲0 A | γ△ 1A | γ−⊲1 A | a△ 2A | a−⊲2 A |

αN0 A | α−◮0 A | γN1 A | γ−◮1 A | aN2 A | a−◮2 A

Fnc ∋ α ::= α

Act ∋ γ ::= aN3 α | a△ 3α

Ag ∋ a ::= a

The fundamental difference between the language above and the language of D’.EAK is

that, in D’.EAK, agents and actions are parametric indexes in the construction of formulas,

which are the only first-class citizens. In the present setting, however, each type lives on

a par with any other. Because of the relative simplicity of the EAK setting, two of the

four types are attributed no algebraic structure at the operational level. However, it is

not difficult to enrich the algebraic structure of those types with sensible and intuitive

operations: for instance, the skip and crash actions are functional, and parallel and

sequential composition and iteration on functional actions preserve functionality, hence

can be added to the array of constructors for Fnc. As a consequence of the fact that

each type is a first-class citizen, as we will see shortly, four types of structures will be

defined, and the turnstile symbol in the sequents of this calculus will be interpreted in

the appropriate domain.

On the meta-linguistic labels αaβ. Let us illustrate how the label αaβ can be subsumed

when translating D’.EAK-formulas in the multi-type language. Consider for example (the

intuitionistic counterparts of) the following axiom (cf. (2.4)):

(Pre(α)→
∧
{[a][β]A | αaβ})→ [α][a]A

By applying the translation above we get:

(α△ 0⊤ →
∧
{a−⊲2 (β−⊲0 A) | αaβ})→ α−⊲0 (a−⊲2 A).

Since (the semantic interpretation of) −⊲2 is completely meet-preserving in the second

coordinate, the clause above is semantically equivalent to the following one:

(α△ 0⊤ →
[
a−⊲2

∧
{β−⊲0 A | αaβ}

]
)→ α−⊲0 (a−⊲2 A).

The next step is the only place of the chapter in which we will need to assume that

(the domains of interpretation of Fcn and Act are such that) Fcn ⊆ Act. Under this

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 128

assumption, −⊲0 can be taken as the restriction of −⊲1 . By general order-theoretic

facts (see e.g. [DP02]), the latter is completely join-reversing in its first coordinate.

Hence, we can equivalently rewrite the clause above as follows:

(α△ 0⊤ →
[
a−⊲2

(∨
{β | αaβ} −⊲1 A

)]
)→ α−⊲0 (a−⊲2 A).

Now we apply the stipulation (3.13) and get the following :

(α△ 0⊤ →
[
a−⊲2

(
(aN3 α)−⊲1 A

)]
)→ α−⊲0 (a−⊲2 A). (3.14)

An analogous argument justifies that the following axiom:

〈α〉〈a〉A→ (Pre(α) ∧
∨
{〈a〉〈β〉A | αaβ})

corresponds to:

α△ 0(a△ 2A)→ (α△ 0⊤ ∧ a△ 2[(aN3 α)△ 1A]). (3.15)

Without appealing to Fcn ⊆ Act, we could take the correspondences above as primitive

stipulations.

Structural language, formally. As discussed in the preliminaries, display calculi manip-

ulate two closely related languages: the operational and the structural. Let us introduce

the structural language of the Dynamic Calculus, which as usual matches the opera-

tional language, although in the present case not in the same way as in D’.EAK. We have

formula-type structures, functional action-type structures, action-type structures, agent-

type structures, defined by simultaneous recursion as follows:

FM ∋ X ::= A | I | X ; X | X > X |

F✦0 X | F✩0 X | Γ✦1 X | Γ✩1 X | A✦2 X | A✩2 X |

F◗0 X | F❚0 X | Γ◗1 X | Γ❚1 X | A◗2 X | A❚2 X

FNC ∋ F ::= α | X✧∼0 X | X❘∼0 X | A∼✩3 Γ | A∼❚3 Γ

ACT ∋ Γ ::= A◗3 F | A✦3 F | X✧1 X | X❘1 X

AG ∋ A ::= a | X✧∼2 X | X❘∼2 X | Γ✧∼3 F | Γ❘∼3 F.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 129

The propositional base. As is typical of display calculi, each operational connective cor-

responds to one structural connective. In particular, the propositional base connectives

behave exactly as in D’.EAK, but for the sake of self-containment, we are going to report

on these rules below:

Structural symbols < > ; I

Operational symbols ∧ ←

∧

→ ∧ ∨ ⊤ ⊥

Structural Rules

Id p ⊢ p
X ⊢ A A ⊢ Y

Cut
X ⊢ Y

X ⊢ Y
I1

L
I ⊢ Y < X

X ⊢ Y
I1
R

X < Y ⊢ I

X ⊢ Y
I2

L
I ⊢ X > Y

X ⊢ Y
I2
R

Y > X ⊢ I

I ⊢ X
IWL

Y ⊢ X
X ⊢ I

IWR
X ⊢ Y

X ⊢ Z
W1

L Y ⊢ Z < X
X ⊢ Z

W1
RX < Z ⊢ Y

X ⊢ Z
W2

L Y ⊢ X > Z
X ⊢ Z

W2
RZ > X ⊢ Y

X ; X ⊢ Y
CL

X ⊢ Y

Y ⊢ X ; X
CR

Y ⊢ X

Y ; X ⊢ Z
EL

X ; Y ⊢ Z

Z ⊢ X ; Y
ER

Z ⊢ Y ; X

X ; (Y ; Z) ⊢ W
AL

(X ; Y) ; Z ⊢ W

W ⊢ (Z ; Y) ; X
AR

W ⊢ Z ; (Y ; X)

Display Postulates

X ; Y ⊢ Z
(, <)

X ⊢ Z < Y

Z ⊢ X ; Y
(<, ;)

Z < Y ⊢ X

X ; Y ⊢ Z
(, >)

Y ⊢ X > Z

Z ⊢ X ; Y
(>, ;)

X > Z ⊢ Y

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 130

The classical base is obtained by adding the so-called Grishin rules (following e.g. [Gor00]),

which encode classical, but not intuitionistic validities:

X > (Y ; Z) ⊢ W
GriL

(X > Y) ; Z ⊢ W

W ⊢ X > (Y ; Z)
GriR

W ⊢ (X > Y) ; Z

Operational Rules

⊥L
⊥ ⊢ I

X ⊢ I
⊥R

X ⊢ ⊥

I ⊢ X
⊤L
⊤ ⊢ X

⊤R
I ⊢ ⊤

A ; B ⊢ Z
∧L

A ∧ B ⊢ Z

X ⊢ A Y ⊢ B
∧R

X ; Y ⊢ A ∧ B

A ⊢ X B ⊢ Y
∨L

A ∨ B ⊢ X ; Y

Z ⊢ A ; B
∨R

Z ⊢ A ∨ B

B ⊢ Y X ⊢ A←L
B← A ⊢ Y < X

Z ⊢ B < A ←R
Z ⊢ B← A

B < A ⊢ Z

∧ L
B ∧ A ⊢ Z

Y ⊢ B A ⊢ X

∧ R
Y < X ⊢ B ∧ A

X ⊢ A B ⊢ Y→L
A→ B ⊢ X > Y

Z ⊢ A > B →R
Z ⊢ A→ B

A > B ⊢ Z∧

L
A

∧

B ⊢ Z
A ⊢ X Y ⊢ B ∧

R
X > Y ⊢ A

∧

B

Rules for heterogeneous connectives. Unlike what was the case in the setting of D’.EAK,

in the present setting, each heterogeneous structural connective is associated with at

most one operational connective, as illustrated in the following table: for 0 ≤ i ≤ 3 and

j ∈ {0, 2},

Structural symbols ✦i ◗i ✩j ❚j

Operational symbols △ i Ni −⊲j −◮j

That is, structural connectives are to be interpreted as usual in a context-sensitive way,

but the present language lacks the operational connectives which would correspond to

them on one of the two sides. This is of course because in the present setting we do not

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 131

need them. However, in a setting in which they would turn out to be needed, it would

not be difficult to introduce the missing operational connectives. We can now introduce

the operational rules for heterogeneous connectives. Let x, y stand for structures of an

undefined type, and let a, b denote operational terms of the appropriate type. Then, for

0 ≤ i ≤ 3,

a✦i b ⊢ z
△ iL

a△ ib ⊢ z

x ⊢ a y ⊢ b
△ iR

x✦i y ⊢ a△ ib

a◗i b ⊢ z
NiL

aNi b ⊢ z

x ⊢ a y ⊢ b
NiR

x◗i y ⊢ aNi b

and for 0 ≤ i ≤ 2,

x ⊢ a B ⊢ Y−⊲iL

a−⊲iB ⊢ x✩iY

Z ⊢ a✩iB −⊲iR
Z ⊢ a−⊲iB

x ⊢ a B ⊢ Y−◮iL

a−◮iB ⊢ x❚iY

Z ⊢ a❚iB −◮iR
Z ⊢ a−◮iB

where B,Y,Z are formula-type operational and structural terms. Clearly, the rules in the

two tables above for i = 0, 2 yield the operational rules for the dynamic and epistemic

modal operators under the translation given early on. Notice that each sequent is always

interpreted in one domain. However, since heterogeneous connectives take arguments

of different types (which justifies their name), premises of binary rules are of course

interpreted in different domains.

Axioms will be given in three types6, as follows:

a ⊢ a α ⊢ α p ⊢ p ⊥ ⊢ I I ⊢ ⊤

where the first and second axioms from the left are of type Ag and Fnc respectively, and

the remaining ones are of type Fm. A generalization of p ⊢ p will be added below to the

system (see atom axiom on page 133).

Further, we allow the following strongly type-uniform (cf. Definition 3.2) cut rules on

operational terms:

A ⊢ a a ⊢ B
A ⊢ B

F ⊢ α α ⊢ G
F ⊢ G

Γ ⊢ γ γ ⊢ ∆

Γ ⊢ ∆

X ⊢ A A ⊢ Y
X ⊢ Y

6Indeed, there is no axiom schema for atomic terms of type Act, because the language does not admit them.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 132

Next, we give the display postulates for heterogeneous connectives. In what follows, let

x, y, z stand for structures of an undefined type. Then, for 0 ≤ i ≤ 2,

x✦i y ⊢ z
(△ i, −◮i)

y ⊢ x❚i z

x◗i y ⊢ z
(N i, −⊲i)

y ⊢ x✩i z

For i = 1, we also have

x✦1 y ⊢ z
(△1, ◭1)

x ⊢ z❘1 y

x◗1 y ⊢ z
(N1 , ⊳1)

x ⊢ z✧1 y

The display postulates above involve structural connectives each of which has a semantic

interpretation. In the following display postulates, the squiggly arrows are not semanti-

cally justified: they are the virtual adjoints, informally introduced at the beginning of the

present Section 3.3, which will be discussed in detail in Section 3.6. For each i = 0, 2, 3,

we have:

x✦i y ⊢ z
(△ i, ◭∼i)

x ⊢ z❘∼i y

x◗i y ⊢ z
(N i, ⊳∼i)

x ⊢ z✧∼i y

and for i = 3,

x✦3 y ⊢ z
(△3, ∼◮3)

y ⊢ x∼❚3 z

x◗3 y ⊢ z
(N3 , ∼⊲3)

y ⊢ x∼✩3 z

Notice that sequents occurring in each display postulate involving heterogeneous con-

nectives are not of the same type. However, it is easy to see that the display postulates

preserve the type-uniformity (cf. Definition 3.1); that is, if the premise of any instance

of a display postulate is a type-uniform sequent, then so is its conclusion. Next, the

necessitation, conjugation, Fischer Servi, and monotonicity rules: for 0 ≤ i ≤ 2,

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 133

I ⊢ W
(neci△)

x✦i I ⊢ W

W ⊢ I
(neci −⊲)

W ⊢ x✩i I

I ⊢ W
(neciN)

x◗i I ⊢ W

W ⊢ I
(neci −◮)

W ⊢ x❚i I

x✦i ((x◗i Y) ; Z) ⊢ W
(con ji△)

Y ; (x✦i Z) ⊢ W

W ⊢ x✩i ((x❚i Y) ; Z)
(con ji −⊲)

W ⊢ Y ; (x✩i Z)

x◗i ((x✦i Y) ; Z) ⊢ W
(con jiN)

Y ; (x◗i Z) ⊢ W

W ⊢ x❚i ((x✩i Y) ; Z)
(con ji −◮)

W ⊢ Y ; (x❚i Z)

(x✩i Y) > (x✦i Z) ⊢ W
(FSi△)

x✦i (Y > Z) ⊢ W

W ⊢ (x✦i Y) > (x✩i Z)
(FSi −⊲)

W ⊢ x✩i (Y > Z)

(x❚i Y) > (x◗i Z) ⊢ W
(FSiN)

x◗i (Y > Z) ⊢ W

W ⊢ (x◗i Y) > (x❚i Z)
(FSi −◮)

W ⊢ x❚i (Y > Z)

(x✦i Y) ; (x✦i Z) ⊢ W
(moni△)

x✦i (Y ; Z) ⊢ W

W ⊢ (x✩i Y) ; (x✩i Z)
(moni −⊲)

W ⊢ x✩i (Y ; Z)

(x◗i Y) ; (x◗i Z) ⊢ W
(moniN)

x◗i (Y ; Z) ⊢ W

W ⊢ (x❚i Y) ; (x❚i Z)
(moni −◮)

W ⊢ x❚i (Y ; Z)

Next, we introduce the rules translating the interaction axioms between dynamic and

epistemic modalities. In what follows we omit the subscripts, since the reading is unam-

biguous.

(A◗ F)◗ (A◗ X) ⊢ Y
swap-outL

A◗ (F◗ X) ⊢ Y

X ⊢ (A◗ F)❚ (A❚Y)
swap-outR

X ⊢ A❚ (F❚Y)

A◗ (F◗ X) ⊢ Y
swap-inL

(A◗ F)◗ (A◗ ((F✦ I) ; X)) ⊢ Y

X ⊢ A❚ (F❚Y)
swap-inR

X ⊢ (A◗ F)❚ (A❚ ((F✦ I) > Y))

The structure (A◗ F) in the swap-rules above has absorbed the labels αaβ in the cor-

responding swap-rules of D’.EAK. Moreover, new swap-out rules are unary, whereas the

corresponding ones in D’.EAK are of a non-fixed arity.

The following atom axiom translates the atom axiom of D’.EAK:

F1 ◦ (F2 ◦ · · · (Fn ◦ p) · · ·) ⊢ G1⊲(G2⊲ · · · (Gm⊲p) · · ·)

where F1, . . . , Fn,G1, . . . ,Gm ∈ FNC, ◦ ∈ {✦0 , ◗0 }, ⊲ ∈ {✩0 , ❚0 } and n,m ∈ N. In

what follows, we sometimes indicate the atom axiom with the shorter symbol Φp ⊢ Ψp.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 134

Notice the following difference between the present atom axiom and the one of D’.EAK

(cf. page 105): the structural variables Fs and Gs (which are typically instantiated as

operational variables α and β of type Fnc) translate what in the atom axiom of D’.EAK

were indexes for logical connectives, whereas in the Dynamic Calculus, the operational

variables contained in any instantiation of the Fs and Gs are first-class citizens, on the

same ground as the operational variable p of type Fm. Hence we need to stipulate

whether the introduction of each of these variables is parametric or not. As is customary

in the literature on display calculi (cf. [Bel82, Definition 4.1]), we stipulate that the

only principal variables in atom are the ps, and all the other variable occurrences are

parametric.

Finally, the following balance rule:

X ⊢ Y

F✦0 X ⊢ F✩0 Y

is sound only for F ∈ FNC, and cannot be extended to an arbitrary actions.7 In this rule,

every variable occurrence is parametric, and each occurrence of F is only congruent to

itself.

Justifying the two types of actions. As discussed in the introduction, one of the initial

aims of the present chapter was introducing a formal framework expressive enough so

as to capture at the object-level the information encoded in the meta-linguistic label αaβ.

From the order-theoretic analysis at the beginning of the present section, it emerged that

the additional expressivity encoded in the connective N3 and its interpretation (3.13)

requires a semantic environment which cannot be restricted to functional actions. The

introduction of the general type Act serves this purpose. However, the fact that the rule

balance is only sound for functional actions is the reason why both types Fnc and Act

are needed in order for the Dynamic Calculus to satisfy conditions C’6 and C’7 of Section

3.2.3. Indeed, the distinct type Fnc allows for the rule balance to be formulated so that

all parametric variables occur unrestricted within each type.

7To see this, notice that this rule instantiates to

p ⊢ p

F✦0 p ⊢ F✩0 p

If the rule balance is to be sound, the validity of the premise implies the validity of the conclusion, which is the

translation of the sequent 〈F〉p ⊢ [F]p, which is equivalent to the axiom 〈F〉p → [F]p. It is a well known fact from

Sahlqvist theory that the latter axiom corresponds to the condition that the binary relation associated with 〈F〉 and

[F] is the graph of a partial function.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 135

3.4 Soundness

In the present section, we discuss the soundness of the rules of the Dynamic Calculus

and prove that those which do not involve virtual adjoints (cf. Section 3.3) are sound

with respect to the final coalgebra semantics. In Section 2.5, basic facts about the final

coalgebra have been collected and is explained in detail how the rules of display calculi

are to be interpreted in the final coalgebra. Here we will briefly recall some basics, and

refer the reader to Section 2.5 for a complete discussion.

Structures will be translated into operational terms of the appropriate type, and op-

erational terms will be interpreted according to their type. Specifically, each atomic

proposition p is assigned to a subset [[p]] of the final coalgebra Z, each agent a a binary

relation aZ = [[a]] on Z representing as usual a’s uncertainty about the world, and each

functional actions α is assigned a functional (i.e. deterministic) relation αZ = [[α]] ⊆ Z×Z

subject to the restriction defining the specific feature of epistemic actions, namely, that

for all z, z′ ∈ Z, if zαZz′, then z ∈ [[p]] iff z′ ∈ [[p]] for every atomic proposition p.

Further, each agent a is associated with an auxiliary binary relation aFnc on the domain

of interpretation of Fnc, which is the collection of graphs of partial functions having

subsets of Z as domain and range. For each agent a, the relation aFnc represents a’s

uncertainty about which action takes place).

In order to translate structures as operational terms, structural connectives need to be

translated as logical connectives. To this effect, non-modal structural connectives are

associated with pairs of logical connectives, and any given occurrence of a structural

connective is translated as one or the other, according to its (antecedent or succedent)

position. The following table illustrates how to translate each propositional structural

connective of type FM, in the upper row, into one or the other of the logical connectives

corresponding to it on the lower row: the one on the left-hand (resp. right-hand) side,

if the structural connective occurs in precedent (resp. succedent) position.

Structural symbols < > ; I

Operational symbols ∧ ←

∧

→ ∧ ∨ ⊤ ⊥

Recall that, in the Boolean setting treated here, the connectives ∧ and

∧

are inter-

preted as A ∧ B := A ∧ ¬B and A

∧

B := ¬A ∧ B.

The soundness of structural and operational rules which only involve active components

of type FM has been discussed in Section 2.6.1 and is here therefore omitted.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 136

As to the heterogeneous connectives, their translation into the corresponding opera-

tional connectives is indicated in the table below, to be understood similarly to the one

above, where the index i ranges over {0, 1, 2, 3} for the triangles and over {0, 1, 2} for the

arrows.

Structural symbols ✦i ◗i ✩i ❚i

Operational symbols △ i Ni −⊲i −◮i

The interpretation of the heterogeneous connectives involving formulas and agents cor-

responds to that of the well-known forward and backward modalities discussed in Sec-

tions 2.5.2 and 2.6.1 (below on the right-hand side we recall the notation of D’.EAK):

[[a△ 2A]] = {z ∈ Z | ∃z′ . z aZ z′ & z′ ∈ [[A]]} 〈a〉A

[[aN2 A]] = {z ∈ Z | ∃z . z′aZ z & z′ ∈ [[A]]} 〈a

〉

A

[[a−⊲2 A]] = {z ∈ Z | ∀z′ . z aZ z′ ⇒ z′ ∈ [[A]]} [a]A

[[a−◮2 A]] = {z ∈ Z | ∀z . z′aZ z⇒ z′ ∈ [[A]]} [a

]

A

The connectives △ 0, −⊲0, N0, −◮0, involving formulas and functional actions, are in-

terpreted in the same way, replacing the relation aZ with the deterministic relations

αZ. From the definitions above, it immediately follows for any α ∈ Fnc, we have

[[α△ 0⊤]] = dom(αZ), where the set

dom(αZ) := {z ∈ Z | ∃z′(z′ ∈ Z & zαZz′)}

is the domain of αZ.

It can also be readily verified that, after having fixed the relations interpreting all αs

and as, the translation of Section 3.3 preserves the semantic interpretation, that is,

[[A]] = [[A′]] for any D’.EAK formula A, where A′ denotes the translation of A in the

language of the Dynamic Calculus.

The auxiliary relations aFnc = [[a]]Fnc are used to define the interpretations of △ 3- and

N3-operational terms. Following 3.13, we let

[[a N3 α]] =
⋃
{G | αZ aFnc G},

[[a△ 3α]] =
⋃
{G | G aFnc αZ}.

The connectives △ 1, −⊲1, N1, −◮1, involving Act-type operational terms γ, are interpreted

in the same way as the 0- and 2- indexed connectives, replacing the relation aZ with the

interpretation of the appropriate operational term γ of type Act.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 137

The soundness of all operational rules for heterogeneous connectives immediately fol-

lows from the fact that their semantic counterparts as defined above are monotone or

antitone in each coordinate.

The soundness of the rule balance immediately follows from the fact that the functional

actions are interpreted as deterministic relations (for more details cf. Section 2.6.2).

The soundness of the cut-rules follows from the transitivity of the inclusion relation in

the domain of interpretation of each type.

The soundness of the Atom axioms is argued similarly to that of the Atom axioms of the

system D’.EAK, crucially using the fact that epistemic actions do not change the factual

states of affairs (cf. Section 2.6.2).

The display rules (△ i, −◮i) and (N i, −⊲i) for 0 ≤ i ≤ 2, and (△ 1, ◭1) and (N1, ⊳1) are sound

as the semantics of the triangle and arrow connectives form adjoint pairs.

On the other hand, in the display rules (△ 3, ∼◮3), (N3, ∼⊲3), (△ i, ◭∼i) and (N i, ⊳∼i) for

i = 0, 2, 3, the arrow-connectives are what we call virtual adjoints (cf. Section 3.3), that

is, they do not have a semantic interpretation. In the next section, we will account for

the fact that their presence in the calculus is safe.

Soundness of necessitation, conjugation, Fischer Servi, and monotonicity rules is straight-

forward and proved as in Section 2.6.2. In the remainder of the section, we discuss the

soundness of the new rules swap-in and swap-out recalled below.

Fact 3.5. The following defining clause for the interpretation of N1-operational terms

[[γ N1 A]] = {z ∈ Z | ∃z . z′γZ z & z′ ∈ [[A]]}

immediately implies that the semantic interpretation of N1 is completely
⋃

-preserving in its first

coordinate.

Proof. If γZ =
⋃

i∈I βi, then clearly z′γZz iff z′βiz
′ for some i ∈ I. �

As to the soundness of swap-outL, assume that the structures A, F, X and Y have been

given the following interpretations, according to their type, as discussed above: aZ ⊆

Z × Z, aFnc is a binary relation on graphs of partial functions on Z, FZ is a functional

relation on Z, and XZ ,YZ ⊆ Z. Let

aZ N3 FZ :=
⋃
{β | FZaFncβ}.

Assume that the premise of swap-outL is satisfied. That is:

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 138

̂̂aZN3FZ

〈

aZ

〉

XZ ⊆ YZ ,

where the symbols ̂̂aZN3FZ and

〈

aZ

〉

denote the semantic diamond operations associated

with the converses of the relations aZ N 3FZ and aZ respectively. Then, the following

chain of equivalences holds:

̂̂aZN3FZ

〈

aZ

〉

XZ ⊆ YZ iff
⋃
{

〈

G

〉

〈

aZ

〉

XZ | FZaFnc G} ⊆ YZ (fact 3.5)

iff

〈

G

〉

〈

aZ

〉

XZ ⊆ YZ for every G s.t. FZaFnc G

iff XZ ⊆ [aZ][G]YZ for every G s.t. FZaFnc G

iff XZ ⊆
⋂
{[aZ][G]YZ | FZaFnc G}

hence XZ ⊆ (dom(FZ))c ∪
⋂
{[aZ][G]YZ | FZaFnc G}.

Consider the new variables p, q, a, α, and βi for each Gi such that FZaFncGi. Let us

stipulate that [[p]] := XZ, [[q]] := YZ, [[a]] := aZ, [[α]] := FZ, and [[βi]] := Gi. Hence

[[Pre(α)]] = [[α△ 0⊤]] = dom(FZ). Therefore, the computation above can continue as

follows:

XZ ⊆ (dom(FZ))c ∪
⋂
{[aZ][G]YZ | FZaFnc G}.

iff [[p]] ⊆ [[Pre(α)→
∧
{[a][β]q | αa β}]]

iff [[p]] ⊆ [[[α][a]q]]

iff XZ ⊆ [FZ][aZ]YZ

iff

〈

aZ

〉

〈

FZ

〉

XZ ⊆ YZ

which completes the proof of the soundness of swap-outL. The proof of the soundness

of the remaining swap-rules is similar.

3.5 Completeness and cut elimination

In 3.5.1, we discuss the completeness of the Dynamic Calculus w.r.t. the final coalgebra

semantics. We show that the translation (cf. Section 3.3) of each of the EAK axioms is

derivable in the Dynamic Calculus. Our proof is indirect, and relies on the fact that EAK

is complete w.r.t. the final coalgebra semantics, and that the translation preserves the

semantic interpretation on the final coalgebra (as discussed in Section 3.4). In 3.5.2, we

show that the Dynamic Calculus is a quasi-proper display calculus (cf. Section 3.2.3). By

Theorem 3.4, this is enough to establish that the calculus enjoys cut elimination and the

subformula property.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 139

3.5.1 Derivable rules and completeness

In what follows, a and α are atomic variables (and also the generic operational terms) of

type Ag and Fnc respectively, and A, B are generic operational terms of type Fm. Since

the reading is unambiguous, in the remainder of the present chapter the indexes of the

heterogeneous connectives are dropped.

Under the stipulations above, the translations of the rules reduce’ from D’.EAK (cf. Sec-

tion 2.6.1, page 106) can be derived in the Dynamic Calculus as follows.

α✦ I ;α✦ A ⊢ X
Dis0△

α✦ (I ; A) ⊢ X

I ; A ⊢ α❚ X

I ⊢ α❚ X < A

A ⊢ α❚ X

α✦ A ⊢ X

Also the translations of the comp rules are derivable in the Dynamic Calculus as follows.

α✦ (α◗ X) ⊢ Y

α◗ X ⊢ α❚Y

I ⊢ α◗ X > α❚ Y

α◗ X ; I ⊢ α❚Y

α✦ (α◗ X ; I) ⊢ Y
conj0△

X ;α✦ I ⊢ Y

α✦ I ; X ⊢ Y

Let us derive the axiom (3.14):

a ⊢ a

a ⊢ a α ⊢ α

a◗α ⊢ aNα A ⊢ A

(aNα)−⊲ A ⊢ (a◗α)✩ A

a−⊲ ((aNα)−⊲ A) ⊢ a✩ ((a◗α)✩ A)

a◗ (a−⊲ ((aNα)−⊲ A)) ⊢ ((a◗α)✩ A)

((a◗α)◗ (a◗ (a−⊲ ((aNα)−⊲ A))) ⊢ A
swap-outL

a◗ (α◗ (a−⊲ ((aNα)−⊲ A))) ⊢ A

α◗ (a−⊲ ((aNα)−⊲ A)) ⊢ a✩ A

α◗ (a−⊲ ((aNα)−⊲ A)) ⊢ a−⊲ A

a−⊲ ((aNα)−⊲ A) ⊢ α✩ (a−⊲ A)

a−⊲ ((aNα)−⊲ A) ⊢ α−⊲ (a−⊲ A)

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 140

Let us derive the axiom (3.15):

a ⊢ a

A ⊢ A

a ⊢ a α ⊢ α

a◗α ⊢ aNα

(a◗α)✦ A ⊢ (aNα)△A

a✦ ((a◗α)✦ A) ⊢ a△ ((aNα)△A)

(a◗α)✦ A ⊢ (a❚ (a△ ((aNα)△A)))

A ⊢ (a◗α)❚ (a❚ (a△ ((aNα)△A)))
swap-outR

A ⊢ a❚ (α❚ (a△ ((aNα)△A))

a✦ A ⊢ α❚ (a△ ((aNα)△A)

a△A ⊢ α❚ (a△ ((aNα)△A)

α✦ (a△A) ⊢ a△ ((aNα)△A)

α△ (a△A) ⊢ a△ ((aNα)△A)

A slight difference between the setting of [DST13] and the present setting is that in that

paper only the dynamic boxes are allowed in the object language, even if their proposi-

tional base is taken as non classical. In the present setting however, both the dynamic

boxes and diamonds are taken as primitive connectives. When moving to a propositional

base which is weaker than the Boolean one, also the diamond/box interaction axioms

such as the following one become primitive:

[α]〈a〉A↔ 1α →
∨
{〈a〉〈β〉A | αaβ}.

The axiom above translates as:

α−⊲ (a△A)↔ α△⊤ → a△ ((aNα)△A).

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 141

α ⊢ α

a ⊢ a

a ⊢ a α ⊢ α

a◗α ⊢ aNα A ⊢ A

(a◗α)✦ A ⊢ (aNα)△A

a✦ ((a◗α)✦ A) ⊢ a△ ((aNα)△A)

(a◗α)✦ A ⊢ a❚ (a△ ((aNα)△A))

A ⊢ (a◗α)❚ (a❚ (a△ ((aNα)△A)))
swap-outR

A ⊢ a❚ (α❚ (a△ ((aNα)△A)))

a✦ A ⊢ α❚ (a△ ((aNα)△A))

a△A ⊢ α❚ (a△ ((aNα)△A))

α−⊲ (a△A) ⊢ α✩ (α❚ (a△ ((aNα)△A)))

α◗ (α−⊲ (a△A)) ⊢ α❚ (a△ ((aNα)△A))

I ⊢ (α◗ (α−⊲ (a△A))) > (α❚ (a△ ((aNα)△A)))

α◗ (α−⊲ (a△A)) ; I ⊢ α❚ (a△ ((aNα)△A))

α✦ (α◗ (α−⊲ (a△A)) ; I) ⊢ a△ ((aNα)△A)
conj0△

(α−⊲ (a△A)) ; (α✦ I) ⊢ a△ ((aNα)△A)

α✦ I ⊢ (α−⊲ (a△A)) > (a△ ((aNα)△A))

I ⊢ α❚ (α−⊲ (a△A)) > (a△ ((aNα)△A))

⊤ ⊢ α❚ (α−⊲ (a△A)) > (a△ ((aNα)△A))

α✦⊤ ⊢ (α−⊲ (a△A)) > (a△ ((aNα)△A))

α△⊤ ⊢ (α−⊲ (a△A)) > (a△ ((aNα)△A))

(α−⊲ (a△A)) ;α△⊤ ⊢ a△ ((aNα)△A)

α△⊤ ; (α−⊲ (a△A)) ⊢ a△ ((aNα)△A)

α−⊲ (a△A) ⊢ α△⊤ > a△ ((aNα)△A)

α−⊲ (a△A) ⊢ α△⊤ → a△ ((aNα)△A)

For the other direction, recall that the counterpart of the rule reduce’ is derivable in the

Dynamic Calculus (see page 139):

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤

a ⊢ a A ⊢ A

a✦ A ⊢ a△A
balance

α✦ (a✦ A) ⊢ α✩ (a△A)

a✦ A ⊢ α❚ (α✩ (a△A))

A ⊢ a❚ (α❚ (α✩ (a△A)))
swap-inR

A ⊢ (a◗α)❚ (a❚ ((α✦ I) > (α✩ (a△A))))

(a◗α)✦ A ⊢ a❚ ((α✦ I) > (α✩ (a△A)))

a◗α ⊢ (a❚ ((α✦ I) > (α✩ (a△A))))❘ A

aNα ⊢ (a❚ ((α✦ I) > (α✩ (a△A))))❘ A

(aNα)✦ A ⊢ a❚ ((α✦ I) > (α✩ (a△A)))

(aNα)△A ⊢ a❚ ((α✦ I) > (α✩ (a△A)))

a✦ ((aNα)△A) ⊢ (α✦ I) > (α✩ (a△A))
reduce′

R
a✦ ((aNα)△A) ⊢ α✩ (a△A)

a△ ((aNα)△A) ⊢ α✩ (a△A)

α△⊤ → a△ ((aNα)△A) ⊢ α✦ I > α✩ (a△A)
reduce′

R
α△⊤ → a△ ((aNα)△A) ⊢ α✩ (a△A)

α△⊤ → a△ ((aNα)△A) ⊢ α−⊲ (a△A)

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 142

The derivations (of the translations) of the remaining axioms have been relegated to the

appendix.

3.5.2 Belnap-style cut elimination, and subformula property

In the present subsection, we prove that the Dynamic Calculus for EAK is a quasi-proper

display calculus (cf. Section 3.2.3). By Theorem 3.4, this is enough to establish that the

calculus enjoys the cut elimination and the subformula property. Conditions C1, C2, C4,

C’5, C’6, C’7 and C10 are straightforwardly verified by inspecting the rules and are left to

the reader.

Condition C”5 can be straightforwardly argued by observing that the only axioms to

which a display postulate can be applied are of the atom form: Φp ⊢ Ψp. In this case,

the only applicable display postulates are those rewriting ✦ - or ◗ -structures into ❚ -

and ✩ -structures and vice versa, which indeed preserve the atom shape. Condition

C”8 is straightforwardly verified by inspection on the axioms. Condition C’2 can be

straightforwardly verified by inspection on the rules, for instance by observing that the

domains and codomains of adjoints are rigidly determined.

The following proposition shows that condition C9 is met:

Proposition 3.6. Any derivable sequent in the Dynamic Calculus for EAK is type-uniform.

Proof. We prove the proposition by induction on the height of the derivation. The base case

is verified by inspection; indeed, the following axioms are type-uniform by definition of their

constituents:

a ⊢ a α ⊢ α Φp ⊢ Ψp ⊥ ⊢ I I ⊢ ⊤

As to the inductive step, one can verify by inspection that all the rules of the Dynamic Calculus

preserve type-uniformity, and that the Cut rules are strongly type-uniform. �

As to condition C’3, all parameters in all but the swap-in rules satisfy the condition of

non-proliferation. In each swap-in rule, the parameters of type Ag and Fnc in the premise

are congruent to two parameters in the conclusion. However, it is not difficult to see that

in each derivation, each application of any cut rule

...
x ⊢ a

...
a ⊢ y

x ⊢ y

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 143

of type Ag or Fnc must be such that the structure x reduces to the atomic term a. Indeed,

because the sequent x ⊢ a is derivable, by Proposition 3.6 it must be type uniform, that

is, the structure x needs to be of type AG if a is, or of type FNC if a is. If x was not

atomic, then its main structural connective would be a squiggly arrow ✧∼ or ❘∼ .

Because these connectives do not have any operational counterpart, such a structure

cannot have been introduced by an application of an operational rule. Hence, the only

remaining possibility is that it has been introduced via a display postulate. But also this

case is impossible, since in display postulates introduce these connectives only in the

succedent, and x is in precedent position. This finishes the verification of condition C’3.

Finally, the verification steps for C’8 are collected in Appendix F.

3.6 Conservativity

In the definition of the language of the Dynamic Calculus, we have adopted a rather

inclusive policy. That is, the operational language includes almost all the logical sym-

bols which could be assigned a natural interpretation purely on the basis of reasonable

assumptions on the order-theoretic properties of the domains of interpretation of the

various types of terms, the only exception being the connectives ◭1 and ⊳1, which

are excluded from the language although they are semantically justified. A very useful

and powerful consequence of the fact that the Dynamic Calculus enjoys cut elimination

Belnap-style is that this cut elimination is then inherited by the subcalculi corresponding

to each fragment of the operational language of the Dynamic Calculus which verify as

they stand the assumptions of Theorem 3.4. However, the question is still open about

whether these subcalculi interact with each other in unwanted ways when their proof

power is concerned: for any two such fragments L1 ⊆ L2, does the subcalculus cor-

responding to L2 conservatively extend the one corresponding to L1? Typically, the

absence of unwanted interactions among subcalculi is deduced from having cut elimi-

nation, and soundness and completeness w.r.t. a given semantics. This way, in Chapter

2 it is also shown that the system D’.EAK conservatively extends EAK.

However, this strategy is not immediately applicable to the setting of the Dynamic Cal-

culus, due to the structural symbols referred to as virtual adjoints, which are easily rec-

ognizable, since they are shaped like arrows with a squiggly tail: ❘∼ , ∼✩ etc. Virtual

adjoints have no semantic justification, and hence, the rules in which they specifically

occur (that is, the display postulates relative to them) cannot be justified on semantic

grounds. The reason for including virtual adjoints in the language of the Dynamic Cal-

culus is for it to enjoy the relativized display property, discussed in Section 3.2.2, which

is key to guarantee the crucial condition C’8, requiring the existence of a way to solve

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 144

the principal stage of the cut elimination theorem (cf. Section 3.2.4, see also Appendix

F).

When discussing virtual adjoints in Section 3.3, we claimed that, since they are only

introduced in a derivation by way of display postulates and do not specifically intervene

in any other structural rule, their presence in the calculus does not add unwanted proof

power compared to D’.EAK (and hence to EAK). This is the sense in which the intro-

duction of the virtual adjoints can be regarded as syntactically sound. The aim of the

present section is to prove this claim.

A general and very powerful method for proving the conservativity of display calculi has

been introduced in [CDGT13a, CDGT13b] for the full intuitionistic linear logic. This

method involves no less than two translations, one from the given display calculus into

an intermediate shallow inference nested sequent calculus, and another one from the

intermediate calculus into a deep inference nested sequent calculus. This method is very

intricate, requiring the verification of hundreds of cases which account for every possible

interaction between the shallow and the deep calculus. The intricacy of this proof was

such that the correctness of the results in [CDGT13a, CDGT13b] has been established

by formalizing them in the proof assistant Isabelle/HOL, as reported in [DCGT14].

However, in the present section, a much smoother proof of conservativity is given for the

Dynamic Calculus for EAK, which does not rely on any nested sequent calculus. Rather,

the proof below relies on very specific and uncommon features of the design of the

Dynamic Calculus for EAK. In a sense, the very fact that such a smooth proof is possible

witnesses how uncommonly well behaved EAK is.

Definition 3.7. A sequent x ⊢ y is severe if in the generation trees of either x or y there are occur-

rences of structural connectives to which no display postulates can be applied. Such occurrences

will be referred to as severe.

Clearly, the definition above makes sense only in the context of calculi which, as is the

case of the Dynamic Calculus, do not enjoy the full display property (cf. Definition 2.1).

It can be easily verified that, in the specific case of the Dynamic Calculus, there are only

two types of severe occurrences: triangle-type connectives rooting a structure in succe-

dent position, and arrow-type connectives rooting a structure in precedent position.

Examples of severe sequents then are (a✩α)✦ A ⊢ B and A ⊢ a✦ B.

Lemma 3.8. Any rule in the Dynamic Calculus preserves the severity of sequents. That is, if a

rule is applied to a severe sequent, the conclusion of that rule application is also severe.

Proof. By inspection on the rules. �

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 145

Fact 3.9. Let x ⊢ y be a sequent of type AG or FNC, in the full language of Dynamic Cal-

culus, which is derivable by means of a derivation π in which no application of Weakening,

Necessitation, Balance or Atom introduce occurrences of virtual adjoints. Then x = a for some

operational term a of the appropriate type.

Proof. If x is not an atomic structure, then the grammar of AG and FNC prescribes that x has

a virtual adjoint as a main connective. However, the assumptions imply that such structures

can be introduced only by way of applications of display postulates, which introduce them in

succedent position. Hence, given the assumptions, there is no way in which such a connective

can be introduced in precedent position. �

Lemma 3.10. Let X ⊢ Y be a sequent of type FM which is derivable in the Dynamic Calculus by

means of a derivation π in which no application of Weakening, Necessitation, Balance or Atom

introduce occurrences of virtual adjoints. Then a derivation π′ of X ⊢ Y exists every node of

which (hence the conclusion in particular) is free of virtual adjoints.

Proof. Let s be some node/sequent in π where the given virtual adjoint has been introduced.

Since virtual adjoints in the Dynamic Calculus are all virtual “right adjoints”, and since, by

assumption, they are introduced only by way of applications of display postulates, the given

virtual adjoint is the main connective in the succedent of the sequent s. Moreover, virtual ad-

joints are main connectives of structures of type AG and FNC. By type uniformity, this implies

that the sequent s is either of type AG or FNC, and therefore s cannot be the conclusion of π.

Some rule R must exist which takes s as a premise. It can be easily verified by inspection that

R cannot coincide with any structural rule in the Dynamic Calculus which is neither a cut of the

appropriate type nor a display postulate, since all structural rules different from Cut and display

postulates have premises of type FM. We can also assume w.l.o.g. that R is not an application of

Cut. Indeed, by Fact 3.9, s is of the form a ⊢ x, with a being an operational term, and x being

a non-atomic structure by assumption. Hence, if R was a Cut-application, the inference must be

of the form

...
y ⊢ a

...
a ⊢ x

y ⊢ x

Because Cut rules in the Dynamic Calculus are strongly type-regular, also y ⊢ a would be a

(derivable) sequent of type AG or FNC, hence Fact 3.9 applies to y ⊢ a. That is, y must be

atomic, and because y ⊢ a is derivable, y must coincide with a. Hence, the conclusion of that

Cut application is again s. This shows that if R was Cut, w.l.o.g. we would be able remove that

application from the prooftree. The remaining options are that R coincides with an introduction

rule of some heterogeneous logical connective. Recall that, by Fact 3.9, s is of the form a ⊢ x,

where a is an operational term. Then, it can be verified by inspection that no heterogeneous rule

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 146

is applicable if x is not an atomic structure, which is not the case of the sequent s, as discussed

above. Finally, since the left-hand side of s is atomic, no other display postulates are applicable

to s but the converse direction of the same display postulate which had introduced the virtual

adjoint and which makes it disappear. Therefore, the refinement π′ of π consists in removing

these double and redundant applications of display postulates. �

Lemma 3.11. If inf is an application of Balance, Atom, Necessitation or Weakening in which

some occurrence of a virtual adjoint is introduced, then the conclusion of inf is a severe sequent.

Proof. As to Balance, Atom and Necessitationi with i = 0, 2, notice that each of these rules in-

troduces a structure x of type FNC or AG in precedent position. If a virtual adjoint is introduced

as a substructure of x, then x is non-atomic, and it can be immediately verified by inspecting the

syntax of FNC and AG that the main connective of x is an arrow-type connective, which would

then be in precedent position. Hence, the resulting sequent is severe.

As to Weakening and Necessitation1, notice that these rules introduce structures x of type FM

and ACT respectively. Recall that virtual adjoints root structures of type FNC or AG. Hence, if

some virtual adjoint occurs in the generation tree of x, it cannot occur at the root of x. Hence,

the virtual adjoint must occur in the scope of some other structural connective. Notice that the

heterogeneous connectives are the only ones which can take as argument a structure rooted in

a virtual adjoint. We claim that either the virtual adjoint occurs in precedent position (which

would be enough to conclude that the conclusion of inf is severe), or under the scope of some

structural connective to which no display postulate can be applied. Assume that the virtual

adjoint occurs in succedent position. If its immediate ancestor in the generation tree of X is

a triangle-type connective, then these connectives are in succedent position too, and hence no

display postulate can be applied to them, which makes the conclusion of inf severe, as required.

Similarly, if the immediate ancestor of the virtual adjoint is an arrow-type connective, then it

can be easily checked by inspection that these connectives take structures of type FNC or AG

exclusively in their antitone coordinate (that is, on the flat side of the arrow). Hence, the arrow-

type connective is in precedent position, and hence no display postulate can be applied to it, as

required. �

Corollary 3.12. Let A′ ⊢ B′ be a sequent of type Fm in the language of the Dynamic Calculus,

such that A′ and B′ are, respectively, images of some D’.EAK-formulas A and B under the

translation of Section 3.3. If A′ ⊢ B′ is derivable in the Dynamic Calculus, then A ⊢ B is

derivable in D’.EAK.

Proof. Let π be a derivation of A′ ⊢ B′ in the Dynamic Calculus. By assumption, A′ ⊢ B′

is not severe. Hence, no rule application in π can introduce severe sequents, since these, by

Lemma 3.8, would then propagate till the conclusion. Hence in particular, by Lemma 3.11,

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 147

in π there cannot be any applications of Balance, Atom, Necessitation or Weakening in which

some occurrence of a virtual adjoint is introduced. Therefore, by Lemma 3.10, a derivation π′

of A′ ⊢ B′ exists in which no virtual adjoints occur. By the results collected in Section 3.4,

the derivation π′ is sound w.r.t. the final coalgebra semantics. Hence A′ ⊢ B′ is satisfied on the

final coalgebra semantics. Since, as discussed in Section 3.4, [[A]] = [[A′]] and [[B]] = [[B′]], this

implies that A ⊢ B is satisfied. Since D’.EAK is complete w.r.t. the final coalgebra semantics, a

D’.EAK-derivation of A ⊢ B exists. �

3.7 Conclusions and further directions

The main contribution of the present chapter is the definition of a display calculus which

smoothly encompasses the most proof-theoretically impervious features of Baltag Moss

and Solecki’s logic of epistemic actions and knowledge. Besides being well performing

(it adequately captures EAK and enjoys Belnap-style cut elimination), this calculus pro-

vides an interesting and in our opinion very promising methodological platform towards

the uniform development of a general proof-theoretic account of all dynamic logics, and

also, from a purely structurally proof-theoretic viewpoint, for clarifying and sharpening

the formulation of criteria leading to the statement and proof of meta-theoretic results

such as Belnap-style cut elimination, or conservativity issues.

Seminal approaches. The starting point of this methodology is to introduce enough syn-

tactic devices, both at the operational and at the structural level, so that the parameters

indexing logical connectives can be accounted for in the system as terms in the language

of choice. This gives rise to the definition of multi-type languages, endowed with con-

nectives which manage the interaction of the different types. This approach appears

seminally in both [BCS07] and [DST13]; however, in neither paper it is fully explored:

in [BCS07] there is no theory of contexts governing the interaction of different types,

and in [DST13], this interaction is clarified, but only at the metalinguistic level.

Refinements of Belnap’s conditions, and type-uniformity. In Section 2.7, we formulated

the conjecture that the multi-type setting will prove useful for a smoother treatment

of Wansing’s and Belnap’s regularity requirements (cf. conditions C6/C7 in [Wan98],

[Bel90, Section 2]) for the Belnap-style cut elimination, via the notion of type-uniformity

(Definition 3.1). In [Bel82], Belnap motivates his condition C7
8 saying that “rules need

not be wholly closed under substitution of structures for congruent formulas which are

8Recall that Belnap’s condition C7 corresponds to Wansing’s cons-regularity for formulas occurring in precedent

position. An analogous explanation holds of course for the ant-regularity condition of formulas in succedent position.

Chapter 3. Multi-Type Display Calculus for Dynamic Epistemic Logic 148

antecedent parts, but they must be closed enough.” Then he explains that closed enough

refers to the closure under substitution of formulas A for structures X such that a deriva-

tion is available in the system for the sequent X ⊢ A, in which the occurrence of A in

the conclusion is principal. The crucial observation is that, even if a system is not de-

fined a priori as multi-type, it can be regarded as a multi-type setting: indeed, the type

of A can be defined as consisting of all the structures X such that the shape of deriva-

tion alluded to above exists. Then, condition C6/C7 can be equivalently reformulated

as the requirement that rules should be closed under uniform substitution within each

type. Notice that, under the stipulations above, different types must be separated by at

least one structural rule. For instance, in the Dynamic Calculus for EAK, the rule balance

separates Fnc from Act. In conclusion, our conjecture is that Wansing’s and Belnap’s con-

ditions C6/C7 boil down to a type-uniformity requirement in a context in which types are

not given explicitly. The observations above indicate that type-uniformity is a desirable

design requirement for general dynamic calculi, and in particular for the development

of an adequate proof theory for dynamic logics, particularly in view of a uniform path

to Belnap-style cut elimination.

Non-proliferation. Our analysis towards Belnap-style cut elimination led us to refine

and weaken various aspects of the cut elimination metatheorem. For instance, the re-

quirement of non-proliferation of parameters for quasi-proper multi-type display calculi

applies only to types the grammar of which is rich enough that allows non-trivial cut

applications, that is, applications of cut the conclusion of which is different from both

premises. The case study of EAK allows such a simple grammar on functional actions

and agents that these two types are not subject to the restriction of non-proliferation.

This in turn makes it possible to include the swap-in rules in the calculus, in which every

occurring parameter of a type which can proliferate does indeed proliferate. Introduc-

ing some nontrivial grammar on functional actions (e.g. sequential composition) would

make the restriction of non-proliferation applicable to this type, and hence would make

swap-in not suitable anymore.

Expanding the signature. Notwithstanding the concerns about swap-in, the multi-type

language provides the opportunity to consider various natural expansions of the lan-

guage of actions. Early on, we argued that the connective ◭1 which takes formulas in

both coordinate as arguments and delivers an action, has the following natural inter-

pretation: for all formulas A, B, the term B◭1A denotes the weakest epistemic action γ

such that, if A was true before γ was performed, then B is true after any successful ex-

ecution of γ. This connective seems particularly suited to explore epistemic capabilities

and planning.

Chapter 4

Display-Type Calculi via Visibility

4.1 Introduction

In Chapter 2, we have introduced the final coalgebra as a semantic setting for EAK

alternative to the standard one, with the purpose of giving an independent justification

of the existence of the adjoints of the dynamic modal operators associated with epistemic

actions. This alternative semantics was crucial to argue that the calculus D’.EAK is sound

w.r.t. the original language of EAK.

In Chapter 3, we justified the soundness of the multi-type calculus w.r.t. EAK thanks to

very special circumstances which can be easily lost when moving to other logics. Hence,

nice and smooth as it is, the conservativity result obtained there does not give rise to a

uniform and modular methodology.

Our main motivation in the present line of research is precisely to extend the benefits

of display calculi in a uniform and modular way to the wide family of dynamic logics.

In the present chapter, we address a crucial intermediate step towards this goal, namely

the issue of how to account for logics the semantics of which, as is the case of monotone

modal logic, does not support the existence of enough adjoints so as to safely justify the

design of any calculus with the display property, even relativized as in Definition 3.2.2.

In the present chapter, we explore the possibility of dropping the display property, either

full or relativized, but still work in a setting for which the all-important Belnap-style cut

elimination metatheorem can be formulated and proved.

Of course, dropping one property calls for some readjustments, if we are to make the

metatheorem work. As to the first readjustment, the present set-up relies on a partial

strengthening of Belnap’s condition C5 (Display of principal constituents) which is in-

spired by Sambin’s work on Basic logic [BFS00]. The rules of the Basic Logic calculus

149

Chapter 4. Display-Type Calculi via Visibility 150

verify the so-called visibility or segregation property, which we report in the formulation

of [BFS00]:

We thus say that a rule satisfies visibility if it operates on a formula (or two

formulae) only if it is (they are) the only formula(e), either in the antecedent

or in the succedent of a sequent. Formally, visibility is the property that all

active formulae (secondary or principal formulae, in Gentzen’s terminology)

are isolated, or visible, all passive contexts (not on the same side of any

active formula) are free.

To illustrate this technical point, notice that Belnap’s condition C5 does not exclude the

possibility of designing introduction rules of the following shape:

(X1 ⊢ Y1)[A]p/s (X2 ⊢ Y2)[B]p/s

X ⊢ A ∗ B

(U ⊢ V)[A∗B][A]s/p,[B]s/p

A ∗ B ⊢ Z

The condition on the design of these rules which we wish to emphasize here is that the

position (either precedent or succedent) of each active occurrence A and B in one rule

needs to be the opposite of its position in the other rule. If this requirement is satisfied,

then the display property takes care of almost everything else:1 for instance, if both A

and B occur in succedent position in the rule above on the left and in precedent position

in the rule above on the right, the reduction step in the cut elimination metatheorem

goes as follows:

π1

(X1 ⊢ Y1)[A]

π2

(X2 ⊢ Y2)[B]

X ⊢ A ∗ B

π

(U ⊢ V)[A∗B]

A ∗ B ⊢ Z

X ⊢ Z

π2

(X2 ⊢ Y2)[B]

Y′ ⊢ B

π1

(X1 ⊢ Y1)[A]

X′ ⊢ A

π

(U ⊢ V)[A∗B]

A ⊢ U′[B]

X′ ⊢ U′[B]

B ⊢ V′[X′]

Y′ ⊢ V′[X′]

X ⊢ Z

Namely, the (relativized) display property makes it possible to access (the active occur-

rences of) the immediate subformulas of the original cut formula, and break down the

original cut into cut applications of strictly lower rank.

Enforcing visibility in our running example amounts to replacing the rules above by

weaker rules such as the following ones:

X1 ⊢ A X2 ⊢ B

X1∗X2 ⊢ A ∗ B

A∗B ⊢ Z
A ∗ B ⊢ Z

1The double dashed line in the prooftree after the reduction step hides a series of transformations which cannot be

accounted for only in terms of display rules. The analysis leading to the explicit underpinning of these transformation

steps has a long and nontrivial history, and is insightful and interesting in its own right, but going deeper into it is not

directly useful to the point we are trying to illustrate in this example, which is the interplay between display property

and visibility.

Chapter 4. Display-Type Calculi via Visibility 151

This more restricted shape of rules, in the context of the transformation steps pictured

above, frees ourselves from the need of having to rely on display rules to access cut

subformulas e.g. under the subtrees π1 and π2, but does not help us with π.

The second readjustment is then giving up the display-type cut rule in which both cut

formulas are in display, and adopting more general cut rules, namely surgical cut rules,

of the following form:

Z ⊢ A (X ⊢ Y)[A]pre

(X ⊢ Y)[Z/A]pre

(X ⊢ Y)[A]suc A ⊢ Z

(X ⊢ Y)[Z/A]suc

These readjustments make it possible to perform the following reduction step, which

does not rely on any display postulate:

π1

X1 ⊢ A

π2

X2 ⊢ B

X1∗X2 ⊢ A ∗ B

π

A∗B ⊢ Y
A ∗ B ⊢ Y

X1∗X2 ⊢ Y

π2

X2 ⊢ B

π1

X1 ⊢ A

π

A∗B ⊢ Y

X1∗B ⊢ Y

X1∗X2 ⊢ Y

In fact, in what follows, we will adopt a hybrid approach which mixes and balances Sam-

bin’s visibility and Belnap’s display property. Namely, in those cases in which visibility

is allowed not to hold, we will require enough display postulates for the cut elimination

step affected by the change to go through.

Organization and results. For preliminaries on multi-type calculi the reader is referred

to Section 3.2.1. In Section 4.2, we list a set of conditions generalising the (proper)

display calculi of [Wan02]. In Section 4.3, we discuss how these conditions guarantee

the cut elimination metatheorem for the multi-type calculi enjoying them.

4.2 Quasi-proper multi-type display-type calculi

A multi-type calculus is a quasi-proper display-type calculus if it satisfies the following

list of conditions:

C1: Preservation of operational terms. Each operational term occurring in a premise

of an inference rule inf is a subterm of some operational term in the conclusion of inf.

C2: Shape-alikeness of parameters. Congruent parameters (i.e. non-active terms in the

application of a rule) are occurrences of the same structure.

Chapter 4. Display-Type Calculi via Visibility 152

C′
2
: Type-alikeness of parameters. Congruent parameters have exactly the same type.

This condition bans the possibility that a parameter changes type along its history.

C3: Non-proliferation of parameters. Each parameter in an inference rule inf is con-

gruent to at most one constituent in the conclusion of inf.

C4: Position-alikeness of parameters. Congruent parameters are either all precedent or

all succedent parts of their respective sequents. In the case of calculi enjoying the display

property, precedent and succedent parts are defined in the usual way (see [Bel82]).

Otherwise, these notions can still be defined by induction on the shape of the structures,

by relying on the polarity of each coordinate of the structural connectives.

C′
5
: Quasi-display of principal constituents. If an operational term a is principal in the

conclusion sequent s of a derivation π, then a is in display, unless π consists only of its

conclusion sequent s (i.e. s is an axiom).

C′′
5

: Display-invariance of axioms. If a is principal in an axiom s, then a can be isolated

by applying Display Postulates and the new sequent is still an axiom.

C′
6
: Closure under substitution for succedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms

occurring in succedent position, within each type.

C′
7
: Closure under substitution for precedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms

occurring in precedent position, within each type.

C′
8
: Eliminability of matching principal constituents. This condition requests a stan-

dard Gentzen-style checking, which is now limited to the case in which both cut formu-

las are principal, i.e. each of them has been introduced with the last rule application of

each corresponding subdeduction. In this case, analogously to the proof Gentzen-style,

condition C′
8

requires being able to transform the given deduction into a deduction with

the same conclusion in which either the cut is eliminated altogether, or is transformed

in one or more applications of the cut rule, involving proper subterms of the original

Chapter 4. Display-Type Calculi via Visibility 153

operational cut-term. In addition to this, specific to the multi-type setting is the require-

ment that the new application(s) of the cut rule be also type-uniform (cf. condition C′
10

below).

C′′′
8

: Closure of axioms under surgical cut. If (x ⊢ y)([a]pre, [a]suc), a ⊢ z[a]suc and v[a]pre ⊢

a are axioms, then (x ⊢ y)([a]pre, [z/a]suc) and (x ⊢ y)([v/a]pre, [a]suc) are again axioms.

C9: Type-uniformity of derivable sequents. Each derivable sequent is type-uniform.

C′
10

: Preservation of type-uniformity of cut rules. All cut rules preserve type-uniformity

(cf. Definition 3.1).

4.3 Cut elimination metatheorem

Theorem 4.1. Any multi-type sequent calculus satisfying C2, C′
2
, C3, C4, C′

5
, C′′

5
, C′

6
, C′

7
, C′

8
,

C′′′
8

, C9 and C′
10

is cut-admissible. If also C1 is satisfied, then the calculus enjoys the subformula

property.

Proof. We follow the proof in [Wan02, Section 3.3, Appendix A]. For the sake of conciseness,

we will expand only on the parts of the proof which depart from the treatment in [Wan02]. In

particular, we consider elimination of surgical cuts (cf. page 151). As to the principal move,

the only difference concerns the case of a surgical cut application both premises of which are

axioms. Condition C′′′
8

guarantees that this cut application can be eliminated. The remaining

principal moves go exactly as in [Wan02], thanks to C′
8
. As to the parametric moves, we are in

the following situation:

... π1

z ⊢ a

... π2.1

(x1 ⊢ y1)[au1
]pre · · ·

... π2.n

(xn ⊢ yn)[aun
]pre

. . .
... . .
. π2

(x ⊢ y)[a]pre

(x ⊢ y)[z]pre

where (x ⊢ y)[z]pre[w]suc means that z and w respectively occur in precedent and succedent

position in x ⊢ y, and the cut term a is parametric in the conclusion of π2 (the other case is

symmetric).

Chapter 4. Display-Type Calculi via Visibility 154

Conditions C2, C′
2
, C3 and C4 make it possible to follow the history of that occurrence of a,

since these conditions enforce that the history takes the shape of a tree, of which we consider

each leaf. Let aui
(abbreviated to au from now on) be one such uppermost-occurrence in the

history-tree of the parametric cut term a occurring in π2, and let π2.i be the subderivation ending

in the sequent xi ⊢ yi, in which au is introduced.

Wansing’s case (1) splits into two subcases: (1a) au is introduced in display; (1b) au is not

introduced in display. Condition C′
5

guarantees that (1b) can only be the case when au has been

introduced via an axiom.

If (1a), then we can perform the following transformation:

... π1

z ⊢ a

... π2.i

au ⊢ yi

... π2

(x ⊢ y)[a]pre

(x ⊢ y)[z]pre

... π1

z ⊢ a

... π2.i

au ⊢ yi

z ⊢ yi

... π2[z/a]pre

(x ⊢ y)[z]pre

where π2[z/a]pre is the derivation obtained by substituting z for every occurrence in the history of

a. Notice that the assumption that a is parametric in the conclusion of π2 and that au is principal

in inf imply that π2 has more than one node, and hence the transformation above results in a cut

application of strictly lower height. Moreover, the assumptions that the original cut preserves

type-uniformity (C10), that every derivable sequent is type-uniform (C9), and the type-alikeness

of parameters (C′
2
) imply that the sequent au ⊢ yi is of the same type as the sequents z ⊢ a.

Hence, in particular, the new cut preserves type-uniformity. Finally, condition C′
7

implies that

the substitution of z for a in π2 gives rise to an admissible derivation π2[z/a]pre in the calculus

(use C′
6

for the symmetric case). If (1b), i.e. if au is the principal formula of an axiom, the

situation is illustrated below in the derivation on the left-hand side:

... π1

z ⊢ a

(xi ⊢ yi)[au]pre[a]suc

... π2

(x ⊢ y)[a]pre

(x ⊢ y)[z]pre

... π1

z ⊢ a au ⊢ y′[a]suc

z ⊢ y′[a]suc

... π
′

(xi ⊢ yi)[z/au]pre[a]suc

... π2[z/a]pre

(x ⊢ y)[z]pre

where (xi ⊢ yi)[au]pre[a]suc is an axiom. Then, condition C′′
5

implies that some sequent au ⊢ y′[a]suc

exists, which is display-equivalent to the first axiom, and in which au occurs in display. This

new sequent can be either identical to (xi ⊢ yi)[au]pre[a]suc, in which case we proceed as in case

(1a), or it can be different, in which case, condition C′′
5

guarantees that it is an axiom as well.

Chapter 4. Display-Type Calculi via Visibility 155

Further, if π is the derivation consisting of applications of display postulates which transform

the latter axiom into the former, then let π′ = π[z/a]pre. As discussed when treating (1a), the

assumptions imply that π2 has more than one node, so the transformation described above re-

sults in a cut application of strictly lower height. Moreover, the assumptions that the original cut

preserves type-uniformity, that every derivable sequent is type-uniform, and the type-alikeness

of parameters imply that the sequent au ⊢ y′[a]suc is of the same type as the sequent z ⊢ a.

Hence, the new cut is strongly type-uniform. Finally, condition C′
7

implies that substituting z for

a in π2 and in π gives rise to admissible derivations π2[z/a] and π′ in the calculus (use C′
6

for the

symmetric case).

As to Wansing’s case (2), assume that au has been introduced as a parameter in the conclusion

of π2.i by an application inf of the rule Ru. For instance, in the calculus of Section 3.3, this

situation can arise if a is of type formula Fm and it is introduced by weakening, or if a is of

type functional actions Fnc and it is introduced by the rule balance or atom. Since au is a leaf

in the history-tree of a, this implies that au is congruent only to itself in π2.i. Hence, conditions

C′
7
, the assumption that the original cut is quasi strongly type-uniform, and the type-alikeness of

parameters (C′
2
) imply that the sequent (xi ⊢ yi)[au]pre can be replaced in the conclusion of π2.i

by the sequent (xi ⊢ yi)[z/au]pre by means of an application of the same rule Ru. Let π′
2.i

be the

resulting derivation.

Therefore, the transformation below yields a derivation where π1 is not used at all and the cut

disappears.

... π1

z ⊢ a

... π2.i

(xi ⊢ yi)[au]pre

... π2

(x ⊢ y)[a]pre

(x ⊢ y)[z]pre

... π
′
2.i

(xi ⊢ yi)[z/au]pre

... π2[z/a]pre

(x ⊢ y)[z]pre

From this point on, the proof proceeds like in [Wan02]. It is useful to emphasise that the need

to combine principal and parametric moves arises in multi-type settings such as the Dynamic

Calculus for EAK introduced in Section 3.3 not only because of contraction or additive rules,

but also due to the presence of structural rules such as

(x◗ Y) ; (x◗ Z) ⊢ W

x◗ (Y ; Z) ⊢ W

W ⊢ (x✦Y) > (x✩Z)

W ⊢ x✩ (Y > Z)

�

Chapter 5

Display-Type Calculus for Monotone

Modal Logic

5.1 Introduction

In the present chapter, we adapt the display-type methodology discussed in the previous

chapter to the case study of monotone modal logic. This setting is simpler for two

reasons: firstly, we can dispense with the introduction of types; secondly, we do not

need to introduce axioms of a more complex type (such as the atom axioms discussed

in Chapters 2 and 3). Since this is the most common and familiar situation, we take

the opportunity of a closer look at this case study to formulate shorter and better fitting

versions of the cut elimination theorem as well.

Organization and results. In Section 5.2, we collect preliminaries on monotone modal

logic, display calculi and the visibility property as discussed in [BFS00]. In Section

5.3, we introduce proper display-type calculi in terms of the properties ensuring the cut

elimination metatheorem, and we outline the proof of their metatheorem. In Section

5.4, we introduce a concrete instance of display-type calculus, which is designed to

account for monotone modal logic; we show that this calculus is sound and complete

w.r.t. the standard monotone neighbourhood semantics, and that its cut elimination

result follows from the metatheorem of Section 5.3. More details are collected in the

Appendix H.

157

Chapter 5. Display-Type Calculus for Monotone Modal Logic 158

5.2 Preliminaries

In the present section, we collect the preliminaries on Monotone Modal Logic and on

the sequent calculi needed for our treatment.

5.2.1 Syntax and semantics of monotone modal logic

In the present subsection, we recall the syntax and semantic of monotone modal logic

(MML).

Let AtProp be a countable set of atomic propositions. The set L of the formulas A of

Monotone Modal Logic (MML) is defined as follows:

A ::= p ∈ AtProp | ¬A | A ∨ A | (∃∀)A.

Monotone modal logics (cf. [Che80, Han03]) are classical modal logics such that the

modal operator (∃∀) is required to satisfy the following condition: for all formulas A

and B,

A→ B implies (∃∀)A→ (∃∀)B. (RM)

It is well known (cf. [Che80], Theorem 8.11) that monotone modal logics can be equiv-

alently defined as being closed under the following axiom:

(∃∀)(A ∧ B)→ (∃∀)A ∧ (∃∀)B

and satisfying the following condition: for all formulas A and B,

A↔ B implies (∃∀)A↔ (∃∀)B. (RE)

As the propositional base of MML is classical, we can define the modality (∀∃) as the

dual of (∃∀), that is: (∀∃) := ¬(∃∀)¬. If we consider weaker propositional bases than

classical propositional logic, (∀∃) must be taken as primitive.

It is well known (cf. [Che80, Section 9.2.]) that MML cannot be adequately captured

by Kripke semantics, and that the basic monotone modal logic M is sound and complete

w.r.t. monotone neighbourhood frames (see [Han03]):

Definition 5.1. A neighbourhood frame is a tuple F = (W, σ) such that W is a set, and σ :

W −→ PPW is a map. For any w ∈ W, an element N ∈ σ(w) is called a neighbourhood of

w. A neighbourhood frame F is monotone if for any w ∈ W, the collection σ(w) is an upward

Chapter 5. Display-Type Calculus for Monotone Modal Logic 159

closed subset of (PW,⊆), that is, if X ∈ σ(w) and X ⊆ Y ⊆ W, then Y ∈ σ(w). A (monotone)

neighbourhood model is a tupleM = (F,V), such that F = (W, σ) is a (monotone) neighbourhood

frame, and V : AtProp −→ PW.

Given the stipulations above, the set-theoretic interpretation of the non-modal connec-

tives is the usual one. Modal connectives are interpreted as follows:

M,w (∃∀)A iff ∃N ∈ PW (N ∈ σ(w) and ∀n ∈ N, M, n A)

M,w (∀∃)A iff ∀N ∈ PW (N ∈ σ(w) implies ∃n ∈ N, M, n A)

5.2.2 Visibility and cut elimination

Visibility property. In [BFS00], a uniform methodology was introduced to generate

(restricted) standard sequent calculi. This methodology is aimed at providing a proof-

theoretic setting in which certain weakenings of classical logic (which include intuition-

istic, linear and quantum logic) could be accounted for in a modular way. Key aspects

of this methodology concern the definition of the introduction rules for each connective

(which rely on so-called principle of reflection), but also—and more importantly for the

developments in the paper—the achievement of a uniform cut elimination theorem, to

which the so-called visibility property is key. Visibility is a requirement on the design of

the rules introducing logical connectives, which restricts active contexts to be empty.1

That is, visibility requires both the auxiliary formulas and the principal formula in any

introduction rule to constitute the whole antecedent or the whole consequent of the

sequent in which they occur. This property puts very heavy constraints on the shape of

the introduction rules. However, in [BFS00], it was observed that the visibility property

ensures a smooth cut elimination strategy for calculi which are otherwise subject to very

heavy restrictions (e.g. calculi which do not contain structural rules such as weakening,

contraction or exchange).

Canonical cut elimination without display. In fact, the remark in [BFS00] about the

importance of visibility for the cut elimination strategy applies mutatis mutandis also

for a display-type calculus, that is, a calculus for sequents of the form X ⊢ Y with X and Y

being structures in the sense of display calculi, but in which there might not be enough

display postulates to guarantee the display property either full (cf. Definition 2.1) or

relativized (cf. Definition 3.3). In Section 5.4, we introduce a display-type calculus

for monotone modal logic, enjoying the visibility property but not the display property

1Recall that active formulas are either the principal formula of the conclusion sequent, or the auxiliary formula(s)

in the premise(s) of an introduction rule. The context on the same (resp. opposite) side of active formulas is referred

to as the active (resp. passive) context.

Chapter 5. Display-Type Calculus for Monotone Modal Logic 160

either full or relativized. The cut elimination for this calculus will be shown to follow

from a ‘canonical’ cut elimination metatheorem.

5.3 Proper display-type calculi, and their metatheorem

In the present section, we discuss the cut elimination metatheorem in the setting of

proper display-type calculi. This setting is simpler than the one of Section 4.2 for two

reasons: firstly, it is single-typed; secondly, axioms are restricted to the original shape

admitted in Belnap’s paper [Bel82]. In what follows, we define proper display-type

calculi, and in 5.3.2, we prove their corresponding cut elimination metatheorem. The

most notable difference between the conditions defining properly displayable calculi in

[Wan02] and the ones below concern conditions C5 (see below).

5.3.1 Proper display-type calculi

A display-type calculus is proper if it satisfies the following list of conditions:

C1: Preservation of formulas. Each formula occurring in a premise of an inference rule

inf is a subterm of some operational term in the conclusion of inf.

C2: Shape-alikeness of parameters. Congruent parameters (i.e. non-active structures in

the application of a rule) are occurrences of the same structure.

C3: Non-proliferation of parameters. Each parameter in an inference rule inf is congru-

ent to at most one constituent in the conclusion of inf.

C4: Position-alikeness of parameters. Congruent parameters are either all antecedent

or all succedent parts of their respective sequents. In the case of calculi enjoying the

display property, antecedent and succedent parts are defined in the usual way (see

[Bel82]). Otherwise, these notions can still be defined by induction on the shape of

the structures, by relying on the polarity of each coordinate of the structural connec-

tives.

C∗
5
: Display of active constituents. If a formula A is active in the application of any rule,

then A is in display.

Chapter 5. Display-Type Calculus for Monotone Modal Logic 161

C6: Closure under substitution for succedent parts. Each rule is closed under simulta-

neous substitution of arbitrary structures for congruent formulas occurring in succedent

position.

C7: Closure under substitution for precedent parts. Each rule is closed under simulta-

neous substitution of arbitrary structures for congruent formulas occurring in precedent

position.

The intended meaning of conditions C6 (and likewise C7) can be explained by the fol-

lowing diagram:

(X ⊢ Y)[A]suc

R
(X′ ⊢ Y ′)[A]suc

(X ⊢ Y)[Z]suc

R
(X′ ⊢ Y ′)[Z]suc

Any rule R should be such that, for any parametric occurrence of a formula A which is in

succedent position, if A is substituted for an arbitrary structure Z both in the premise(s)

and in the corresponding place in the conclusion, the resulting inference should always

be justified as an application of the rule R.

C8: Eliminability of matching principal constituents. This condition requests a standard

Gentzen-style checking, which is now limited to the case in which both cut formulas

are principal, i.e. each of them has been introduced with the last rule application of

each corresponding subdeduction. In this case, analogously to the proof Gentzen-style,

condition C8 requires being able to transform the given deduction into a deduction with

the same conclusion in which either the cut is eliminated altogether, or is transformed

in one or more applications of the cut rule, involving proper subterms of the original

operational cut-term.

Remark 5.2. The setting above is on the one hand more restrictive than the one in [Wan02] and

on the other more permissive. Specifically, while we are dealing with a more general shape

of cut, we require condition C∗
5

to be more restrictive than the corresponding condition C5 in

[Wan02]. Indeed, C∗
5

requires that all the active formulas in each rule to be in display, and not

just the principal ones.

5.3.2 Cut elimination metatheorem for proper display-type calculi

Theorem 5.3. In any display-type calculus satisfying C2, C3, C4, C∗
5
, C6, C7, C8, the surgical cut

rules can be eliminated. Display-type calculi which in addition satisfy C1 enjoy the subformula

property.

Chapter 5. Display-Type Calculus for Monotone Modal Logic 162

Proof. We follow the proof scheme of [Wan02, Section 3.3, Appendix A].

Principal stage: both cut formulas are principal. Without loss of generality, we can assume

that the cut in the original proof is a Left Cut (the proof for a Right Cut is symmetric), that is we

are going to consider the following situation

... π1

Z ⊢ A

... π2

(X ⊢ Y)[A]pre

(X ⊢ Y)[Z/A]pre

There are two subcases.

If the end sequent (X ⊢ Y)[Z/A]pre is identical to the conclusion of π1 or π2, then we can elim-

inate the cut simply replacing the derivation above with π1 (resp. π2). A special case of this

situation arises when both the premises Z ⊢ A and (X ⊢ Y)[A]pre are axioms.

If the end sequent (X ⊢ Y)[Z/A]pre is different from the conclusion of both π1 and π2, then by

C8, there is a proof of (X ⊢ Y)[Z/A]pre which uses the same premise(s) of the original derivation

and which involves only cuts on proper subformulas of A. Notice that the part of condition C∗
5

which requires that not only the principal formula, but also the active premises occur in display

makes sure that the new cut applications are surgical.

Parametric stage: at least one cut formula is parametric. There are two subcases: either

one cut formula is principal or they are both parametric.

Consider the subcase in which one cut formula is principal. W.l.o.g. we assume that the cut-

formula A is principal and in display in the the left-premise X ⊢ A of the cut in the original proof

(the other case is symmetric). The situation is as follows

... π1

Z ⊢ A

... π2.1

A1 ⊢ Y1 · · ·

... π2.n

(Xn ⊢ Yn)[An]pre

. . .
... . .
. π2

(X ⊢ Y)[A]pre

(X ⊢ Y)[Z]pre

where (Xi ⊢ Yi)[Ai] with i ∈ {1, . . . , n} denote the sequents in which the uppermost ancestor Ai

of A in π2 was introduced. The notation Ai means that this occurrence is principal, and A j means

that this occurrence is parametric. Conditions C2 and C3 make it possible to follow the history

Chapter 5. Display-Type Calculus for Monotone Modal Logic 163

of the right-hand-side cut formula A which takes the form of a tree (see discussion in Section

2.2.2, Remark 2.2).

Assume that Ai is introduced in (Xi ⊢ Yi)[Ai] as a parameter by an application in f of the rule

Ru (for instance, in the calculus of Section 5.4, this situation can arise if Ai was introduced by

Weakening). Since Ai is a leaf in the history-tree of A, we have that Ai is congruent only to itself

in Xi ⊢ Yi. Hence, C7 implies that it is possible to substitute Z for Ai by means of an application

of the same rule Ru, i.e. (Xi ⊢ Yi)[Ai] can be replaced by (Xi ⊢ Yi)[Z/Ai] (note that if all the

uppermost ancestors Ai are parametric, then the transformation gives a new derivation in which

the given application of cut disappears and no new cut has been introduced).

Assume that Ai is introduced in (Xi ⊢ Yi)[Ai]
pre as a principal formula. By C∗

5
, Ai is in display.

Then we form a subderivation using π1 and π2.i and applying a surgical cut as the last rule.

The transformations just discussed explain how to transform the leaves of the history tree of

A. Finally, condition C7 implies that substituting Z for each occurrence of A in the history tree

of the cut formula A in π2 gives rise to an admissible derivation π2[Z/A]pre (use C6 for the

symmetric case).

Summing up, this procedure generates the following proof tree:

... π1

Z ⊢ A

... π2.i

A1 ⊢ Y1
Cut

Z ⊢ Y1 · · ·

... π2.n

(Xn ⊢ Yn)[Z]pre

. . .
... . .
. π2[Z/A]pre

(X ⊢ Y)[Z]pre

We observe that in each newly introduced application of the cut rule, both cut terms are principal.

Hence, we can apply the procedure described in the Principal stage and transform the original

derivation in a derivation in which the cut terms of the newly introduced cuts have strictly lower

complexity than the original cut terms. When the newly introduced applications of cut are of

lower height than the original one, we do not need to resort to the Principal stage.2

Finally, as to the subcase in which both cut formulas are parametric, consider a proof with at

least one cut. The procedure is analogous to the previous case. Namely, following the history of

one of the cut formulas up to the leaves, and applying the transformation steps described above,

we arrive at a situation in which, whenever new applications of cuts are generated, in each such

2 This is for instance the case if, in the original derivation, the history-tree of the cut formula A (in the right-hand-

side premise of the given cut application) contains at most one leaf Al which is principal. However, the procedure

described above in the Parametric stage does not always produce cuts of lower height. For instance, in the calculus

introduced in Section 5.4, this situation may arise when two ancestors of a cut formula are introduced as principal

along the same branch, and then are identified via an application of the rule Contraction.

Chapter 5. Display-Type Calculus for Monotone Modal Logic 164

application at least one of the cut formulas is principal. To each such cut, we can apply (the

symmetric version of) the Parametric stage described so far. �

5.4 A calculus for monotone modal logic

5.4.1 The basic calculus for MML

In the present subsection, we introduce the display-type calculus for MML. Since the

propositional base is classical and very well known in the display calculi literature, we

collect the structural and operational rules for the propositional fragment in the Ap-

pendix H. Here below, we focus on the rules concerning the modalities. As the modalities

interact with negation, we recall rules for negation below.

Since we are working towards a display-type calculus, we need to introduce the struc-

tural language, which as usual matches the operational language.

A ::= ⊥ | ⊤ | p ∈ AtProp | ¬A | A ∧ A | A ∨ A | A→ A | (∃∀)A | (∀∃)A

X ::= A | I | ∗ X | X ; X | ◦X | X > X | X < X

As is the case of standard display calculi, each operational connective corresponds to

one structural connective. The following table illustrates the correspondence between

structural symbols (on the first line) and operational symbols (on the second line).

I ∗ ; < > ◦

⊤ ⊥ ¬ ¬ ∧ ∨ (∧) (←) (

∧

) → (∀∃) (∃∀)

In what follows, we introduce the rules for the calculus. These rules are standard and

very well-known in the display calculi literature, and the only conspicuous aspect of this

calculus is in fact the absence of the display postulates for the modal operators, which is

the reason why the calculus does not enjoy the display property either full or relativized.

Cut rules. Since we are not including the display postulates for the modal operators,

we need a more general type of cut rule than the one typically occurring in display

calculi. Below we use following surgical cut rules:

Z ⊢ A (X ⊢ Y)[A]pre

CutL
(X ⊢ Y)[Z]pre

(X ⊢ Y)[A]suc A ⊢ Z
CutR

(X ⊢ Y)[Z]suc

Chapter 5. Display-Type Calculus for Monotone Modal Logic 165

Structural rules for negation and for the interaction negation-modalities.

X ⊢ Y
∗
∗Y ⊢ ∗ X

X ⊢ ∗ ∗ Y

◦ ∗ X ⊢ YswapL
∗ ◦ X ⊢ Y

Y ⊢ ◦ ∗ X swapR
Y ⊢ ∗ ◦ X

Operational rules for negation and modalities.

∗A ⊢ X¬L
¬A ⊢ X

X ⊢ ∗A ¬R
X ⊢ ¬A

◦ A ⊢ X(∀∃)L
(∀∃)A ⊢ X

X ⊢ A (∀∃)R
◦ X ⊢ (∀∃)A

A ⊢ X(∃∀)L
(∃∀)A ⊢ ◦ X

X ⊢ ◦ A (∃∀)R
X ⊢ (∃∀)A

5.4.2 Soundness

In the present section, we outline the soundness of the calculus introduced in the previ-

ous section w.r.t. the monotone neighbourhood semantics. Structures will be translated

into formulas, and formulas will be interpreted in monotone neighbourhood models in

the usual way. In order to translate structures as formulas, structural connectives need

to be translated as logical connectives; to this effect, any given occurrence of a struc-

tural connective is translated as one or the other of its associated logical connectives,

according to table 5.1. This translation takes place according to whether the substruc-

ture having the given connective as its root is in precedent or succedent position. In

display calculi enjoying the full display property, the notion of precedent and succedent

position can be defined in terms of whether each substructure is displayed as precedent

or succedent part, as described in Section 2.2.2. Since the present calculus does not

enjoy the display property, we need to define the same notion in a different way.

Indeed, for a sequent X ⊢ Y the notion of precedent and succedent position for substruc-

tures can be defined inductively by means of the polarity of the structural connectives

by labelling the nodes of the generation trees of X and Y as follows:

• we start by labelling the root of X as precedent and the root of Y as succedent;

• nodes inherit the same (resp. opposite) label of their direct ancestors if the coor-

dinate in the scope of which they occur is positive (resp. negative).

Chapter 5. Display-Type Calculus for Monotone Modal Logic 166

Structural if in precedent if in succedent

connective position position

I ⊤ ⊥

A ; B A ∧ B A ∨ B

∗ A ¬A ¬A

A > B A

∧

B A→ B

A < B A ∧ B A← B

◦ A (∀∃)A (∃∀)A

Table 5.1: Translation of structural connectives into logical connectives

• ◦ and ; are positive in each coordinate. ∗ is negative, > is negative in its first

coordinate and positive in its second, and < is positive in its first coordinate and

negative in its second.

For example, in the sequent ∗(A > (B > E)) ⊢ C; ∗D, the formulas A, B, and D are in

precedent position, and C and E are in succedent position.

In each monotone neighbourhood model M, sequents A ⊢ B will be interpreted as inclu-

sions [[A]]M ⊆ [[B]]M; rules (Ai ⊢ Bi | i ∈ I)/C ⊢ D will be interpreted as implications of the

form “if [[Ai]]M ⊆ [[Bi]]M for every i ∈ I, then [[C]]M ⊆ [[D]]M”. As an example, let us verify

the soundness of the rule (∀∃)L. Fix a monotone neighbourhood model M, assume that

A ⊢ B is satisfied on M, that is [[A]]M ⊆ [[B]]M, and let us show that (∀∃)A ⊢ (∀∃)B is sat-

isfied on M, that is, [[(∀∃)A]]M ⊆ [[(∀∃)B]]M. Fix x ∈ [[(∀∃)A]]M. Hence, for any N ∈ σ(x),

there is some n ∈ N such that n ∈ [[A]]M. As [[A]]M ⊆ [[B]]M, we have that n ∈ [[B]]M.

Hence, for any N ∈ σ(x), there is some n ∈ N such that n ∈ [[B]]M, which shows that

x ∈ [[(∀∃)B]]M, as required. The soundness of the rule (∃∀)L is proved similarly.

Let us verify the soundness of the rule swapL. Fix a monotone neighbourhood modelM,

assume that [[(∀∃)¬A]]M ⊆ [[B]]M and let us show that [[¬(∃∀)A]]M ⊆ [[B]]M. It is enough

to show that for any state x in the model, x ∈ [[¬(∃∀)A]]M iff x ∈ [[(∀∃)¬A]]M. Indeed,

x ∈ [[¬(∃∀)A]]M iff x < [[(∃∀)A]]M iff there is no N ∈ σ(x) such that N ⊆ [[A]]M. This is

equivalent to saying that for any N ∈ σ(x) there exists some n ∈ N such that n < [[A]]M,

that is, n ∈ [[¬A]]M. This is equivalent to x ∈ [[(∀∃)¬A]]M. Hence the rule swapL is sound,

as required. The proof that swapR is sound is similar.

Finally, let us verify the soundness of the rule CutL. Fix a monotone neighbourhood

model M, assume that [[τ1(Z)]]M ⊆ [[A]]M and [[τ1(X)]]M ⊆ [[τ2(Y)]]M, where τ1(Z), τ1(X)

and τ2(Y) are the formulas respectively translating the structures Z, X and Y as outlined

above, and the formula A is in precedent position in X ⊢ Y. Hence, two cases may occur:

if A is a substructure of X, then X is positive in this specific occurrence of A. Hence,

it can be readily shown that the term function associated with τ1(X) is monotone in

Chapter 5. Display-Type Calculus for Monotone Modal Logic 167

this specific occurrence of A. Since we assume that [[τ1(Z)]]M ⊆ [[A]]M, this implies that

[[τ1(X)[Z/A]]]M ⊆ [[τ1(X)[A]]]M ⊆ [[τ2(Y)]]M, as required. Similarly, if A occurs in Y, it can

be readily shown that the term function associated with τ2(Y) is antitone in this specific

occurrence of A, and hence [[τ1(X)]]M ⊆ [[τ2(Y)[A]]]M ⊆ [[τ2(Y)[Z/A]]]M, as required.

5.4.3 Completeness

To give an indirect proof of the completeness of the calculus introduced in Section 5.4

it is enough to show that all the axioms of the Hilbert style presentation of the mono-

tonic modal logic (cf. Section 5.2.1) are theorems and that all the rules are derived or

admissible rules. In fact, according to the first presentation of the minimal monotone

modal logic, there are no axioms, and the only rule is the condition (RM). This rule is

immediately seen to be derivable by means of the following derivation.

⊢ A→ B
A ⊢ A B ⊢ B
A→ B ⊢ A > B

⊢ A > B
A ⊢ B

(∃∀)A ⊢ ◦B

(∃∀)A ⊢ (∃∀)B

⊢ (∃∀)A > (∃∀)B

⊢ (∃∀)A→ (∃∀)B

In what follows, we also include the derivations of the box and diamond version of the

monotonicity axioms and the inter derivability of modalities.

Monotonicity of the modalities

A ⊢ A
A ; B ⊢ A

A ∧ B ⊢ B
(∃∀)(A ∧ B) ⊢ ◦ B

(∃∀)(A ∧ B) ⊢ (∃∀)B

B ⊢ B
A ; B ⊢ B

A ∧ B ⊢ B
(∃∀)(A ∧ B) ⊢ ◦ B

(∃∀)(A ∧ B) ⊢ (∃∀)B

(∃∀)(A ∧ B) ; (∃∀)(A ∧ B) ⊢ (∃∀)A ∧ (∃∀)B

(∃∀)(A ∧ B) ⊢ (∃∀)A ∧ (∃∀)B

A ⊢ A
A ; B ⊢ A

A ∧ B ⊢ A
◦ A ∧ B ⊢ (∀∃)A

(∀∃)(A ∧ B) ⊢ (∀∃)A

B ⊢ B
A ; B ⊢ B

A ∧ B ⊢ B
◦ A ∧ B ⊢ (∀∃)B

(∀∃)(A ∧ B) ⊢ (∀∃)B

(∀∃)(A ∧ B) ; (∀∃)(A ∧ B) ⊢ (∀∃)A ∧ (∀∃)B

(∀∃)(A ∧ B) ⊢ (∀∃)A ∧ (∀∃)B

A ⊢ A
A ⊢ A ; B

A ⊢ A ∨ B
(∃∀)A ⊢ ◦ A ∨ B

(∃∀)A ⊢ (∃∀)(A ∨ B)

B ⊢ B
B ⊢ A ; B

B ⊢ A ∨ B
(∃∀)B ⊢ ◦ A ∨ B

(∃∀)B ⊢ (∃∀)(A ∨ B)

(∃∀)A ∨ (∃∀)B ⊢ (∃∀)(A ∨ B) ; (∃∀)(A ∨ B)

(∃∀)A ∨ (∃∀)B ⊢ (∃∀)(A ∨ B)

A ⊢ A
A ⊢ A ; B

A ⊢ A ∨ B
◦ A ⊢ (∀∃)(A ∨ B)

(∀∃)A ⊢ (∀∃)(A ∨ B)

B ⊢ B
B ⊢ A ; B

B ⊢ A ∨ B
◦ B ⊢ (∀∃)(A ∨ B)

(∀∃)B ⊢ (∀∃)(A ∨ B)

(∀∃)A ∨ (∀∃)B ⊢ (∀∃)(A ∨ B) ; (∀∃)(A ∨ B)

(∀∃)A ∨ (∀∃)B ⊢ (∀∃)(A ∨ B)

Chapter 5. Display-Type Calculus for Monotone Modal Logic 168

Inter-derivability of the modalities

A ⊢ A
∗A ⊢ ∗A
¬A ⊢ ∗ A

A ⊢ ∗ ¬A
(∃∀)A ⊢ ◦ ∗ ¬A

(∃∀)A ⊢ ∗ ◦ ¬A

◦¬A ⊢ ∗ (∃∀)A

(∀∃)¬A ⊢ ∗ (∃∀)A

(∃∀)A ⊢ ∗ (∀∃)¬A

(∃∀)A ⊢ ¬(∀∃)¬A

A ⊢ A
∗A ⊢ ∗A
∗ A ⊢ ¬A
◦ ∗ A ⊢ (∀∃)¬A

∗ ◦ A ⊢ (∀∃)¬A

∗ (∀∃)¬A ⊢ ◦ A

∗ (∀∃)¬A ⊢ (∃∀)A

¬(∀∃)¬A ⊢ (∃∀)A

5.4.4 Cut elimination

Principal stage: the two cut formulas are principal. We consider a surgical cut, but as

we have visibility, if the cut formula A is principal in π1 and π2, then the cut has to be in

isolation. Hence, in the principal stage, we have to show how to reduce the complexity

of the cut, when the cut is in isolation and the cut formulas are both principal.

... π1

Z ⊢ ◦A
Z ⊢ (∃∀)A

... π2

A ⊢ Y
(∃∀)A ⊢ ◦Y

Cut
Z ⊢ ◦Y

... π1

Z ⊢ ◦A

... π2

A ⊢ Y
CutR

Z ⊢ ◦Y

... π1

X ⊢ A

... π2

Y ⊢ B
X,Y ⊢ A ∧ B

... π3

A, B ⊢ Z

A ∧ B ⊢ Z

X,Y ⊢ Z

... π2

Y ⊢ B

... π1

X ⊢ A

... π3

A, B ⊢ Z
CutL

X, B ⊢ Z
CutL

X,Y ⊢ Z

... π1

Z ⊢ ∗A
Z ⊢ ¬A

... π2

∗A ⊢ Y
¬A ⊢ Y

Z ⊢ Y

... π2

∗A ⊢ Y
∗Y ⊢ A

... π1

Z ⊢ ∗A
CutL

Z ⊢ ∗ ∗ Y
Z ⊢ Y

... π1

Z ⊢ A > B
Z ⊢ A→ B

... π2

X ⊢ A

... π3

B ⊢ Y
A→ B ⊢ X > Y

Z ⊢ X > Y

... π2

X ⊢ A

... π1

Z ⊢ A > B
CutL

Z ⊢ X > B

... π3

B ⊢ Y
CutR

Z ⊢ X > Y

Chapter 6

Multi-Type Display Calculus for

Propositional Dynamic Logic

6.1 Introduction

In the present chapter, we extend the multi-type display methodology to the full lan-

guage of Propositional Dynamic Logic (PDL).

An important technical solution, which was adopted also in Chapter 3 but for different

reasons, is that actions are assigned two distinct types: Act for general actions, and TAct

for transitive actions (we take positive iteration rather than iteration as primitive).

The introduction of different types lays the ground for overcoming some of the difficul-

ties which typically make the proof-theoretic treatment of dynamic logics not straight-

forward, and have hindered the smooth transfer of results from one dynamic logic to

another. In the specific case of PDL, the main hurdle lies in the encoding of the in-

duction axiom into a structural rule. Due to the inductive ‘loop’ (by which we mean

a given parametric formula occurring both in antecedent and in consequent position),

the induction axiom cannot straightforwardly be captured at the structural level, given

that structures mean different things depending on their (antecedent or consequent)

position in a sequent. However, as it is well known (cf. [HKT00]), the induction axiom

reflects, in the context of formulas, the fact that the positive iteration + (resp. iteration,

also known as Kleene star ∗) semantically is the (reflexive and) transitive closure op-

erator on actions. This fact can (and should) be captured by finitary (structural) rules

purely in the context of actions, that is, without formulas playing a mediating role. As in

the case of EAK (cf. Chapter 3), the multi-type environment can be used to provide the

169

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 170

additional expressivity needed to capture the informational contents of various dynamic

axioms in the context most naturally suited to support them.

As discussed in the previous chapters, the multi-type methodology aims at generating

calculi enjoying the following features, as witnessed e.g. by the Dynamic Calculus of

Chapter 3: (1) a neat division of labour, required by general proof-theoretic seman-

tic principles, between operational and structural rules; (2) a neat division of labour

between structural rules describing the properties pertinent to each type, and structural

rules describing the interaction between different types; (3) all rules enjoying closure un-

der uniform substitution of parametric operational terms for arbitrary structures within

each type.

Feature (3) is crucial to the definition of the multi-type version of proper display calculi

(cf. Wansing’s definition [Wan98, Section 4.1]. See Section 6.2.2 for more on this). The

cut elimination result for any such calculus follows straightforwardly from the corre-

sponding Belnap-style metatheorem 3.4.

The multi-type display calculus for PDL treated in the present chapter has a design

similar to the one in Chapter 3, from which features analogous to (1) and (3) above will

follow. This calculus is shown to be a proper display calculus (cf. Definition 6.1), and

hence its cut elimination and subformula property smoothly follow from the Belnap-style

metatheorem 3.4.

However, the present system does not enjoy feature (2) above. Indeed, the present

setting is not yet expressive enough to capture transitive closure at the structural level.

Hence, the induction axiom is captured by means of infinitary rules, and making use

of the mediating role of formulas. We conjecture that being able to express transitive

closure at the structural level is key to dispensing with the infinitary rules, which is our

next goal for future developments in this line research.

Organization and results. In Section 6.2, we collect the relevant preliminaries on PDL,

and we recall the generalization of the notion of proper display calculi to the multi-type

setting, and its corresponding extension of Belnap’s cut elimination metatheorem. In

Section 6.3, we introduce the multi-type display calculus for PDL. In Section 6.4, we

discuss the soundness of some of the rules w.r.t. the standard semantics. In Section 6.5,

we prove that this calculus is complete w.r.t. PDL. In Section 6.6, we prove that it en-

joys the Belnap-style cut elimination. In Section 6.7, we discuss the different techniques

available to prove that the calculus is conservative. In Section 6.8, we collect some con-

clusions and indicate further directions. Most of the proofs and derivations are collected

in Appendices J and K.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 171

6.2 Basic facts and definitions

In the present section, we collect some basic facts: in subsection 6.2.1, we briefly review

the Hilbert-style axiomatization of Propositional Dynamic Logic (PDL); in subsection

6.2.2 we introduce the definition of proper multi-type display calculi, and state their

cut elimination metatheorem. This definition and theorem are more compact versions

of the ones of Chapter 3, hence they will not be expanded on, but the Belnap-style cut

elimination for the Dynamic Calculus for PDL (cf. Section 6.6) will be shown on the

basis of this more compact definition.

6.2.1 Propositional Dynamic Logic

In our review of PDL, we will loosely follow [HKT00]. However, our presentation differs

from that in [HKT00] in some respects, which will be discussed below.

Let AtProp and AtAct be countable and disjoint sets of atomic propositions and atomic

actions, respectively. The set L of the formulas A of Propositional Dynamic Logic (PDL),

and the set Act(L) of the actions α over L are defined simultaneously as follows:

A ::= p ∈ AtProp | ¬A | A ∨ A | 〈α〉A (α ∈ Act(L)),

α ::= a ∈ AtAct | α ;α | α ∪ α | A? | α+ (A ∈ L).

Let the symbols ∧ and ⊥ be defined as usual, that is A∧B := ¬(¬A∨¬B) and ⊥ := A∧¬A

for some formula A ∈ L.

Models for this language are tuples M = (W, {Ra | a ∈ AtAct},V), such that Ra ⊆ W ×W for

each a ∈ AtAct and V(p) ⊆ W for each p ∈ AtProp. For each non atomic α ∈ Act(L), the

relation Rα ⊆ W ×W is defined recursively as follows:

Rα ; β := Rα ◦ Rβ = {(u, v) | ∃w ∈ W((u,w) ∈ Rα and (w, v) ∈ Rβ)}

Rα∪ β := Rα ∪ Rβ = {(u, v) | (u, v) ∈ Rα or (u, v) ∈ Rβ}

Rα+ := (Rα)+ =
⋃

n≥1 Rn
α

RA? := {(w,w) | w ∈ V(A)}.

where Rn
α is defined as follows: R1

α := R and Rn+1
α := Rn

α ◦ Rα for every n ≥ 1. Given

the stipulations above, the definitions of satisfiability and validity of propositions are

the usual ones in modal logic; in particular the evaluation of formulas of the form 〈α〉A

(resp. [α]A) makes use of the corresponding relation Rα:

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 172

M,w 〈α〉A iff ∃v ∈ W(wRαv and M,w A)

M,w [α]A iff ∀v ∈ W(if wRαv then M,w A)

The following list of axioms and rules constitutes a sound and complete Hilbert-style

deductive system for PDL with box as primitive modality and diamond defined as usual

〈α〉A := ¬[α]¬A. We list the Fix-Point Axiom (also called Mix Axiom) and the Induction

Axiom (also called Segerberg Axiom) in the version with ∗ (cf. [Seg82, FL79, HKT00])

and with + (cf. [Har13a, Har13b]). For proofs of the completeness of PDL, the reader is

referred to [KP81]. For the sake of the developments of the following sections, we take

the axiomatisation of PDL with positive iteration +, rather than with Kleene star ∗.

Box-axioms

K ⊢ [α](A→ B)→ ([α]A→ [α]B)

Choice ⊢ [α ∪ β]A↔ [α]A ∧ [β]A

Composition ⊢ [α ; β]A↔ [α][β]A

Test ⊢ [A?]B↔ (A→ B)

Distributivity ⊢ [α](A ∧ B)↔ [α]A ∧ [α]B

Fix Point ∗ ⊢ [α∗] A↔ A ∧ [α] [α∗] A

Induction ∗ ⊢ A ∧ [α∗] (A→ [α] A)→ [α∗] A

Fix Point + ⊢ [α+]A↔ [α]A ∧ [α][α+]A

Induction + ⊢ ([α]A ∧ [α+](A→ [α]A))→ [α+]A

Inference Rules

Modus Ponens if ⊢ A→ B and ⊢ A, then ⊢ B

[α]-Intro if ⊢ A, then ⊢ [α]A

As was done in Chapter 3, motivated by the fact that the calculus of Section 6.3 is

modular and can be easily rearranged to take propositional bases which are strictly

weaker than the Boolean one, both box and diamond operators will be taken as primitive

(see also [Gol92b] for an axiomatisation of PDL with independent modalities).

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 173

Diamond-axioms

Choice ⊢ 〈α ∪ β〉 A↔ 〈α〉 A ∨ 〈β〉 A

Composition ⊢ 〈α ; β〉 A↔ 〈α〉 〈β〉 A

Test ⊢ 〈A?〉 B↔ A ∧ B

Distributivity ⊢ 〈α〉 (A ∨ B)↔ 〈α〉 A ∨ 〈α〉 B

Fix point ∗ ⊢ 〈α∗〉 A↔ A ∨ 〈α〉〈α∗〉 A

Induction ∗ ⊢ 〈α∗〉 A↔ A ∨ 〈α∗〉 (¬A ∧ 〈α〉 A)

Fix point + ⊢ 〈α+〉 A↔ 〈α〉A ∨ 〈α〉〈α+〉 A

Induction + ⊢ 〈α+〉 A→ 〈α〉A ∨ 〈α+〉 (¬A ∧ 〈α〉 A)

Inference Rules

Modus Ponens if ⊢ A→ B and ⊢ A, then ⊢ B

〈α〉-Intro if ⊢ A→ ⊥, then ⊢ 〈α〉A→ ⊥

The language of PDL will be also extended with the modalities [α

]

and 〈α

〉 which are

adjoint to 〈α〉 and [α] respectively for each action α. These modalities correspond to the

converse operator (·)−1 with the following semantics: for any action α,

Rα−1 := R−1
α ,

where R−1 := {(u, v) | (v, u) ∈ R} for every relation R. As mentioned in [HKT00], the

converse operator is useful to talk about ‘running a program backward’ or reversing

actions, although this is not always possible in practice. The modal operators [α

]

and

〈α

〉 are semantically interpreted in the standard way using the relation R−1
α . The rele-

vant additional rules are reported below (see also [Har13a, Har13b] for an analogous

extension).

Inference Rules

(〈α〉 ⊣ [α

]

)-Adj. ⊢ 〈α〉A→ B iff ⊢ A→ [α

]

B

(〈α

〉

⊣ [α])-Adj. ⊢ A→ [α]B iff ⊢ 〈α

〉

A→ B

6.2.2 Proper multi-type display calculi, and their cut elimination metatheorem

Definition 6.1. Let a proper display multi-type calculus be any display-type calculus in a multi-

type language satisfying the following list of conditions:

C1: preservation of operational terms. Each operational term occurring in a premise of an

inference rule inf is a subterm of some operational term in the conclusion of inf.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 174

C2: Shape-alikeness of parameters. Congruent parameters are occurrences of the same struc-

ture.

C’2: Type-alikeness of parameters. Congruent parameters have exactly the same type. This

condition bans the possibility that a parameter changes type along its history.

C3: Non-proliferation of parameters. Each parameter in an inference rule inf is congruent

to at most one constituent in the conclusion of inf.

C4: Position-alikeness of parameters. Congruent parameters are either all antecedent or all

succedent parts of their respective sequents.

C5: Display of principal constituents. If an operational term a is principal in the conclusion

sequent s of a derivation π, then a is in display.

C’6: Closure under substitution for succedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms occurring

in succedent position, within each type.

C’7: Closure under substitution for precedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms occurring

in precedent position, within each type.

C’8: Eliminability of matching principal constituents. This condition requests a standard

Gentzen-style checking, which is now limited to the case in which both cut formulas are prin-

cipal, i.e. each of them has been introduced with the last rule application of each corresponding

subdeduction. In this case, analogously to the proof Gentzen-style, condition C’8 requires being

able to transform the given deduction into a deduction with the same conclusion in which either

the cut is eliminated altogether, or is transformed in one or more applications of the cut rule,

involving proper subterms of the original operational cut-term. In addition to this, specific to the

multi-type setting is the requirement that the new application(s) of the cut rule be also strongly

type-uniform (cf. condition C10 below).

C9: Type-uniformity of derivable sequents. Each derivable sequent is type-uniform.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 175

C10: Strong type-uniformity of cut rules. All cut rules are strongly type-uniform (cf. Defi-

nition 3.2).

Theorem 6.2. Any multi-type display calculus satisfying C2, C’2, C3, C4, C5, C’6, C’7, C’8,

C9 and C10 is cut-admissible. If also C1 is satisfied, then the calculus enjoys the subformula

property.

The proof of the theorem above is similar to the proof of Theorem 3.4.

6.3 Language and rules

As mentioned in the introduction, the key idea is to introduce a language in which

actions are not accounted for as parameters indexing the dynamic connectives, but as

logical terms in their own right. In the present section, we define a multi-type language

into which the language of PDL translates, and in which the different types interact via

special unary or binary connectives. The present setting consists of the following types:

Act for actions, TAct for transitive actions, and Fm for formulas. We stipulate that Act,

TAct and Fm are pairwise disjoint.

An algebraically motivated introduction. Similarly to the binary connectives introduced

in Chapter 3, the following binary connectives (referred to as heterogeneous connectives)

facilitate the interaction between the two types of actions and the formulas:

△ 0, N 0 : TAct × Fm→ Fm (6.1)

△ 1, N 1 : Act × Fm→ Fm. (6.2)

We think of the connectives above as being semantically interpreted as maps preserv-

ing existing joins in each coordinate (see below), between algebras suitable to interpret

general actions, transitive actions, and formulas respectively. For instance, suitable do-

mains of interpretation for formulas can be complete atomic Boolean algebras or perfect

Heyting algebras; suitable domains of interpretation for actions (in different versions of

PDL) can be quantal frames [Res06, Chapter III.2], or Kleene algebras with tests (KATs)

[HKT00, page 421], appropriate subalgebras of which can serve as domains of interpre-

tation for transitive actions (possibly w.r.t. to certain restrictions of the signature).

Connected to the standard relational semantic setting for PDL outlined in Section 6.2.1,

for any relational model M based on the set W, the complex algebra based on PW

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 176

is taken as the domain of interpretation for Fm-type terms, and Act-type (resp. TAct-

type) terms are interpreted as (transitive) relations on W. This way, in particular, for

any model M, the domain of interpretation of TAct is the relation algebra based on

the complete lattice T (W × W) of the transitive relations on W (indeed, T (W × W) is a

sub-
⋂

-semilattice of P(W ×W)).

A natural requirement of the algebraic environment outlined above, which is verified

by the algebras arising from the standard semantic setting of Kripke models, is that the

interpretations of these heterogeneous connectives are actions, i.e., that (the domains of

interpretation of) both Act and TAct induce module structures (cf. [Res06, Chapter II.2])

on (the domain of interpretation of) Fm. That is, the following conditions hold for all

α, β ∈ Act, γ, δ ∈ TAct, and A ∈ Fm,

γ△ 0(δ△ 0A) = (γ ; δ)△ 0A α△ 1(β△ 1A) = (α ; β)△ 1A (6.3)

γN0(δN0A) = (δ ; γ)N0A αN1(βN1A) = (β ;α)N1A. (6.4)

In the semantic contexts mentioned above, the fact that the interpretations of the con-

nectives △ i and Ni for i = 0, 1 are completely join-preserving in both coordinates implies

that each of them has right adjoint in each coordinate. In particular, the following ad-

ditional connectives have a natural interpretation as the right adjoints of △ i and Ni for

i = 0, 1 in their second coordinate:

−◮0, −⊲0 : TAct × Fm→ Fm (6.5)

−◮1, −⊲1 : Act × Fm→ Fm. (6.6)

Also, the following connectives can be naturally interpreted in the setting above, as right

adjoints of △ 1 and N1 in their first coordinate:

◭1, ⊳1 : Fm × Fm→ Act. (6.7)

Intuitively, for all formulas A, B, the term B◭1A denotes the weakest action α such that,

if A was true before α was performed, then B is true after any successful execution of α.

The connectives above, when restricted to the diagonal subset of Fm × Fm, are the ones

Pratt described as the weakest preservers in [Pra91].

Virtual adjoints, part 1. However, △ 0 and N0 cannot be assumed to have right adjoints

in their first coordinate (the reason for this will be discussed in part 2 below). Hence,

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 177

〈α〉A becomes α△ 1A 〈α

〉

A becomes αN1A

[α]A becomes α−⊲1A [α

]

A becomes α−◮1A

〈α+〉A becomes α+△ 0A 〈 α
+

〉

A becomes α+N0A

[α+]A becomes α+ −⊲0A [α+

]

A becomes α+ −◮0A.

Table 6.1: Translating box- and diamond-formulas of PDL into multi-type terms.

the following connectives cannot be assigned a natural interpretation:

◭∼0, ⊳∼0 : Fm × Fm→ TAct. (6.8)

We adopt the following notational convention about the three different shapes of arrows

introduced so far. Arrows with straight tails (−⊲ and −◮) stand for connectives which

have a semantic counterpart and which are included in the language of the Dynamic

Calculus (see the grammar of operational terms on page 182); arrows with no tail (e.g.

◭ and ⊳) do have a semantic interpretation but are not included in the language at

the operational level, and arrows with squiggly tails (◭∼ and ⊳∼) stand for syntactic

objects, called virtual adjoints, which do not have a semantic interpretation, but will play

an important role, namely guaranteeing the dynamic calculus to enjoy the relativized

display property (cf. Definition 3.3).

In what follows, virtual adjoints will be introduced only as structural connectives. That

is, they will not correspond to any operational connective, and they will not appear

actively in any rule schema other than the display postulates (cf. Definition 2.1).

The △ ⊣ −◮ , ◭ and N ⊣ −⊲ , ⊳ adjunction relations stipulated above translate into the

following clauses for every action α, every transitive action δ, and all formulas A and B:

δ△ 0A ≤ B iff A ≤ δ−◮0B δN0 A ≤ B iff A ≤ δ−⊲0B (6.9)

α△ 1A ≤ B iff A ≤ α−◮1B αN1 A ≤ B iff A ≤ α−⊲1B (6.10)

α△ 1A ≤ B iff α ≤ B◭1A αN1 A ≤ B iff α ≤ B⊳1A. (6.11)

Translating PDL into the multitype language, part 1. The intended link between the

dynamic connectives of PDL and the multi-type language informally outlined above is

illustrated in Table 6.1. This table will be extended to account for the disambiguation

of the action-only connectives (see further on). This yields the definition of a formal

translation between the language of PDL (possibly extended with adjoints) and that

of the Dynamic Calculus, simply by preserving the non modal propositional fragment.

We omit the details of this straightforward inductive definition. In Section 6.4, this

translation will be elaborated on, and the interpretation of the language of the Dynamic

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 178

Calculus will be defined so that the translation above preserves the validity of sequents.

In the light of this translation, the adjunction conditions in clauses (6.9) and (6.10)

correspond to the following adjunction conditions:

〈α+〉 ⊣ [α+

]

〈 α
+

〉

⊣ [α+] 〈α〉 ⊣ [α

]

〈α

〉

⊣ [α].

Transitive closure as left adjoint. The other key idea of the design of this calculus is

to shape the proof-theoretic behaviour of the iteration connective in PDL on the order-

theoretic behaviour of the transitive closure. Namely, it is well known (cf. [DP02, 7.28])

that the map associating each binary relation on a given set W with its transitive closure

can be characterized order-theoretically as the left adjoint of the inclusion map ι : T (W×

W) ֒→ P(W ×W). Indeed, for every R ∈ P(W ×W) and every T ∈ T (W ×W),

R+ ⊆ T iff R ⊆ ι(T).

This motivates the introduction of two different types of actions: they are needed in

order to properly express this adjunction. Thus, we consider the following pair of adjoint

maps:

(·)+ : Act→ TAct (6.12)

(·)− : TAct→ Act. (6.13)

The (·)+ ⊣ (·)− adjunction relation stipulated above translates into the following clause

for every action α, and every transitive action δ:

α+ ≤ δ iff α ≤ δ−. (6.14)

Type-disambiguation of action-parameters. We aim at designing a multi-type calculus

which verifies condition C’2 about type-alikeness of parameters. The stipulation that

TAct and Act are disjoint is motivated by this goal, but this alone is not enough. We

also need to introduce several copies of sequential composition and non deterministic

choice, as follows:

∪1, ;1 : Act × Act→ Act (6.15)

∪2, ;2 : TAct × Act→ Act (6.16)

∪3, ;3 : Act × TAct→ Act (6.17)

∪4, ;4 : TAct × TAct→ Act. (6.18)

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 179

Adjoints for action-connectives. When actions are interpreted e.g. in P(W×W) for some

set W, the natural interpretation of ;1 (resp. of ∪1) is completely join-preserving (resp.

meet-preserving) in each coordinate. This implies that their right (resp. left) adjoints

exist in each coordinate, hence the following connectives have a natural interpretation:

∩

1, ∩ 1 : Act × Act→ Act (6.19)

≻ 1,

≻

1 : Act × Act→ Act. (6.20)

Here below, the conditions relative to these adjunctions: for all α, β, γ ∈ Act,

α ≤ β ∪1 γ iff β

∩

1α ≤ γ iff α ∩ 1γ ≤ β (6.21)

α ;1 β ≤ γ iff β ≤ α ≻ 1γ iff α ≤ γ ≻

1β. (6.22)

Also, residuated operations exist for the j-indexed variants, j ∈ {2, 3}, of ; in their Act-

coordinate, and for all j-indexed variants of ∪ in both coordinates. These operations

provide a natural interpretation for the following connectives:
∩

2, ≻ 2 : TAct × Act→ Act (6.23)

∩ 3,
≻

3 : Act × TAct→ Act (6.24)

∩ 2,

∩

3 : Act × Act→ TAct (6.25)

∩

4, : TAct × Act→ TAct (6.26)

∩ 4 : Act × TAct→ TAct. (6.27)

The adjunction clauses relative to the connectives above are analogous to those dis-

played in (6.21)–(6.22) relative to the connectives of their same shape.

Virtual adjoints, part 2. Since the j-indexed (resp. 0-indexed) variants of ; (resp. of △

and N) are to be regarded as restrictions of their 1-indexed counterpart, they cannot

be assumed to be completely join-preserving in their TAct-coordinates. This point is

somewhat delicate, so it is worth being expanded on. In the standard semantic setting,

the domains of interpretation of Act- and Tact-terms are the algebras P(W × W) and

T (W × W), the domains of which are respectively given by all the binary relations and

all the transitive relations on a given set W. As mentioned early on, T (W ×W) is a sub
⋂

-semilattice of P(W ×W), and hence it is itself a complete lattice. However, for every

X ⊆ T (W × W), we have that
∨
X in T (W × W) coincides with the transitive closure

(
⋃
X)+ of

⋃
X. This means in particular that, while meets in T (W × W) coincide with

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 180

α ; β α ;1 β α ∪ β α ∪1 β

α+ ; β α+ ;2 β α+ ∪ β α+ ∪2 β

α ; β+ α ;3 β
+ α ∪ β+ α ∪3 β

+

α+ ; β+ α+ ;4 β
+ α+ ∪ β+ α+ ∪4 β

+

Table 6.2: Type-disambiguation of action-parameters in PDL.

meets in P(W ×W), joins in T (W ×W) are in general different from joins in P(W ×W),

or equivalently, T (W × W) is not a sub
⋃

-semilattice of P(W × W). This implies that

if the j-indexed (resp. 0-indexed) variants of ; (resp. of △ and N) are to be regarded

as restrictions of their 1-indexed counterpart, they will preserve the joins of P(W × W)

but not necessarily those of T (W × W). This explains why the j-indexed variants of

; for j , 1 (resp. △ 0 and N 0) cannot be assumed to be completely join-preserving in

their TAct-coordinates. This implies that they do not have right adjoins in their TAct-

coordinates.1 Hence, the following connectives, which are also referred to as virtual

adjoints, are not semantically justified:

≻

2, ≻ 3 : Act × Act→ TAct (6.28)

≻ 4, : TAct × Act→ TAct (6.29)

≻

4 : Act × TAct→ TAct. (6.30)

⊳ 0, ◭ 0 : Fm × Fm→ TAct. (6.31)

Again, as discussed in Section 3.3, virtual adjoints are important to guarantee the dy-

namic calculus for PDL to enjoy the relativized display property, which in turn guaran-

tees the calculus to verify the condition C’8, crucial to the Belnap-style cut elimination

metatheorem. However, to ensure that the virtual adjoints do not add unwanted proof

power to the calculus, they will be added to the language only at the structural level,

and will occur only in the display rules.

Translating PDL into the multitype language, part 2. To have a complete account of

how PDL formulas are to be translated into formulas of the multi-type language, Table

6.2 integrates Table 6.1.

1Precisely because meets in T (W × W) coincide with meets in P(W × W), (the interpretations of) all the j-

indexed variants of ∪ for 2 ≤ j ≤ 4 are completely meet-preserving in each coordinate, and hence they do have

adjoints in each coordinate. A case sui generis is the one of the connective

?

0, which denotes the right adjoint of the

test operator ?0 regarded as a map into transitive actions. Notice that, whenever X is a collection of subsets of the

diagonal relation 1W = {(z, z) | z ∈ W}, the join of X in T (W ×W) does coincide with
⋃
X. Hence, (the interpretation

of) ?0 is completely join preserving, which implies that

?

0 is semantically justified.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 181

The different copies of connectives introduced above are needed for the calculus to sat-

isfy condition C’2 about the type-alikeness of parameters. However, in concrete deriva-

tions, as soon as the type of the atomic constituents is clearly identifiable, the subscripts

can be dropped. The disambiguation will also involve the action-type constants, which

will be introduced only as structural connectives, but not as operational ones. Specifi-

cally, the structural constants Φ0 and Φ1 (when occurring in antecedent position) both

correspond to the action skip, regarded as a transitive action or as a general action, re-

spectively. Likewise, the structural constants T

T

0 and T

T

1, when occurring in antecedent

(resp. succedent position) both correspond to the action top (resp. crash) regarded as a

transitive action, and as a general action, respectively.

Axiomatizing PDL in the multitype language. Given the translation based on Tables

6.1 and 6.2, the original axioms of PDL can be translated as indicated below. In what

follows, the variables a, b denote terms of type Act or TAct, the variables A, B denote

terms of type Fm and α is a term of type Act. For every 1 ≤ j ≤ 4 and i = 0, 1,

Box-axioms

Choice (a ∪ j b)−⊲ A ⊣⊢ (a−⊲ A) ∧ (b−⊲ A)

Composition (a ; jb)−⊲ A ⊣⊢ a−⊲ (b−⊲ A)

Test A?i −⊲ B ⊣⊢ A→ B

Distributivity a−⊲ (A ∧ B) ⊣⊢ (a−⊲ A) ∧ (a−⊲ B)

Fix point + α+ −⊲ A ⊣⊢ (α−⊲ A) ∧ (α−⊲ (α+ −⊲ A))

Induction + α+ −⊲ A ⊣ (α−⊲ A) ∧ (α+ −⊲ (A→ (α−⊲ A)))

Diamond-axioms

Choice (a ∪ j b)△A ⊣⊢ (a△A) ∨ (b△A)

Composition (a ; jb)△A ⊣⊢ a△ (b△A)

Test A?i△B ⊣⊢ A ∧ B

Distributivity a△ (A ∨ B) ⊣⊢ (a△A) ∨ (a△B)

Fix point + α+△A ⊣⊢ (α△A) ∨ α△α+△A)

Induction + α+△A ⊢ (α△A) ∨ (α+△ (¬A ∧ (α△A)))

Note that the subscripts of the arrow- and triangle-shaped connectives are completely

determined by the type of their arguments in the first coordinate, and hence they have

been omitted.

Additional conditions. As done and discussed in the setting of Chapter 3, in order to

express in the multi-type language that e.g. 〈α〉 and [α] are “interpreted over the same

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 182

relation”, Sahlqvist correspondence theory (cf. e.g. [CP12, CPS, CGP14] for a state-of-

the art-treatment) provides us with two alternatives: one of them is that we impose the

following Fischer Servi-type conditions [FS84] to hold for all a of type Act or TAct and

A, B ∈ Fm: for i = 0, 1,

(a△ iA)→ (a−⊲i B) ≤ δ−⊲i (A→ B) (aNi A)→ (a−◮i B) ≤ a−◮i (A→ B)

a△ i(A

∧

B) ≤ (a−⊲i A)

∧

(a△ 0B) aNi (A

∧

B) ≤ (a−◮i A)
∧

(aNi B).

To see that the conditions above correspond to the usual Fischer Servi axioms in standard

modal languages, one can observe that the conditions in the first and third line above

are images, under the translation discussed above, of the Fischer Servi axioms reported

on e.g. in Section 2.6.1. The second alternative is to impose that, for every 0 ≤ i ≤ 2, the

connectives △ i and N i yield conjugated diamonds (cf. discussion in Section 2.6.2); that

is, the following inequalities hold for all a of type Act or TAct and A, B ∈ Fm:

(a△ iA) ∧ B ≤ a△ i(A ∧ (aNi B)) (aNi A) ∧ B ≤ aNi (A ∧ (a△ 0B))

a−⊲i (A ∨ (a−◮i B)) ≤ (a−⊲i A) ∨ B a−◮i (A ∨ (a−⊲i B)) ≤ (a−◮i A) ∨ B.

The operational language, formally. Let us introduce the operational terms of the multi-

type language by the following simultaneous induction, based on sets AtProp of atomic

propositions, and AtAct of atomic actions:

Fm ∋ A ::= p ∈ AtProp | ⊥ | ⊤ | A ∧ A | A ∨ A | A→ A | A

∧

A |

δ△ 0A | δ−⊲0A | α△ 1A | α−⊲1A |

δN0A | δ−◮0A | αN1A | α−◮1A

Act ∋ α ::= π ∈ AtAct | δ− | A?1 |

α ;1α | δ ;2α | α ;3δ | δ ;4δ |

α ∪1 α | δ ∪2 α | α ∪3 δ | δ ∪4 δ

TAct ∋ δ ::= α+ | A?0

Structural language, formally. As discussed in the preliminaries, display calculi manip-

ulate two closely related languages: the operational and the structural. Let us introduce

the structural language of the Dynamic Calculus, which as usual matches the operational

language. We have formula-type structures, transitive action-type structures, action-type

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 183

structures, defined by simultaneous recursion as follows:

FM ∋ X ::= A | I | X , X | X > X | X < X | Π

?

1 | ∆

?

0 |

∆✦0X | ∆✩0X | Π✦1X | Π✩1X |

∆◗0 X | ∆❚0 X | Π◗1X | Π❚1X

ACT ∋ Π ::= α |T

T

1 | Φ1 | ∆
⊖ | X?1 |

Π ; 1Π | Π ≻1 Π | Π ≺1 Π | ∆ ; 2Π | ∆ ≻2 Π | Π ; 3∆ | Π ≺3 ∆ | ∆ ; 4∆ |

Π ≬1 Π | Π

⋂

1Π | Π ⋂ 1Π | ∆ ≬2 Π | ∆

⋂

2Π | Π ≬3 ∆ | Π ⋂ 3∆ | ∆ ≬4 ∆ |

X✧1X | X❘1X

TACT ∋ ∆ ::= T

T

0 | Φ0 | Π
⊕ | X?0 |

Π≺∼ 2Π | Π ∼≻ 3Π | ∆ ∼≻ 4Π | Π≺∼ 4∆ |

Π ⋂ 2Π | Π
⋂

3Π | ∆

⋂

4Π | Π ⋂ 4∆

X✷∼0X | X❘∼0X

The propositional base. As is typical of display calculi, each operational connective cor-

responds to one structural connective. In particular, the propositional base connectives

behave exactly as in Chapters 2 and 3, and their corresponding rules are reported in

Appendix I.2

Structural symbols I , < >

Operational symbols ⊤ ⊥ ∧ ∨ (∧) (←) (

∧

) →

Action connectives, part 1. As to the 0-ary and binary action-type connectives the table

below provides the connection between structural and operational connectives for 1 ≤

j ≤ 4, h = 1, 2, and k = 1, 3. The indexes of the structural connectives are omitted. 3

2The operational connectives⊤,⊥,∧,∨,→ belong to the language of the most common axiomatizations of propo-

sitional classical logic. The operational connectives in brackets ∧ ,←,

∧

are mentioned in the table for the sake of

exhaustiveness. In particular,← and→ (resp. ∧ and

∧

) are interderivable in the presence of the rule exchange,

and the same is true of the dual connectives ∧ and

∧

. The latter two connectives are known as subtraction or

disimplication. The formula A

∧

B (resp. A ∧ B) is classically equivalent to ¬A ∧ B (resp. A ∧ ¬B).
3The operational connectives in brackets are given for the sake of completeness, but they do not belong to the

language of the most common axiomatizations of PDL considered here. See [Har13a, Har13b, Pra91] for some

extensions of the language and their interpretations.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 184

Structural symbols T

T

≬

⋂

⋂

Operational symbols (τ) (τ) ∪ (

∩

j) (∩ j)

Structural symbols Φ ; ≻ ≺

Operational symbols (1) ; (≻ h) (≻

k)

Heterogeneous connectives. Similarly to Chapter 3, the heterogeneous structural con-

nectives correspond one-to-one with the operational ones, as illustrated in the following

table: for i = 0, 1,

Structural symbols ✦i ❚i ❘1

Operational symbols △ i −◮i (◭1)

Structural symbols ◗i ✩i ✧1

Operational symbols Ni −⊲i (⊳1)

That is, the structural connectives are to be interpreted in a context-sensitive way, but

the present language lacks the operational connectives which would correspond to them

on one or both of the two sides. This is of course because in the present setting we do

not need them. However, in a setting in which they would turn out to be needed, it

would not be difficult to introduce the missing operational connectives.4 The operational

rules for the heterogeneous connectives are essentially the same as the analogous rules

given in Section 3.3: in what follows, let x, y and a respectively stand for structural and

operational terms of a type which can be either TAct or Act, and let Y,Z and B respectively

stand for structural and operational terms of type Fm; then, for i = 0, 1,

Actions-Propositions Operational Rules

a✦iB ⊢ Z
△ iL

a△ iB ⊢ Z

x ⊢ a Y ⊢ B △ iR

x✦iY ⊢ a△ iB

a◗iB ⊢ Z
N iL

aN iB ⊢ Z

x ⊢ a Y ⊢ B N iR

x◗iY ⊢ aN iB

x ⊢ a B ⊢ Y−⊲iL

a−⊲iB ⊢ x✩iY

Z ⊢ a✩iB −⊲iR
Z ⊢ a−⊲iB

x ⊢ a B ⊢ Y−◮iL

a−◮iB ⊢ x❚iY

Z ⊢ a❚iB −◮iR
Z ⊢ a−◮iB

4See [Har13a, Har13b, Pra91] for some extensions of the language and their interpretations.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 185

Clearly, the rules above yield the operational rules for the dynamic modal operators

under the translation given early on. Notice that each sequent is always interpreted in

one domain; however, since the connectives take arguments of different types (and in

this sense we are justified in referring to them as heterogeneous connectives), premises of

binary rules are of course interpreted in different domains.

Identity and cut rules. Axioms will be given in each type; here below, π ∈ AtAct, and

p ∈ AtProp:

Identity Rules

π Id π ⊢ π p Id
p ⊢ p

where the first axiom is of type Act, and the second one is of type Fm.

Further, we allow the following strongly type-uniform cut rules on the operational terms:

Cut Rules

Γ ⊢ δ δ ⊢ ∆
δ Cut

Γ ⊢ ∆

Π ⊢ α α ⊢ Σ
α Cut

Π ⊢ Σ
X ⊢ A A ⊢ Y

A Cut
X ⊢ Y

Display postulates for heterogeneous connectives. Recall that x is a structural variable

of type TAct or Act, and Y and Z are structural variables of type Fm; for i = 0, 1,

Actions-Propositions Display Postulates

x✦i Y ⊢ Z
△ i ◮i

Y ⊢ x❚i Z

x◗ iY ⊢ Z
N i ⊲i

Y ⊢ x✩i Z

π✦1 Y ⊢ Z
△ 1 ◭1

π ⊢ Z❘1 Y

π◗ 1Y ⊢ Z
N 1 ⊳1

π ⊢ Z✧1 Y

δ✦0 Y ⊢ Z
△ 0 ◭0

δ ⊢ Z❘∼0 Y

δ◗ 0Y ⊢ Z
N 0 ⊳0

δ ⊢ Z✷∼0 Y

Notice that sequents occurring in each display postulate above are not of the same type.

However, it is easy to see that the display postulates preserve the type-uniformity (cf.

Definition 3.1); that is, if the premise of any instance of a display postulate is a type-

uniform sequent, then so is its conclusion.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 186

Necessitation, Conjugation, Fischer Servi, and Monotonicity rules. For i = 0, 1,

Necessitation Rules

I ⊢ Wneci△

x✦i I ⊢ W

I ⊢ W neciN

x◗i I ⊢ W

The following rules are derivable from the ones above using the display postulates:

W ⊢ Ineci ⊲

W ⊢ x✩i I

W ⊢ I neci ◮

W ⊢ x❚i I

Conjugation Rules

x✦i ((x◗i Y) ; Z) ⊢ W
(con ji△)

Y ; (x✦i Z) ⊢ W

W ⊢ x✩i ((x❚i Y) ; Z)
(con ji −⊲)

W ⊢ Y ; (x✩i Z)

x◗i ((x✦i Y) ; Z) ⊢ W
(con jiN)

Y ; (x◗i Z) ⊢ W

W ⊢ x❚i ((x✩i Y) ; Z)
(con ji −◮)

W ⊢ Y ; (x❚i Z)

The rules above are interderivable with the following Fischer-Servi rules using the ap-

propriate display postulates:

(x✩i Y) > (x✦i Z) ⊢ W
FS i△

x✦i (Y > Z) ⊢ W

W ⊢ (x✦i Y) > (x✩i Z)
FS i ⊲

W ⊢ x✩i (Y > Z)

(x❚i Y) > (x◗i Z) ⊢ W
FS iN

x◗i (Y > Z) ⊢ W

W ⊢ (x◗i Y) > (x❚i Z)
FS i ◮

W ⊢ x❚i (Y > Z)

The following rules encode the fact that both arrow- and triangle-shaped heterogeneous

connectives are order preserving in their second coordinate.

Monotonicity Rules

(x✦i Y) , (x✦i Z) ⊢ W
moni△

x✦i (Y ,Z) ⊢ W

W ⊢ (x✩ iY) , (x✩i Z)
moni ⊲

W ⊢ x✩i (Y ,Z)

(x◗i Y) , (x◗i Z) ⊢ W
moniN

x◗i (Y ,Z) ⊢ W

W ⊢ (x❚ iY) , (x❚i Z)
moni ◮

W ⊢ x❚i (Y ,Z)

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 187

Action rules. The following rules encode conditions (6.3) and (6.4). For 1 ≤ j ≤ 4, the

subscripts for ✦ , ◗ , ✩ , ❚ are omitted since they are uniquely determined by j, and

x, y are structural variables of the suitable action- or transitive action-type.

Actions Rules

x✦ (y✦ Z) ⊢ W
act j△

(x ; jy)✦Z ⊢ W

x◗ (y◗ Z) ⊢ W
act jN

(y ; jx)◗Z ⊢ W

The following rules are derivable from the ones above using the display postulates:

W ⊢ x✩ (y✩ Z)
act j ⊲

W ⊢ (x ; jy)✩Z

W ⊢ x❚ (y❚Z)
act j ◮

W ⊢ (y ; jx)❚Z

Rules for test and iteration. Also the unary heterogeneous structural connectives cor-

respond one-to-one with the operational ones, as illustrated in the following table (the

indices are omitted):

Structural symbols ? (·)⊕ (·)⊖

Operational symbols ? (·)+ (·)−

The operational rules for these connectives are given in the table below, where i = 0, 1,

and x is a structural variable of suitable action-type or transitive action-type, uniquely

determined so as to satisfy type-regularity.

Test and Iteration Operational Rules

A?i ⊢ x
?i

L A?i ⊢ x

X ⊢ A
?i

RX?i ⊢ A?i

α⊕ ⊢ ∆
+L

α+ ⊢ ∆

Ψ ⊢ α
+R

Ψ⊕ ⊢ α+
δ ⊢ ∆

−L

δ− ⊢ ∆⊖
Ψ ⊢ δ⊖

−R

Ψ ⊢ δ−

Test and Iteration Display Postulates

X?i ⊢ x
?

?

i

X ⊢ x

?

i

Π⊕ ⊢ ∆
⊕⊖

Π ⊢ ∆⊖

Test Structural Rules

X ,Y ⊢ Z
?△ i

X?i✦i Y ⊢ Z

X ,Y ⊢ Z
?N i

Y?i◗i X ⊢ Z

The following rules are display equivalent to the ones above.

Y ⊢ X > Z
? ⊲ i

Y ⊢ X?i✩i Z

Y ⊢ X > Z
? ⊲ i

Y ⊢ X?i❚i Z

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 188

Absorption and promotion/demotion rules.

Absorption Rules

Π ⊢ ∆⊖ Σ ⊢ ∆⊖
abs 1

Π ; 1Σ ⊢ ∆
⊖

∆ ⊢ Γ Ξ ⊢ Γ
abs 4

∆ ; 4Ξ ⊢ Γ
⊖

Γ ⊢ ∆ Σ ⊢ ∆⊖
abs 2

Γ ; 2Σ ⊢ ∆
⊖

Σ ⊢ ∆⊖ Γ ⊢ ∆
abs 3

Σ ; 3 Γ ⊢ ∆
⊖

Promotion/Demotion Rules

Γ ; 2Σ ⊢ Π
pro/dem 2;1

Γ⊖ ; 1Σ ⊢ Π

Π ⊢ Γ ≬2 Σ
pro/dem 2≬1

Π ⊢ Γ⊖ ≬1 Σ

Σ ; 3 Γ ⊢ Π
pro/dem 3;1

Σ ; 1 Γ
⊖ ⊢ Π

Π ⊢ Σ ≬3 Γ
pro/dem 3≬1

Π ⊢ Σ ≬1 Γ
⊖

∆ ; 4 Γ ⊢ Π
pro/dem 4;2

∆ ; 2 Γ
⊖ ⊢ Π

Π ⊢ ∆ ≬4 Γ
pro/dem 4≬2

Π ⊢ ∆ ≬2 Γ
⊖

∆ ; 4 Γ ⊢ Π
pro/dem 4;3

∆⊖ ; 3 Γ ⊢ Π

Π ⊢ ∆ ≬4 Γ
pro/dem 4≬3

Π ⊢ ∆⊖ ≬3 Γ

X?0 ⊢ ∆
pro/dem ?

X?1 ⊢ ∆
⊖

Π⊕✦0 X ⊢ Y
dem △

Π✦1 X ⊢ Y

Π⊕◗0 X ⊢ Y
dem N

Π◗1 X ⊢ Y

Using the rules above and the Display Postulates, the following rules are derivable:

X ⊢ Π⊕✩0 Y
dem ⊲

X ⊢ Π✩1 Y

X ⊢ Π⊕❚0 Y
dem ◮

X ⊢ Π❚1 Y

Π⊕ ⊢ X✷∼0 Y
dem ⊳

Π ⊢ X✧1 Y

Π⊕ ⊢ X❘∼0 Y
dem ◭

Π ⊢ X❘1 Y

Fixed point structural rules. The following rules correspond to the fixed point axioms.

Fixed Point Structural Rules

Π✦1 X ⊢ Y (Π ; 3Π
⊕)✦1 X ⊢ Y

FP △
Π⊕✦0 X ⊢ Y

Π◗1 X ⊢ Y (Π ; 3Π
⊕)◗1 X ⊢ Y

FP N
Π⊕◗0 X ⊢ Y

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 189

Using the rules above and the Display Postulates, the following rules are derivable:

X ⊢ Π✩1 Y X ⊢ (Π ; 3Π
⊕)✩1 Y

FP ⊲
X ⊢ Π⊕✩0 Y

X ⊢ Π❚1 Y X ⊢ (Π ; 3Π
⊕)❚1 Y

FP ◮
X ⊢ Π⊕❚0 Y

Π ⊢ Y✧1 X (Π ; 3Π
⊕) ⊢ Y✧1 X

FP ⊳
Π⊕ ⊢ Y✷∼0 X

Π ⊢ Y❘1 X (Π ; 3Π
⊕) ⊢ Y❘1 X

FP ◭
Π⊕ ⊢ Y❘∼0 X

The infinitary iteration rules are given below:

Omega-Iteration Structural Rules

(
Π(n)✦1 X ⊢ Y n ≥ 1

)

ω △

Π⊕✦0 X ⊢ Y

(
Π(n)◗1 X ⊢ Y n ≥ 1

)

ω N

Π⊕◗0 X ⊢ Y

Using the rules above and the Display Postulates, the following rules are derivable:

(
X ⊢ Π(n)✩1 Y n ≥ 1

)

ω ⊲

X ⊢ Π⊕✩0 Y

(
X ⊢ Π(n)❚1 Y n ≥ 1

)

ω ◮

X ⊢ Π⊕❚0 Y

(
Π(n) ⊢ Y✧1 X n ≥ 1

)

ω ⊳

Π⊕ ⊢ Y✷∼0 X

(
Π(n) ⊢ Y❘1 X n ≥ 1

)

ω ◭

Π⊕ ⊢ Y❘∼0 X

Rules for action constants. For the following rules, j = 1, 2 and k = 1, 3. Moreover, x, y, z

are structural variables of the suitable action- or transitive action-type. The index on T

T

is omitted because it is uniquely determined by j and k.

T

T

-Rules

x ⊢ y
T

Tj
1R

x ⊢ T

T

≬ j y

∆ ⊢ Γ
T

T3
1R

∆⊖ ⊢ T

T

≬3 Γ

∆ ⊢ Γ
T

T4
1R

∆⊖ ⊢ T

T

≬4 Γ

x ⊢ y
T

Tk
2R

x ⊢ y ≬k T

T

∆ ⊢ Γ
T

T2
2R

∆⊖ ⊢ Γ ≬2 T

T

∆ ⊢ Γ
T

T4
2R

∆⊖ ⊢ Γ ≬4 T

T

For the following rules, j = 1, 2 and k = 1, 3. Moreover, x, y, z are structural variables

of the suitable action- or transitive action-type. The index on T

T

is omitted because it is

uniquely determined by j and k.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 190

Φ-Rules

x ⊢ y
Φ

j

1L
Φ ; jx ⊢ y

∆ ⊢ Γ
Φ3

1L
Φ ;3∆ ⊢ Γ

⊖

∆ ⊢ Γ
Φ4

1L
Φ ;4∆ ⊢ Γ

⊖

x ⊢ y
Φk

2L
x ;k Φ ⊢ y

∆ ⊢ Γ
Φ2

2L
∆ ;2Φ ⊢ Γ

⊖

∆ ⊢ Γ
Φ4

2L
∆ ;4Φ ⊢ Γ

⊖

Structural rules for binary action connectives. For the following rules (cf. [Har13a,

Har13b] for Weakening w.r.t. sequential composition), j = 1, 2 and k = 1, 3. Moreover,

x, y, z are structural variables of the suitable action- or transitive action-type.

Weakening Rules for Actions

x ⊢ y
Wh

1Rx ⊢ z ≬ j y

∆ ⊢ Γ
W3

1R
∆⊖ ⊢ Π ≬3 Γ

∆ ⊢ Γ
W4

1R
∆⊖ ⊢ Γ′ ≬4 Γ

x ⊢ y
W l

2Rx ⊢ y ≬k z

∆ ⊢ Γ
W2

2R
∆⊖ ⊢ Γ ≬2 Π

∆ ⊢ Γ
W4

2R
∆⊖ ⊢ Γ ≬4 Γ

′

For the following rules, k = 1, 4 and x, y, z are structural variables of the suitable action-

or transitive action-type required by type-regularity.

Contraction Rule for Actions

y ⊢ x ≬k x
Ck

Ry ⊢ x

Additional contraction rules can be derived using the promotion/demotion rules. For the

following rules, k = 1, 4. Moreover, x, y, z are structural variables of the suitable action-

or transitive action-type required by type-regularity.

Exchange Rules for Actions

Σ ⊢ ∆ ≬2 Π
E

2≬3

R
Σ ⊢ Π ≬3 ∆

z ⊢ x ≬k y
E

k≬k

Rz ⊢ y ≬k x

For the following rules, the indices are omitted, under the convention that they span over

all the combinations allowed by the grammar, by type-regularity and by type-alikeness

of parameters. The variables x, y, z are of the suitable action- or transitive action-type.

Associativity Rules for Actions

x ; (y ; z) ⊢ w
AL

(x ; y) ; z ⊢ w

w ⊢ (z ≬ y) ≬ x
AR

w ⊢ z ≬ (y ≬ x)

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 191

Dynamics and non-deterministic choice. In the following choice rules, the index on ≬

is uniquely determined and is omitted. These rules encode the fact that ◭1 and ⊳1 are

monotone in their first coordinate and antitone in their second coordinate.

Structural Rules for Non-Deterministic Choice

Ψ ⊢ (Y❘1X) ≬ (Z❘1X)
choice ◭1

Ψ ⊢ (Y ,Z)❘1X

Ψ ⊢ (Y✧1X) ≬ (Z✧1X)
choice ⊳1

Ψ ⊢ (Y ,Z)✧1X

Ψ ⊢ (X❘1Y) ≬ (X❘1Z)
choice ◭1

Ψ ⊢ X❘1(Y ,Z)

Ψ ⊢ (X✧1Y) ≬ (X✧1Z)
choice ⊳1

Ψ ⊢ X✧1(Y ,Z)

More rules on non-deterministic choice and sequential composition. For the following

rules, 1 ≤ k ≤ 4. Moreover, x, y, z are structural variables of the suitable action- or

transitive action-type.

Display Postulates for Non-Deterministic Choice and Sequential Composition

z ⊢ x ≬k y

x

⋂

kz ⊢ y

z ⊢ x ≬k y

z ⋂ ky ⊢ x

x ; jy ⊢ z

y ⊢ x ≻ j z

x ; jy ⊢ z

x ⊢ z ≺ j y

Finally, the rules for the operational connectives ∪ j and ; j are given below. For the

following rules, 1 ≤ j ≤ 4, and the variables x, y and f , g respectively denote structural

and operational terms of suitable type uniquely determined by j and by term-uniformity.

Operational Rules for Non-Deterministic Choice and Sequential Composition

f ⊢ x g ⊢ y
∪

j

L f ∪ j g ⊢ x ≬ j y

x ⊢ f ≬ j g
∪

j

Rx ⊢ f ∪ j g

f ; jg ⊢ x
;

j

L f ;jg ⊢ x

x ⊢ f y ⊢ g
;

j

Rx ; jy ⊢ f ;jg

6.4 Soundness

In the present section, we discuss the soundness of the rules of the dynamic calculus

and prove that those which do not involve virtual adjoints (cf. Section 6.3) are sound

with respect to the standard relational semantics. As we will see, the interpretation of

the multi-type language which we are about to define preserves the translation from the

standard PDL language to the multi-type one, which was outlined in Tables 6.1 and 6.2.

A model for the multi-type language for PDL is a tuple N = (W, v) such that W is a

nonempty set, and v is a variable assignment from AtProp ∪ AtAct mapping each p ∈

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 192

AtProp to a subset [[p]]V ⊆ W, and each π ∈ AtAct to a binary relation Rπ ⊆ W × W.

Clearly, these models bijectively correspond to standard Kripke models for PDL: indeed,

for every standard Kripke model M = (W,R,V) such that R = {Rπ | π ∈ AtAct}, let

NM := (W, vM), where vM(p) = V(p) for every p ∈ AtProp, and vM(π) = Rπ for every

π ∈ AtAct. Conversely, for every N = (W, v) as above, let MN := (W,RN ,VN) such that

RN := {v(π) | π ∈ AtAct}, and VN(p) = v(p) for every p ∈ AtProp. It is immediate to verify

that NMN
= N and MNM

= M for every M and N as above. Clearly each model N as above

gives rise to algebras P(W), P(W ×W) and T (W ×W), which provide suitable domains of

interpretations of terms of type Fm, Act and TAct, respectively.

Structures will be translated into operational terms of the appropriate type, and opera-

tional terms will be interpreted according to their type. In order to translate structures

as operational terms, structural connectives need to be translated as logical connectives.

To this effect, non-modal, propositional structural connectives are associated with pairs

of logical connectives, and any given occurrence of a structural connective is translated

as one or the other, according to its (antecedent or succedent) position. The following

table illustrates how to translate each propositional structural connective of type FM, in

the upper row, into one or the other of the logical connectives corresponding to it on the

lower row: the one on the left-hand (resp. right-hand) side, if the structural connective

occurs in precedent (resp. succedent) position.

Structural symbols < > ; I

Operational symbols ∧ ←

∧

→ ∧ ∨ ⊤ ⊥

Recall that, in the Boolean setting treated here, the connectives ∧ and

∧

are inter-

preted as A ∧ B := A ∧ ¬B and A

∧

B := ¬A ∧ B. The soundness of structural and

operational rules which only involve active components of type FM has been discussed

in Chapter 2 and is here therefore omitted.

The following table illustrates, with the reading indicated above, how to translate each

action-type structural connective. Notice that some of the operational connectives in

the table below are not included in the operational language of the dynamic calculus

for PDL. However, as discussed in Section 6.3, the operational symbols below are the

ones endowed with a semantic justification (so although the indexes are omitted, it is

understood that the table below refers to no virtual adjoints). So even if they are not

included in the language, they are used the present section to facilitate the semantic

interpretation of structures occurring in sequents. Notice also that the structural con-

nectives below have a semantic interpretation only when occurring in precedent (resp.

succedent) position. Hence, not every structure is going to be semantically interpretable.

However, as we will see, this is enough for checking the soundness of the rules.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 193

Structural symbols T

T

≬

⋂

⋂

Operational symbols τ ∪

∩

∩

Structural symbols Φ ; ≻ ≺

Operational symbols 1 ; ≻ ≻

Structural symbols ?

?

(·)⊕ (·)⊖

Operational symbols ?

?

(·)+ (·)−

The interpretation of the connectives above corresponds to the standard one discussed

in Sections 6.2 and 6.3. Below, a and b are operational terms of type Act or TAct, α, δ

and A are operational terms of type Act, TAct and Fm respectively, and the indexes are

omitted.

[[a ∪ b]]v = {(z, z
′) ∈ W ×W | (z, z′) ∈ [[a]]v or (z, z′) ∈ [[b]]v}

[[a ; b]]v = {(z, z
′) ∈ W ×W | ∃w . (z,w) ∈ [[a]]v & (w, z′) ∈ [[b]]v}

[[τ]]v = {(z, z
′) ∈ W ×W | (z, z′) , (z, z′)} = ∅

[[1]]v = {(z, z) ∈ W ×W | z ∈ W}

[[A?]]v = {(z, z) ∈ W ×W | z ∈ [[A]]v}

[[a

?

]]v = {z ∈ W | (z, z) ∈ [[a]]v}

[[α+]]v =
⋃

n≥1

[[α]]n
v

[[δ−]]v = [[δ]]v

[[a ≻ b]]v = {(z, z
′) ∈ W ×W | ∀w . ((w, z) ∈ [[a]]v ⇒ (w, z′) ∈ [[b]]v)}

[[a ≻ b]]v = {(z, z
′) ∈ W ×W | ∀w . ((z′,w) ∈ [[b]]v ⇒ (z,w) ∈ [[a]]v)}

[[a

∩

b]]v = {(z, z
′) ∈ W ×W | (z, z′) ∈ [[b]]v & (z, z′) < [[a]]v} = [[b ∩ a]]v

Given this standard interpretation, the verification of the soundness of the pure-action

rules is straightforward, and is omitted.

As to the heterogeneous connectives, their translation into the corresponding opera-

tional connectives is indicated in the table below, to be understood similarly to the one

above, where the index i ranges over {0, 1}.

Structural symbols ✦i ◗i ✩i ❚i ✧1 ❘1

Operational symbols △ i Ni −⊲i −◮i ⊳1 ◭1

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 194

The interpretation of the heterogeneous connectives involving formulas and actions cor-

responds to that of the well known forward and backward modalities discussed in Sec-

tion 6.3 (below on the right-hand side we recall the notation in the standard language

of PDL with adjoint modalities):

[[α△ 1A]] = {z ∈ W | ∃z′ . z Rα z′ & z′ ∈ [[A]]} 〈α〉A

[[αN1 A]] = {z ∈ W | ∃z . z′Rα z & z′ ∈ [[A]]} 〈α

〉

A

[[α−⊲1 A]] = {z ∈ W | ∀z′ . z Rα z′ ⇒ z′ ∈ [[A]]} [α]A

[[α−◮1 A]] = {z ∈ W | ∀z . z′Rα z⇒ z′ ∈ [[A]]} [α

]

A

The connectives △ 0, −⊲0, N0, −◮0, involving formulas and transitive actions, are inter-

preted in the same way, replacing the relation Rα with the appropriate transitive re-

lations Rδ. Finally, the following syntactic adjoints can be given an interpretation as

follows:

[[B⊳ 1A]]v = {(z, z
′) ∈ W ×W | z ∈ [[A]]v ⇒ z′ ∈ [[B]]v}

[[B◭ 1A]]v = {(z, z
′) ∈ W ×W | z′ ∈ [[A]]v ⇒ z ∈ [[B]]v}

It can also be readily verified that the translation of Section 6.3 preserves the semantic

interpretation, that is, [[A]]M = [[A′]]NM
for every Kripke model M and any PDL-formula

A, where A′ denotes the translation of A in the language of the dynamic calculus.

The soundness of all operational rules for heterogeneous connectives immediately fol-

lows from the fact that their semantic counterparts as defined above are monotone or

antitone in each coordinate.

The soundness of the cut-rules follows from the transitivity of the inclusion relation in

the domain of interpretation of each type.

The display rules (△ i, −◮i) and (N i, −⊲i) for 0 ≤ i ≤ 1, and (△ 1, ◭1) and (N1, ⊳1) are sound

as the semantics of the triangle and arrow connectives form adjoint pairs.

On the other hand, in the display rules (△ 0, ◭∼0) and (N 0, ⊳∼0), the arrow-connectives

are what we call virtual adjoints (cf. Section 6.3), that is, they do not have a semantic

interpretation. In the next section, we will discuss a proof method to show that their

presence in the calculus is safe.5 Soundness of necessitation, conjugation, Fischer Servi,

and monotonicity rules is straightforward and proved as in Section 2.6.2. In the remain-

der of the section, we discuss the soundness of the fixed point and omega-rules. As to

the soundness of FP△ , fix a model N = (W, v), assume that the structures X, Y and Π

5At the moment, this is still a conjecture.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 195

have been assigned interpretations, denoted (abusing notation) [[X]]v, [[Y]]v ⊆ W and

R = [[Π]]v ⊆ W ×W, and that the premises of FP△ are satisfied, that is:

R−1[[[X]]v] ⊆ [[Y]]v and (R ◦ R+)−1[[[X]]v] ⊆ [[Y]]v.

We need to show that (R+)−1[[[X]]v] ⊆ [[Y]]v. By definition, R+ =
⋃

n≥1 Rn, where R1 = R,

and Rn+1 = R ◦ Rn. Hence, (R+)−1[[[X]]v] =
⋃

n≥1(Rn)−1[[[X]]v]. Therefore it is enough to

show that, for every n ≥ 1,

(Rn)−1[[[X]]v] ⊆ [[Y]]v.

This is shown by induction on n. Both the base and the induction cases follow by the as-

sumptions. The soundness of the remaining FP-rules is shown similarly, and is omitted.

As to the soundness of the rule ω△ , fix N, let [[X]]v, [[Y]]v and R = [[Π]]v as above.

The assumption that the premises of ω△ are all satisfied boil down to the inclusion

(Rn)−1[[[X]]v] ⊆ [[Y]]v holding for every n ≥ 1. Hence,

(R+)−1[[[X]]v] =
⋃

n≥1

(Rn)−1[[[X]]v] ⊆ [[Y]]v,

as required. The soundness of the remaining ω-rules is shown similarly, and is omitted.

6.5 Completeness

In the present section, we discuss the completeness of the Dynamic Calculus for PDL

w.r.t. the semantics of Section 6.4. We show that the translation (cf. Section 6.3) of

each of the PDL axioms is derivable in the Dynamic Calculus. Unlike what we did in

Chapter 3, here we need to consider all possible version of the axioms arising from the

disambiguation procedure. Our completeness proof is indirect, and relies on the fact that

PDL is complete w.r.t. the standard Kripke semantics, and that the translation preserves

the semantic interpretation on the standard models (as discussed in Section 6.4).

In the present section, we restrict our attention to deriving the box-versions of the fix

point and induction axioms for PDL. The derivations of the remaining box-axioms for

PDL are collected in Appendix K. The diamond-axioms can be also derived without ap-

pealing to the classical box/diamond interdefinability. These derivations follow a similar

pattern to the ones given below and in Appendix K; the details are omitted.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 196

Box-Fix point + (α−⊲ A) ∧ (α−⊲ (α+ −⊲ A)) ⊣⊢ α+ −⊲ A

α ⊢ α A ⊢ A

α−⊲ A ⊢ α✩ A

α◗α−⊲ A ⊢ A

α ⊢ α

α ⊢ α

α⊕ ⊢ α+ A ⊢ A

α+ −⊲ A ⊢ α⊕✩ A

α−⊲ (α+ −⊲ A) ⊢ α✩ (α⊕✩ A)

α◗α−⊲ (α+ −⊲ A) ⊢ α⊕✩ A

α⊕◗ (α◗α−⊲ (α+ −⊲ A)) ⊢ A

(α ;α⊕)◗α−⊲ (α+ −⊲ A) ⊢ A
FP N

α⊕◗ (α−⊲ A , α−⊲ (α+ −⊲ A)) ⊢ A

α⊕ ⊢ A✧ (α−⊲ A , α−⊲ (α+ −⊲ A))

α+ ⊢ A✧ (α−⊲ A , α−⊲ (α+ −⊲ A))

α+◗ (α−⊲ A , α−⊲ (α+ −⊲ A)) ⊢ A

α−⊲ A , α−⊲ (α+ −⊲ A) ⊢ α+✩ A

α−⊲ A , α−⊲ (α+ −⊲ A) ⊢ α+ −⊲ A

α−⊲ A ∧ α−⊲ (α+ −⊲ A) ⊢ α+ −⊲ A

α ⊢ α

α⊕ ⊢ α+ A ⊢ A

α+ −⊲ A ⊢ α⊕✩ A

α+ −⊲ A ⊢ α✩ A

α+ −⊲ A ⊢ α−⊲ A

α ⊢ α

α⊕ ⊢ α+

α ⊢ α

α⊕ ⊢ α+

α+ ⊢ α+
abs4

α⊕ ;α+ ⊢ α+⊖

(α⊕ ;α+)⊕ ⊢ α+ A ⊢ A

α+ −⊲ A ⊢ (α⊕ ;α+)⊕✩ 0A

α+ −⊲ A ⊢ (α⊕ ;α+)✩ 1A

α+ −⊲ A ⊢ α⊕✩ (α+✩ 0A)

α+ −⊲ A ⊢ α⊕✩ (α+ −⊲ A)

α+ −⊲ A ⊢ α✩ 1(α+ −⊲ A)

α+ −⊲ A ⊢ α−⊲ (α+ −⊲ A)

α+ −⊲ A , α+ −⊲ A ⊢ (α−⊲ A) ∧ (α−⊲ (α+ −⊲ A))
CL

α+ −⊲ A ⊢ (α−⊲ A) ∧ (α−⊲ (α+ −⊲ A))

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 197

Box-Induction + (α−⊲ A) ∧ (α+ −⊲ (A→ (α−⊲ A))) ⊢ α+ −⊲ A

The following (incomplete) derivation takes us to the point in which the infinitary rule

ω ⊳ is applied:

πn

... n ≥ 1

α(n)◗ (α−⊲ A , α+ −⊲ (A→ (α−⊲ A))) ⊢ A

ωN

α⊕◗ (α−⊲ A , α+ −⊲ (A→ (α−⊲ A))) ⊢ A

α⊕ ⊢ A✷∼ (α−⊲ A , α+ −⊲ (A→ (α−⊲ A)))

α+ ⊢ A✷∼ (α−⊲ A , α+ −⊲ (A→ (α−⊲ A)))

α+◗ (α−⊲ A , α+ −⊲ (A→ (α−⊲ A))) ⊢ A

α−⊲ A , α+ −⊲ (A→ (α−⊲ A)) ⊢ α+✩ A

(α−⊲ A) ∧ (α+ −⊲ (A→ (α−⊲ A))) ⊢ α+✩ A

(α−⊲ A) ∧ (α+ −⊲ (A→ (α−⊲ A))) ⊢ α+ −⊲ A
notation

[α]A ∧ [α+](A→ [α]A) ⊢ [α+]A

To complete the proof we are reduced to showing that each premise of the application

of the ωN rule is derivable, that is:

Proposition 6.3. The following sequent is derivable for any n > 1:

α(n)◗ (α−⊲ A , α+ −⊲ (A→ (α−⊲ A))) ⊢ A.

In what follows, the abbreviations below will be useful:

• let α(⊙n)(−) abbreviate α ⊙ (α ⊙ . . . (α⊙︸ ︷︷ ︸
n

(−)) . . .), for ⊙ ∈ {✦ , ◗ , ✩ , ❚ };

• let α(·n)(−) abbreviate α · (α · . . . (α ·︸ ︷︷ ︸
n

(−)) . . .), for · ∈ {△ , N , −⊲ , −◮ };

• let α(n) and αn abbreviate α ; (α ; . . . (α ; α︸ ︷︷ ︸
n

) . . .) and α ; (α ; . . . (α ;α︸ ︷︷ ︸
n

) . . .), respec-

tively.

Lemma 6.4. Let B = A→ (α−⊲ A). The following sequent is derivable for each n > 1:

α(−⊲ n)(A) , α(−⊲ n)(B) ⊢ α(✩ n+1)(A).

Proof. The statement is proved by the following schematic derivation.

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 198

α ⊢ α

α ⊢ α

α ⊢ α A ⊢ A

α−⊲ A ⊢ α✩ A
n − 1 appl’s of −⊲ L

α(−⊲ n)(A) ⊢ α(✩ n)A
n appl’s of ⊲ N

α(◗ n)(α(−⊲ n)(A)) ⊢ A

α ⊢ α A ⊢ A

α−⊲ A ⊢ α✩ A

A→ (α−⊲ A) ⊢ α(◗ n)(α(−⊲ n)(A)) > (α✩ A)
notation

B ⊢ α(◗ n)(α(−⊲ n)(A)) > (α✩ A)
n appl’s of −⊲ L

α(−⊲ n)(B) ⊢ α(✩ n)(α(◗ n)(α(−⊲ n)(A)) > (α✩ A))
n appl’s of ⊲ N

α(◗ n)α(−⊲ n)(B) ⊢ α(◗ n)(α(−⊲ n)(A)) > (α✩ A)

(α(◗ n)(α(−⊲ n)(A))) , (α(◗ n)α(−⊲ n)(B)) ⊢ α✩ A
n appl’s of N dis

α(◗ n)(α(−⊲ n)(A) , α(−⊲ n)(B)) ⊢ α✩ A
n appl’s of N ⊲

α(−⊲ n)(A) , α(−⊲ n)(B) ⊢ α(✩ n+1)(A)

�

Corollary 6.5. Let B = A→ (α−⊲ A). The following sequent is derivable for each n > 1:

α(−⊲ n)(A) , α(−⊲ n)(B) ⊢ α(−⊲ n+1)(A).

Proof. The schematic derivation in the proof of Lemma 6.4 shows in particular that a derivation

for the following sequent exists:

α(◗ n)(α(−⊲ n)(A) , α(−⊲ n)(B)) ⊢ α✩ A.

Then, the desired derivation can be obtained by prolonging that derivation with n alternations of

−⊲ R and N ⊲, as follows:

α(◗ n)(α(−⊲ n)(A) , α(−⊲ n)(B)) ⊢ α✩ A

α(◗ n)(α(−⊲ n)(A) , α(−⊲ n)(B)) ⊢ α−⊲ A

α(◗ n−1)(α(−⊲ n)(A) , α(−⊲ n)(B)) ⊢ α✩ (α−⊲ A)

α(◗ n−1)(α(−⊲ n)(A) , α(−⊲ n)(B)) ⊢ α−⊲ (α−⊲ A)

α(−⊲ n)(A) , α(−⊲ n)(B) ⊢ α(−⊲ n+1)(A)

�

Lemma 6.6. Let B = A→ (α−⊲ A). The following sequent is derivable for each n > 1:

α(−⊲ 1)(A) , α(−⊲ 1)(B) , . . . , α(−⊲ n−1)(B) , α(−⊲ n)(B) ⊢ α(✩ n+1)(A).

Proof. Fix n > 1, let Xn+1 abbreviate α(✩ n+1)(A), and for each 1 6 i < n, let Ci and Di abbre-

viate α(−⊲ i)(A) and α(−⊲ i)(B), respectively. By Corollary 6.5, a derivation πi of Ci ,Di ⊢ Ci+1

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 199

is available for each 1 6 i < n, and by Lemma 6.4, a derivation πn of Cn ,Dn ⊢ Xn+1 is also

available. Then the following derivation, which essentially consists in n− 1 applications of Cut,

proves the statement:

π1

...

C1 ,D1 ⊢ C2

π2

...

C2 ,D2 ⊢ C3

C2 ⊢ C3 < D2
Cut1

C1 ,D1 ⊢ C3 < D2

C1 ,D1 ,D2 ⊢ C3

π3

...

C3 ,D3 ⊢ C4

C3 ⊢ C4 < D3
Cut2

C1 ,D1 ,D2 ⊢ C4 < D3

C1 ,D1 ,D2 ,D3 ⊢ C4

πi

...

· · ·

πn

...

Cn ,Dn ⊢ Xn+1

Cn ⊢ Xn+1 < Dn
Cutn−1

C1 ,D1 , . . . ,Dn−1 ⊢ Xn+1 < Dn

C1 ,D1 , . . . ,Dn−1 ,Dn ⊢ Xn+1

α(−⊲ 1)(A) , α(−⊲ 1)(B) , . . . , α(−⊲ n−1)(B) , α(−⊲ n)(B) ⊢ α(✩ n+1)(A)

�

Lemma 6.7. The following sequent is derivable for each n > 1 and every formula C:

α+ −⊲C ⊢ α(−⊲ n)(C).

Proof. For n = 1, the following derivation proves the statement:

α ⊢ α

α⊕ ⊢ α+ C ⊢ C

α+ −⊲C ⊢ α⊕✩C

α+ −⊲C ⊢ α✩C

α+ −⊲C ⊢ α−⊲C

For n > 2, the following schematic derivation proves the statement:

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 200

α ⊢ α

α⊕ ⊢ α+

α ⊢ α+⊖

α ⊢ α

α⊕ ⊢ α+

α ⊢ α+⊖ · · ·

α ⊢ α

α⊕ ⊢ α+

α ⊢ α+⊖

α ⊢ α

α⊕ ⊢ α+

α ⊢ α+⊖
abs

α ;α ⊢ α+⊖
n − 2 appl’s of abs

α(n-1) ⊢ α+⊖

α ;α(n-1) ⊢ α+⊖

(α ;α(n-1))⊕ ⊢ α+ C ⊢ C

α+ −⊲C ⊢ (α ;α(n-1))⊕✩C

α+ −⊲C ⊢ (α ;α(n-1))✩C
act ⊲

α+ −⊲C ⊢ α✩ (α(n-1)✩C)
⊲ N

α◗α+ −⊲C ⊢ α(n-1)✩C
notation

α◗α+ −⊲C ⊢ (α ;α(n-2))✩C
(∗)

α◗ (α(◗ n-2)(α+ −⊲C)) ⊢ α✩C
−⊲

α◗ (α(◗ n-2)(α+ −⊲C)) ⊢ α−⊲C
N ⊲

α(◗ n-2)(α+ −⊲C) ⊢ α✩α−⊲C
(∗∗)

α+ −⊲C ⊢ α(−⊲ n)(C)

(∗) n − 2 alternating applications of the structural rule act⊲ and of the display postulate for the

connectives ⊲ and N.

(∗∗) n − 1 alternating applications of the operational rule −⊲ R and of the display postulate for

the connectives N and ⊲. �

Lemma 6.8. Let B = A→ (α−⊲ A). The following sequent is derivable for each n > 1:

α(−⊲ 1)(A) , α+ −⊲ B ⊢ α(✩ n)(A).

Proof. Fix n > 1, let Xn+1 abbreviate α(✩ n+1)(A), let D+ abbreviate α+ −⊲ B, and for each

1 6 i 6 n, let Ci and Di abbreviate α(−⊲ i)(A) and α(−⊲ i)(B), respectively. By Lemma 6.6, a

derivation πn of the sequent

C1 ,D1 , . . . ,Dn ⊢ Xn+1

is available for each n > 1 and for B = A→ (α−⊲ A).

By Lemma 6.7, for each 1 6 i 6 n, a derivation π′
i

of the sequent α+ −⊲C ⊢ α(−⊲ i)(C) is

available for any C, so in particular for C = B we get a derivation of

D+ ⊢ Di.

Applying Cut n − 1 times, the following derivation proves the statement:

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 201

π′n

...

D+ ⊢ Dn

π′
i

...

· · ·

π′
1

...

D+ ⊢ D1

πn

...

C1 ,D1 , . . . ,Dn ⊢ Xn+1 D1 in display
D1 ⊢ Y1

Cut1
D+ ⊢ Y1 D2 in display
D2 ⊢ Y2 n − 2 sequences of display and Cut
Dn ⊢ Yn

Cutn−1
D+ ⊢ Yn Display

C1 ,D
+ , . . . ,D+︸ ︷︷ ︸

n

⊢ Xn+1

Contraction
C1 ,D

+ ⊢ Xn+1

�

Now we can finish the proof of Proposition 6.3 as follows:

Proof. By Lemma 6.8, a derivation of the sequent α(−⊲ 1)(A) , α+ −⊲ B ⊢ α(✩ n)(A) exists; then

the desired derivation is obtained by prolonging that derivation as shown below.

α(−⊲ 1)(A) , α+ −⊲ B ⊢ α(✩ n)(A)
n appl’s of ⊲ N

α(◗ n)(α(−⊲ 1)(A) , α+ −⊲ B) ⊢ A
n appl’s of actN

α(n)◗ (α(−⊲ 1)(A) , α+ −⊲ B) ⊢ A

�

6.6 Cut elimination

In the present section, we prove that the multi-type display calculus for PDL is a proper

display calculus (cf. Definition 6.1). By Theorem 6.2, this is enough to establish that the

calculus enjoys the cut elimination and the subformula property. Conditions C1, C2, C3,

C4, C5, C”5, C’6, C’7 and C10 are straightforwardly verified by inspecting the rules and are

left to the reader. Condition C’2 can be straightforwardly verified by inspection on the

rules, for instance by observing that the domains and codomains of adjoints are rigidly

determined.

The following proposition shows that condition C9 is met:

Proposition 6.9. Any derivable sequent in the calculus for PDL is type-uniform.

Proof. We prove the proposition by induction on the height of the derivation. The base case

is verified by inspection; indeed, the following axioms are type-uniform by definition of their

constituents:

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 202

d ⊢ d a ⊢ a p ⊢ p ⊥ ⊢ I I ⊢ ⊤

As to the inductive step, one can verify by inspection that all the rules of the calculus preserve

type-uniformity, and that the Cut rules are strongly type-uniform. �

Finally, the verification steps for C’8 are collected in Appendix J.

6.7 The open issue of conservativity

In the present section, we expand on the difficulties encountered in the proof of conser-

vativity for the Dynamic Calculus for PDL.

Semantic argument. The main avenue to prove the conservativity of a display calculus

w.r.t. the original logic that the calculus is meant to capture is semantic. Namely, if

the original logic is complete w.r.t. a given semantics, then it is enough to prove that

every rule is sound w.r.t. that semantics. This is not possible in the case of the Dynamic

Calculus for PDL, since some display rules are not interpretable in the semantics due to

the presence of virtual adjoints (cf. Section 6.3). This situation is analogous to that of

the Dynamic Calculus for EAK.

Syntactic elimination of virtual adjoints. In the setting of the Dynamic Calculus for EAK,

our proof was syntactical, and its pivot step was showing that any valid proof-tree the

root of which is operational and of type Fm can be rewritten into a valid proof-tree

involving no virtual adjoints (cf. Section 3.6). This process of removing virtual adjoints

could take place essentially because the action-grammar of EAK was very poor. In the

case of PDL, because the presence of the iteration in the grammar of actions, this fact

is not true. However, the fact that virtual adjoints occur in essential ways in derivation

trees of operational sequents A ⊢ B of type Fm does not imply per se that the calculus is

not sound w.r.t. the original language.

Display-Type Calculi. Another option would be modifying the Dynamic Calculus for

PDL so as to make it a display-type calculus rather than a display calculus. The modifi-

cations would require removing all the rules involving virtual adjoints and replacing the

cut rules with suitable surgical cuts. However, in order to obtain a complete calculus,

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 203

certain rules which are derived in the original Dynamic Calculus would also need to be

added. This is the case of the following rule:

α⊕◗ X ⊢ Y

α+◗ X ⊢ Y

Unfortunately, the rule above violates visibility. Hence, cut elimination cannot be proved

for the resulting calculus via Theorem 4.1.

Conservativity via translation. In [DCGT14] and [CDGT13b], the conservativity issue

for a display calculus for Full Intuitionistic Linear Logic (FILL) was resolved with a

technique which we intend to adapt to PDL. This adaptation is still work in progress.

In what follows, we report on the proof strategy adopted in [DCGT14], and discuss its

possible adaptations. The main steps in the proof strategy are:

1. define a sound and complete display calculus for an extension of the logic with

additional adjunctions. The extension considered in [DCGT14] is Bi-Intuitionistic

Linear Logic (BiILL).

2. translate the display calculus to a shallow inference nested sequent calculus.

3. translate the shallow inference nested sequent calculus to a deep inference nested

sequent calculus.

4. prove that the deep inference nested sequent calculus is sound with respect to the

original logic. In the case of [CFPS14], the authors prove that the deep inference

nested sequent calculus is sound with respect to FILL.

The adaptation of this technique to the setting of PDL is not straightforward. For in-

stance, the first translation transforms logical connectives into meta-linguistic data struc-

tures such as ⊢ without losing information. The naive adaptation of this step to the

setting of PDL would make us lose information. This direction is still work in progress.

6.8 Conclusions

The calculus introduced in the present chapter is an attempt at extending the method-

ology of display calculi to a fully-fledged PDL-type setting. Previous attempts in this

direction (e.g. [Wan98]) exclude both the Kleene star and the positive iteration. Ac-

counting for these operations is proof-theoretically challenging, and indeed, the existing

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 204

proposals in the literature, also outside the display calculus methodology, typically wit-

ness a trade-off between achieving syntactical full cut elimination at the price of having

infinitary rules in the system (e.g. [Pog10]), or dispensing with infinitary rules at the

price of achieving cut elimination modulo analytic cut(s) (e.g. unpublished manuscript

[Har]). The present proposal aims at paving the way for escaping this trade-off. Indeed,

our starting point is the basic understanding that the induction axioms/induction rules

(which are the main hurdle to a smooth proof-theoretic treatment of PDL) ingeniously

encode by means of formulas a piece of information which by rights pertains to actions;

namely, they encode the relation between an action and its (reflexive and) transitive

closure. This encoding is done either by resorting to infinitary axioms/rules, or by intro-

ducing some forms of ‘loops’ (i.e. formulas appearing both in the antecedent and in the

consequent of an implication). Each of these two ways gives rise to issues which hinder

a smooth proof-theoretic treatment of PDL. Taken together, these two alternatives are

at the basis of the trade-off we wish to escape. Our idea for a solution (which needs to

be perfected) involves introducing enough expressivity in the language so that formulas

are not to be relied upon anymore to encode a piece of information which strictly speak-

ing pertains purely to actions, and neither pertains to formulas, nor to the interaction

between formulas and actions.

In particular, we aim at describing the proof-theoretic behaviour of the positive iteration

operation + in terms of the order-theoretic behaviour of the transitive closure. Namely,

we make use of the well known fact that the map associating each binary relation on a

given set W to its transitive closure can be characterized order-theoretically as the left

adjoint of the inclusion map sending the transitive relations on W into P(W × W). The

introduction of two different types of actions is then motivated by the need to properly

express this adjunction. Thus, we expand the language, both at the structural and at the

operational level, with the following pair of adjoint maps:

(·)+ : Act→ TAct (·)− : TAct→ Act.

The adjunction relation (·)+ ⊣ (·)− is not enough to capture the informational content

of the transitive closure. The missing pieces are: (1) the map (·)− being an order-

embedding; (2) the fact that the TAct-type elements are transitive, i.e. δ; δ ⊢ δ for each

δ ∈ TAct. Neither piece of information is captured at the operational level. Indeed, we

can only prove

δ ⊢ δ

δ− ⊢ δ⊖

δ−⊕ ⊢ δ

δ−+ ⊢ δ

Chapter 6. Multi-Type Display Calculus for Propositional Dynamic Logic 205

Hence, we had to resort to the omega-induction rules (which, besides being infinitary,

take the form of interaction rules between formula-type and action-type terms) to en-

code the transitive closure and derive the induction axioms. We conjecture that being

able to express transitive closure at the structural level is key to dispensing with the

infinitary rules, which is our next goal for future developments in this line research.

Finally, it is perhaps worth stressing that considerations such as the ones just made

above can be made in a meaningful way only in the context of a multi-type environment

in which actions and formulas enjoy equal standing as first-class citizens. Thus, the

multi-type approach can also function as a ‘conceptual tool’, by means of which technical

difficulties such as the ones mentioned above can be explained in terms of problems of

expressivity. In their turn, properties and considerations involving different degrees of

expressivity can then be sharpened and made precise.

Conclusions

Contributions

The original contributions of the present thesis belong to two directions, one pertaining

to unified correspondence theory, the other to the theory of display calculi. As to the first

direction, a characterization result about finite lattices has been established as a novel

application of unified correspondence theory. Towards this result, the algorithm ALBA

has been adapted to a semantic setting for monotone modal logic, and a duality-based

translation has been defined between lattice inequalities and inequalities in the language

of monotone modal logic. As to the second direction, the proof-theoretic methodology

of display calculi has been extended to Baltag-Moss-Solecki’s logic of Epistemic Actions

and Knowledge (EAK), Monotone Modal Logic (MML) and Propositional Dynamic Logic

(PDL). Due precisely to the distinguishing features which make these logics useful in

various fields of science, the proof-theoretic treatment of each of these logics has proved

to be very challenging. The results collected in Part II of the present thesis are embedded

in a wider program aimed at developing good proof calculi for dynamic logics, where

by a ‘good proof calculus’ we mean one enjoying a series of properties which go beyond

the most basic ones, which are soundness and completeness w.r.t. the original logic, and

cut elimination. Indeed, ‘good proof calculi’ should be modular, that is, amenable to the

development of methods which transfer easily from one logic to another. In the thesis,

for instance, much attention has been dedicated to the Belnap-style cut elimination, i.e.

the statement and proof of metatheorems guaranteeing any system to enjoy cut elimina-

tion provided it satisfies certain conditions which are relatively easy to check. But also,

following a basic idea from proof-theoretic semantics, ‘good proof calculi’ for a given

logic should develop an independent perspective on that logics. That is, one which is

independent of existing semantic frameworks, and does not make use of meta-linguistic

resources such as abbreviations and labels. In the thesis, we generalize display calculi to

a multi-type setting. Besides being in line with the general principles of proof-theoretic

semantics, the multi-type environment is a very effective conceptual tool, which makes

it possible to calibrate the expressivity of a language in several ways. For instance, in

207

Conclusions 208

the thesis, we were able to absorb the labels in the formulation of the interaction axioms

in EAK precisely by calibrating the expressivity of its corresponding multi-type environ-

ment. But also, and perhaps more subtly, the multi-type environment is of help as a

diagnostic tool. For instance, the dynamic calculus for PDL brings two main outstanding

issues: the conservativity and the omega rules. In a sense, it could be said that these

two issues are both symptomatic of the fact that the omega rule uses the type formula

to encode a property (the transitive closure) which has nothing to do with formulas.

We believe that disentangling these two types is key to improving on the design of this

calculus and on its overall performances.

Further research.

Correspondence theory.

The results in Chapter 1 pave the way to the systematic formalization of dual character-

ization results for finite lattices. Significant extensions of Nation’s dual characterization

results appear e.g. in [Sem05] and [San09, Proposition 8.5]. Hence, natural directions

worth pursuing concern on the one hand the generalization of the results of the present

thesis so as to account for [San09, Proposition 8.5], and (b) analyzing the technical

machinery introduced in the present paper from an algorithmic perspective. The latter

point involves e.g. establishing whether the present set of rules is minimal, or whether

some rules can actually be derived.

Related to both these directions, but more on the front of methodology, are outstanding

open questions about Lemma A.1. This lemma provides the soundness and invertibility

of a rule by means of which variable elimination is effected via instantiation. So far,

all rules of this type in ALBA have been proved sound and invertible thanks to one or

another version of Ackermann’s lemma. However, it is not clear whether Lemma A.1 can

be accounted for in terms of Ackermann’s lemma, and hence whether the rule justified

in Lemma A.1 can be regarded as an Ackermann-type rule. Moreover, while Lemma A.1

is rooted and has an intuitive understanding in the semantics of minimal coverings, at

the moment it is not clear whether and how more general versions of this rule can be

formulated, which would be of a wider applicability. Giving answers to these questions

would significantly enlarge the scope of algorithmic correspondence theory, and is also

a worthwhile future direction.

Conclusions 209

Proof theory.

Non-proper display calculi. In [Wan98], a difference was drawn between proper dis-

play calculi and general display calculi. Roughly speaking, all rules of proper display

calculi are required to be schematic (i.e. closed under uniform substitution) whereas

this requirement is relaxed in the case of general display calculi. The best known ex-

ample of a non-proper display calculus appears in [Bel90], motivated by the treatment

of the exponential connectives in linear logic. This treatment is ingenious, but it does

not transfer easily to other logics. We conjecture that a proper display calculus can be

designed for linear logic in the multi-type setting. Our basic idea consists in introducing

two types of terms: the linear ones, for which the contraction rule is banned, and the

Boolean ones, for which the contraction rule is allowed. Then, the exponential con-

nectives can be regarded as toggles in between these types. This direction is work in

progress. For expanded discussions see Sections 2.7 and 3.7.

Conservativity. As mentioned at various points early on, the issue of conservativity

commonly occurs in display calculi, since enforcing the display property might require

introducing connectives which do not belong to the language of the original logic which

one wishes to capture. In the thesis, the conservativity issue was solved for all case

studies but the Dynamic Calculus for PDL. In Section 6.7, we discussed how we plan

to resolve the outstanding issue of the conservativity of the Dynamic Calculus for PDL,

which is work in progress. But more in general, an important research direction in

display calculi which we also intend to pursue is to state and prove metatheorems for

conservativity, analogous to those for cut elimination.

Omega-rules. The second outstanding issue about PDL is whether it is possible to de-

sign a multi-type display calculus in which the induction axiom is captured by means

of finite rules. As discussed in Section 6.8, our conjecture is that the present set-up is

not expressive enough so as to be able to capture the information about transitive clo-

sure purely within the action and transitive action type. This direction is also work in

progress.

More dynamic logics. The proof-theoretic results in the present thesis form the core of

a methodology which is ready to be extended to logics such as Concurrent Propositional

Dynamic Logic [Gol92b], Game Logic [Par85], Coalition Logic [Pau01, Pau02], Concur-

rent Dynamic Epistemic Logic [vDvdHK03], and variants of Dynamic epistemic logics

with non-normal epistemic operators. At the present stage of development, we expect

Conclusions 210

that this extension will be a nontrivial task, but these case studies will be an opportunity

to sharpen the general framework.

Appendices

211

Appendix A

Proof of Lemma 1.34

Lemma 1.34 For every n ≥ 1, ALBAl succeeds on the quasi-inequality

∀xn−1, ..., x0,∀yn, ..., y0,∀jn,

jn ≤ t′n

s′n(〈≤X〉jn/xn) ≤ κ(jn)

⇒ false
 , (A.1)

and produces

∀jn, ...j0,∀Cn−1, ...C0

jn ≤ 〈⊳〉Cn−1

jn−1 ≤ 〈∈〉Cn−1

〈≤J〉jn ∧ jn−1 ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

.

Proof. By induction on n. If n = 1, then the quasi-inequality (A.1) has the following shape (cf.

the definitions of tn and sn on page 57):

∀x0,∀y1,∀j1,

j1 ≤ 〈⊳〉[∋](y1 ∨ x0)

〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0) ∨ ⊥) ≤ κ(j1)

⇒ false
 .

By applying the rules (AtCoat1) and (T ∧ ⊥) to the second inequality, we get:

∀x0,∀y1,∀j1,

j1 ≤ 〈⊳〉[∋](y1 ∨ x0)

j1 ≤ ¬〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false
 .

213

Appendix A. Proof of Lemma 1.34 214

Now we can apply (T DB) and (T BD) to the second inequality, and get:

∀x0,∀y1,∀j1,

j1 ≤ 〈⊳〉[∋](y1 ∨ x0)

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false
 .

By applying the rule (T NM) to the first and second inequalities, we get:

∀x0,∀y1,∀j1,

j1 ≤ 〈⊳〉([∋](y1 ∨ x0) ∧ 〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0)))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false
 .

We can apply the rule (AP♦) to the first inequality, and get:

∀x0,∀y1,∀j1,∀C0

j1 ≤ 〈⊳〉C0

C0 ≤ [∋](y1 ∨ x0) ∧ 〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

By applying the rule (S P∧) to the second inequality, we get:

∀x0,∀y1,∀j1,∀C0

j1 ≤ 〈⊳〉C0

C0 ≤ [∋](y1 ∨ x0)

C0 ≤ 〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

We can now apply the rule (AJ�) to the second inequality and (AP♦) to the third inequality, and

get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

C0 ≤ 〈∋〉j0

j0 ≤ ¬(y1 ∨ (〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

By applying the rules (DM) and (S P∧) to the fourth inequality, we get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

C0 ≤ 〈∋〉j0

j0 ≤ ¬y1

j0 ≤ ¬(〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

Appendix A. Proof of Lemma 1.34 215

By applying the rule (TRR−1) to the third inequality, the rules (T ∧ ⊥) and (AtCoat1) to the

fourth and fifth inequalities, and the rules (T DB) and (T BD) to the last inequality, we get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

j0 ≤ 〈∈〉C0

y1 ≤ κ(j0)

〈≤J〉j1 ∧ x0 ≤ κ(j0)

j1 ≤ ¬〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

By applying the rule (TR) to the second and third inequalities and the rule (T ∧ ⊥) to the last

inequality, we get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

j0 ≤ 〈∈〉C0

j0 ≤ y1 ∨ x0

y1 ≤ κ(j0)

〈≤J〉j1 ∧ x0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0)) ≤ ⊥

⇒ false

.

By applying the rule (MT) to the fourth and fifth inequalities, the rule (AtCoat1) to the last in-

equality, and by exchanging the position of the second and third inequalities, the quasi-inequality

above can be equivalently rewritten as follows:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈∈〉C0 ≤ y1 ∨ x0

j0 ≤ x0

y1 ≤ κ(j0)

〈≤J〉j1 ∧ x0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0)) ≤ ⊥

⇒ false

.

By lemma A.1 with the following instantiations1

t := ⊤, s := ⊥, j := j1, k := j0, C := C0, x := x0,

1Notice that t := ⊤ and s := ⊥ reduce the inequalities k ≤ t, 〈∈〉C ≤ y ∨ t and x ∧ s ≤ κ(k) in the statement of

Lemma A.1 to tautologies, and the inequality j∧〈⊳〉[∋](y∨(〈≤J〉j∧ x)∨(x∧ s)) ≤ ⊥ to j∧〈⊳〉[∋](y∨(〈≤J〉j∧ x)) ≤ ⊥.

Appendix A. Proof of Lemma 1.34 216

the quasi-inequality above is equivalent to the following:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

cl(〈∈〉C0 r j0) ≤ κ(j0)

〈≤J〉j1 ∧ 〈≤J〉j0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](cl(〈∈〉C0 r j0) ∨ (〈≤J〉j1 ∧ 〈≤J〉j0)) ≤ ⊥

⇒ false

,

where cl abbreviates the composition 〈⊳〉[∋]〈≤J〉. By applying the rule MinCov2 bottom to top,

the quasi-inequality above can be equivalently rewritten as follows

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ 〈≤J〉j0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](cl(〈∈〉C0 r j0) ∨ (〈≤J〉j1 ∧ 〈≤J〉j0)) ≤ ⊥

⇒ false

,

By applying Lemma 1.30, we get:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ 〈≤J〉j0 ≤ κ(j0)

⇒ false

,

By applying (AtomRXX) to the third inequality, we get:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ≤ κ(j0)

⇒ false

,

By (AtCoat1) to the third inequality, we get:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

,

which finishes the proof of the base case.

Induction step. Fix n ≥ 1, and assume that the lemma holds for n. Recall that x stands for the

list of variables xn, ..., x0, and y stands for the list of variables yn, ..., y1. Let us prove the lemma

for the quasi-inequality

∀x,∀yn+1,∀y,∀jn+1

jn+1 ≤ t′

n+1

s′
n+1

(〈≤J〉jn+1/xn+1) ≤ κ(jn+1)

⇒ false
 .

Appendix A. Proof of Lemma 1.34 217

By the definitions on page 57, the quasi-inequality above can be rewritten into:

∀x,∀yn+1,∀y,∀jn+1

jn+1 ≤ 〈⊳〉[∋](yn+1 ∨ tn)

〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn) ≤ κ(jn+1)

⇒ false
 ,

which, by applying the rules (AtCoat1) and (T ∧ ⊥) to the second inequality, is equivalent to:

∀x,∀yn+1,∀y,∀jn+1

jn+1 ≤ 〈⊳〉[∋](yn+1 ∨ tn)

jn+1 ≤ ¬〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false
 .

By applying the rule (T BD) and (T DB) to the second inequality, we get:

∀x,∀yn+1,∀y,∀jn+1

jn+1 ≤ 〈⊳〉[∋](yn+1 ∨ tn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false
 .

By applying the rule (T NM) to the first and second inequalities, we get:

∀x,∀yn+1,∀y,∀jn+1

jn+1 ≤ 〈⊳〉([∋](yn+1 ∨ tn) ∧ 〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn))

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false
 .

By applying the rule (AP♦) to the first inequality, we get:

∀x,∀yn+1,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

Cn ≤ [∋](yn+1 ∨ tn) ∧ 〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rule (S P∧) to the second inequality, we get:

∀x,∀yn+1,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

Cn ≤ [∋](yn+1 ∨ tn)

Cn ≤ 〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

Appendix A. Proof of Lemma 1.34 218

We can now apply the rule (AJ�) to the second inequality and (AP♦) to the third inequality, and

get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn

Cn ≤ 〈∋〉jn

jn ≤ ¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rules (DM) and (S P∧) to the fourth inequality, we get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn

Cn ≤ 〈∋〉jn

jn ≤ ¬yn+1

jn ≤ ¬(〈≤J〉jn+1 ∧ xn)

jn ≤ ¬sn

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rule (TRR−1) to the third inequality, the rules (T ∧ ⊥) and (AtCoat1) to the

fourth, fifth and sixth inequalities, and the rules (T DB) and (T BD) to the last inequality, we get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn

jn ≤ 〈∈〉Cn

yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

sn ≤ κ(jn)

jn+1 ≤ ¬〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rule (TR) to the second and third inequalities and the rule (T ∧ ⊥) to the last

inequality, and by exchanging the position of the second and third inequalities, we get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn

jn ≤ yn+1 ∨ tn

yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

sn ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn) ≤ ⊥

⇒ false

.

Appendix A. Proof of Lemma 1.34 219

By applying the rule (MT) to the fourth and fifth inequalities, and since by definition tn = xn∧ t′n

and sn = xn ∧ s′n, the quasi-inequality above is equivalent to the quasi-inequality below:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈∈〉Cn ≤ yn+1 ∨ (xn ∧ t′n)

jn ≤ xn ∧ t′n

yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

xn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ (xn ∧ s′n)) ≤ ⊥

⇒ false

.

We can apply now the rules (D∨∧) and (S P∧) to the third inequality, and the rule (S P∧) on the

fourth inequality, and get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈∈〉Cn ≤ yn+1 ∨ xn

〈∈〉Cn ≤ yn+1 ∨ t′n

jn ≤ xn

jn ≤ t′n

yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

xn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ (xn ∧ s′n)) ≤ ⊥

⇒ false

.

By lemma A.1 with the following instantiations

t := t′n, s := s′n, j := jn+1, k := jn, C := Cn, x := xn,

Appendix A. Proof of Lemma 1.34 220

the quasi-inequality above is equivalent to the following quasi-inequality:

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

jn ≤ t′n

cl(〈∈〉Cn r jn) ≤ κ(jn)

〈≤J〉jn+1 ∧ 〈≤J〉jn ≤ κ(jn)

〈≤J〉jn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](cl(〈∈〉Cn r jn) ∨ (〈≤J〉jn+1 ∧ 〈≤J〉jn) ∨ (〈≤J〉jn ∧ s′n)) ≤ ⊥

⇒ false

.

where cl abbreviates the composition 〈⊳〉[∋]〈≤J〉. By applying the rule MinCov2 bottom to top,

the quasi-inequality above can be equivalently rewritten as follows

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

jn ≤ t′n

〈≤J〉jn+1 ∧ 〈≤J〉jn ≤ κ(jn)

〈≤J〉jn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](cl(〈∈〉Cn r jn) ∨ (〈≤J〉jn+1 ∧ 〈≤J〉jn) ∨ (〈≤J〉jn ∧ s′n)) ≤ ⊥

⇒ false

.

By applying Lemma 1.30, we get:

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

jn ≤ t′n

〈≤J〉jn+1 ∧ 〈≤J〉jn ≤ κ(jn)

〈≤J〉jn ∧ s′n ≤ κ(jn)

⇒ false

.

By applying (AtomRXX) and (AtCoat1) to the fourth inequality, and (AtomRXX) to the last in-

equality, we get:

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈≤J〉jn+1 ∧ jn ≤ ⊥

jn ≤ t′n

s′n ≤ κ(jn)

⇒ false

.

Notice that the system above consists of a set of pure inequalities and a set of inequalities of the

exact shape to which the induction hypothesis applies. Since a run of ALBA does not depend

Appendix A. Proof of Lemma 1.34 221

on the presence of side pure inequalities, the induction hypothesis implies that ALBAl succeeds

on the system above, and outputs the pure quasi-inequality below, as required:

∀jn+1, jn, ...j0,∀Cn,Cn−1, ...C0

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈≤J〉jn+1 ∧ jn ≤ ⊥

jn ≤ 〈⊳〉Cn−1

jn−1 ≤ 〈∈〉Cn−1

〈≤J〉jn ∧ jn−1 ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

.

�

The lemma below proves the soundness of an Ackermann-type rule for the elimination

of non-elementary variables which however cannot be explained in terms of Ackermann

principles.

Lemma A.1. Let t and s be monotone L+-terms such that x, y < Var(t). For every closed model

M = (EL, v) such that EL = (J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated

with some finite lattice L (cf. Definition 1.23),

M (S 1) iff M (S 2),

where

(S 1) := ∃x∃y∃j∃k∃C

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

〈∈〉C ≤ y ∨ x

〈∈〉C ≤ y ∨ t

k ≤ x

k ≤ t

y ≤ κ(k)

〈≤J〉j ∧ x ≤ κ(k)

x ∧ s ≤ κ(k)

j ∧ 〈⊳〉[∋](y ∨ (〈≤J〉j ∧ x) ∨ (x ∧ s)) ≤ ⊥

,

Appendix A. Proof of Lemma 1.34 222

(S 2) := ∃j∃k∃C

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

k ≤ t

cl(〈∈〉C r k) ≤ κ(k)

〈≤J〉j ∧ 〈≤J〉k ≤ κ(k)

〈≤J〉k ∧ s ≤ κ(k)

j ∧ 〈⊳〉[∋](cl(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s)) ≤ ⊥

,

and cl(φ) denotes 〈⊳〉[∋]〈≤J〉φ.

Proof. Assume that the conjunction of the inequalities in (S 1) holds under v. Let v′ be the

(x, y)-variant of v such that v′(x) = 〈≤J〉v(k) and v′(y) = cl(v(〈∈〉C r k)). Since the assignment

v is closed, for any z ∈ AtProp r {x, y}, the set v′(z) = v(z) is closed. By definition, v′(y) is

closed, and v′(x) is closed because for any finite lattice and any k ∈ J(L), the downset ↓≤J
k is a

closed set (cf. Lemma 1.8). Thus v′ is a closed assignment. In addition, v′(x) ⊆ v(x). Indeed,

the assumption that k ≤ x holds under v and v(x) being closed, hence a downset, imply that

↓≤J
v(k) ⊆ v(x), hence we have:

v′(x) = 〈≤J〉v(k) = ↓≤J
v(k) ⊆ v(x).

The first, second and third inequalities in (S 2) hold under v′ since they do not contain the

variables x and y and coincide with the first, second and sixth inequalities in (S 1), which by

assumption hold under v. The satisfaction of the fifth and sixth inequalities in (S 2) under v′ is

implied by monotonicity, since the eighth and ninth inequalities in (S 1) are satisfied under v,

and since v′(x) ⊆ v(x). It remains to show that the fourth and seventh inequalities in (S 2) hold

under v′. Let j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}. The

assumption that j ≤ 〈⊳〉C and k ≤ 〈∈〉C hold under v imply that C ∈ M(j) and k ∈ C. Hence,

〈∈〉C = C. By Lemma 1.9.2, k < ↓≤J
(C r k). Hence,

v′(cl(〈∈〉C r k)) = ↓≤J
(C r k) ⊆ J(L) r k = v′(κ(k)).

Thus the fourth inequality in (S 2) holds under v′. As to the last inequality, it follows directly

from the satisfaction of the previous inequalities under v′ and Lemma 1.30.

Let us prove the converse implication. Assume that the conjunction of the inequalities in (S 2)

holds under v. Let v′ be the (x, y)-variant of v such that v′(x) := 〈≤J〉v(k) and v′(y) := cl(〈∈

〉v(C) r v(k)). The first, second and sixth inequalities in (S 1) hold under v′ since they do not

contain the variables x and y and coincide with the first, second and third inequalities in (S 2),

which by assumption hold under v. Since v′(x) = v′(〈≤J〉k) = ↓≤J
v(k), the fifth inequality is

Appendix A. Proof of Lemma 1.34 223

satisfied under v′. The satisfaction under v′ of the eighth, ninth and tenth inequalities in (S 1)

immediately follows from the satisfaction of the fifth, sixth and seventh inequalities in (S 2)

respectively and the definition of v′.

It remains to be shown that the third, fourth and seventh inequalities in (S 1) hold under v′. Let

j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}. The satisfaction of the

first and second inequalities in (S 1) under v′ imply that C ∈ M(j) and k ∈ C, which imply by

Lemma 1.9.2, that k < v′(y). This implies that the seventh inequality in (S 1) is satisfied under

v′. By definition of v′ and of the closure,

v′(〈∈〉C r k) ⊆ cl(v′(〈∈〉C r k)) = v′(y).

In addition, by the satisfaction of the fifth and sixth inequalities in (S 1) under v′, we have that

k ∈ v′(x) and k ∈ v′(t). Hence

〈∈〉v′(C) = (〈∈〉v′(C) r k) ∪ {k} ⊆ v′(y) ∪ v′(x)

and

〈∈〉v′(C) = (〈∈〉v′(C) r k) ∪ {k} ⊆ v′(y) ∪ v′(t).

This finishes the proof that the third and fourth inequalities (S 1) hold under the closed assign-

ment v′. �

Appendix B

The Cut Elimination Metatheorems

In the present appendix, we summarize the different cut elimination metatheorems

mentioned and/or proved in the thesis. We first recall the definitions of the different

conditions given by these theorems, then we give a table summarizing which theorem

requires which conditions.

The different conditions are listed below:

C1: Preservation of formulas. Each formula occurring in a premise of a given inference

is the subformula of some formula in the conclusion of that inference.

CMT
1

: preservation of operational terms. Each operational term occurring in a premise

of an inference rule inf is a subterm of some operational term in the conclusion of inf.

C2: Shape-alikeness of parameters. Congruent parameters are occurrences of the same

structure.

C’2: Type-alikeness of parameters. Congruent parameters have exactly the same type.

C3: Non-proliferation of parameters. Each parameter in an inference rule inf is congru-

ent to at most one constituent in the conclusion of inf.

225

Appendix B. The Cut Elimination Metatheorems 226

C’3: Restricted non-proliferation of parameters. Each parameter in an inference rule

inf is congruent to at most one constituent in the conclusion of inf. This restriction does

not need to apply to parameters of any type T such that the only applications of cut with

cut terms of type T are of the following shapes:

...

X ⊢ a a ⊢ a
X ⊢ a

a ⊢ a

...

a ⊢ Y
a ⊢ Y

C4: Position-alikeness of parameters. Congruent parameters are either all antecedent

or all succedent parts of their respective sequents.

C5: Display of principal constituents. Any principal occurrence is always either the

entire antecedent or the entire consequent part of the sequent in which it occurs.

C′
5
: Quasi-display of principal constituents. If a formula A is principal in the conclusion

sequent s of a derivation π, then A is in display, unless π consists only of its conclusion

sequent s (i.e. s is an axiom).

C′′
5

: Display-invariance of axioms. If a display rule can be applied to an axiom s, the

result of that rule application is again an axiom.

C∗
5
: Display of active constituents. If a formula A is active in the application of any rule,

then A is in display.

C6: Closure under substitution for succedent parts. Each rule is closed under simulta-

neous substitution of arbitrary structures for congruent formulas occurring in succedent

position.

C’6: Closure under substitution for succedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms

occurring in succedent position, within each type.

C7: Closure under substitution for precedent parts. Each rule is closed under simulta-

neous substitution of arbitrary structures for congruent formulas occurring in precedent

position.

Appendix B. The Cut Elimination Metatheorems 227

C’7: Closure under substitution for precedent parts within each type. Each rule is closed

under simultaneous substitution of arbitrary structures for congruent operational terms

occurring in precedent position, within each type.

C8: Eliminability of matching principal constituents. This condition requests a standard

Gentzen-style checking, which is now limited to the case in which both cut formulas

are principal, i.e. each of them has been introduced with the last rule application of

each corresponding subdeduction. In this case, analogously to the proof Gentzen-style,

condition C8 requires being able to transform the given deduction into a deduction with

the same conclusion in which either the cut is eliminated altogether, or is transformed

in one or more applications of cut involving proper subformulas of the original cut-

formulas.

C′
8
: Eliminability of matching principal constituents. This condition goes exactly as the

condition C8, but in addition, specific to the multi-type setting is the requirement that the

new application(s) of the cut rule be also strongly type-uniform as required by condition

C10 (or type-uniform as required by condition C′
10

).

C′′
8

: Closure of axioms under cut. If X ⊢ A and A ⊢ Y are axioms, then X ⊢ Y is again an

axiom.

C′′′
8

: Closure of axioms under surgical cut. If (x ⊢ y)([a]pre, [a]suc), a ⊢ z[a]suc and v[a]pre ⊢

a are axioms, then (x ⊢ y)([a]pre, [z/a]suc) and (x ⊢ y)([v/a]pre, [a]suc) are again axioms.

C9: Type-uniformity of derivable sequents. Each derivable sequent is type-uniform.

C10: Strong type-uniformity of cut rules. All cut rules are strongly type-uniform (cf.

Definition 3.2).

C′
10

: Preservation of type-uniformity of cut rules. All cut rules preserve type-uniformity

(cf. Definition 3.1).

In Table B.1 (page 229), we summarize the different cut elimination metatheorems.

Each column corresponds to one theorem, as indicated in the following table.

Appendix B. The Cut Elimination Metatheorems 228

P Proper Display Calculus see [Wan98]

Q Quasi-Proper Display Calculus Theorem 2.4

QM Quasi-Proper Multi-Type Display Calculus Theorem 3.4

QMDT Quasi-Proper Multi-Type Display-Type Calculus Theorem 4.1

PDT Proper Display-Type Calculus Theorem 5.3

PM Proper Multi-Type Display Calculus Theorem 6.2

Notice that in Table B.1, the check marks refer to the conditions as they are stated in

the corresponding theorem and not to the conditions which might be implied by the

assumptions of the theorem. Hence, for instance, condition C3 implies condition C′
3
,

however, there is only one check mark in the row corresponding to C′
3
.

Appendix B. The Cut Elimination Metatheorems 229

P Q QM QMDT PDT PM

EAK EAK MML PDL

C1: Preservation of formulas. X X X

CMT
1

: Preservation of operational

terms.
X X X

C2: Shape-alikeness of parameters. X X X X X X

C’2: Type-alikeness of parameters. X X X

C3: Non-proliferation of parameters. X X X X X

C’3: Restricted non-proliferation of

parameters.
X

C4: Position-alikeness of parameters. X X X X X X

C5: Display of principal constituents. X X

C′
5
: Quasi-display of principal

constituents.
X X X

C′′
5

: Display-invariance of axioms. X X X

C∗
5
: Display of active constituents. X

C6: Closure under substitution for

succedent parts.
X X X

C’6: Closure under substitution for

succedent parts within each type.
X X X

C7: Closure under substitution for

precedent parts.
X X X

C’7: Closure under substitution for

precedent parts within each type.
X X X

C8: Eliminability of matching

principal constituents.
X X X

C′
8
: Eliminability of matching

principal constituents.
X X X

C′′
8

: Closure of axioms under cut. X X

C′′′
8

: Closure of axioms under

surgical cut.
X

C9: Type-uniformity of derivable

sequents.
X X X

C10: Strong type-uniformity of cut

rules.
X X

C′
10

: Preservation of

type-uniformity of cut rules.
X

Table B.1: The cut elimination metatheorems

Appendix C

Special Rules in D’.EAK

C.1 Derived rules in D’.EAK

In the presence of the display postulates, the conj-rules are interderivable with the Fis-

cher Servi rules. Indeed, let us show that the following rules

{α}(X ; {α

}

Y) ⊢ Z
conj

{α}X ; Y ⊢ Z

Y ⊢ {α

}

X > {α

}

Z
FS

Y ⊢ {α

}

(X > Z)

are interderivable:1

{α}(X ; {α

}

Y) ⊢ Z

X ; {α

}

Y ⊢ {α

}

Z

{α

}

Y ; X ⊢ {α

}

Z

X ⊢ {α

}

Y > {α

}

Z
FS

X ⊢ {α

}

(Y > Z)

{α}X ⊢ Y > Z

Y ; {α}X ⊢ Z

{α}X ; Y ⊢ Z

Y ⊢ {α

}

X > {α

}

Z

{α

}

X ; Y ⊢ {α

}

Z

Y ; {α

}

X ⊢ {α

}

Z

{α}(Y ; {α

}

X) ⊢ Z
conj

{α}Y ; X ⊢ Z

X ; {α}Y ⊢ Z

{α}Y ⊢ X > Z

Y ⊢ {α

}

(X > Z)

Analogous derivations show that the pairs of rules in each row of the table below are

interderivable:
1Note that we are using exchange, but this rule is not required if we add the corresponding Fisher-Servi rule for

the right-residuum of ‘;’ and the obvious conjugation rule with ‘X ; {α}Y’ in a reversed order.

231

Appendix C. Special Rules in D’.EAK 232

{α

}

(X ; {α}Y) ⊢ Z
conj

{α

}

X ; Y ⊢ Z

Y ⊢ {α}X > {α}Z
FS

Y ⊢ {α}(X > Z)

X ⊢ {α}(Y ; {α

}

Z)
conj

X ⊢ {α}Y ; Z

{α

}

Y > {α

}

X ⊢ Z
FS

{α

}

(Y > X) ⊢ Z

X ⊢ {α

}

(Y ; {α}Z)
conj

X ⊢ {α
}

Y ; Z

{α}Y > {α}Z ⊢ X
FS

{α}(Y > Z) ⊢ X

Let us show that the rules “with side conditions” in D.EAK (cf. Section 2.4.4) can be

derived from their corresponding rules in D’.EAK and the remaining part of the calculus.

An important benefit of the revised system is that the operational rules reverse (or more

precisely their rewritings in the new notation), which were primitive in the old system,

are now derivable using the new rules for Φα and 1α and the new reduce. This supports

our intuition that the rules reverse do not participate in the proof-theoretic meaning of

the connectives 〈α〉 and [α].

Φα ⊢ 1α

1α ; {α}A ⊢ X

1α ⊢ X < {α}A

Φα ⊢ X < {α}A

Φα ; {α}A ⊢ X

{α}A ⊢ X

A ⊢ {α

}

X

[α]A ⊢ {α} {α

}

X
comp

[α]A ⊢ Φα > X

Φα ; [α]A ⊢ X

[α]A ;Φα ⊢ X

Φα ⊢ [α]A > X

1α ⊢ [α]A > X

[α]A ; 1α ⊢ X

1α ; [α]A ⊢ X

Φα ⊢ 1α

X ⊢ 1α > {α}A

1α ; X ⊢ {α}A

1α ⊢ {α}A < X

Φα ⊢ {α}A < X

Φα ; X ⊢ {α}A

X ⊢ Φα > {α}A
reduce′

X ⊢ {α}A

{α

}

X ⊢ A

{α} {α

}

X ⊢ 〈α〉A
comp

Φα ; X ⊢ 〈α〉A

X ;Φα ⊢ 〈α〉A

Φα ⊢ X > 〈α〉A

1α ⊢ X > 〈α〉A

X ; 1α ⊢ 〈α〉A

1α ; X ⊢ 〈α〉A

X ⊢ 1α > 〈α〉A

The old rules reduce are derivable as follows.

Φα ⊢ 1α

1α ; {α}A ⊢ X

1α ⊢ X < {α}A

Φα ⊢ X < {α}A

Φα ; {α}A ⊢ X
reduce′

{α}A ⊢ X

Φα ⊢ 1α

X ⊢ 1α > {α}A

1α ; X ⊢ {α}A

X ; 1α ⊢ {α}A

1α ⊢ X > {α}A

Φα ⊢ X > {α}A

X ;Φα ⊢ {α}A

Φα ; X ⊢ {α}A

X ⊢ Φα > {α}A
reduce′

X ⊢ {α}A

Appendix C. Special Rules in D’.EAK 233

The old swap-in rules are derivable in the revised calculus from the new swap-in rules

as follows.

Φα ⊢ 1α

1α ; {α}{a}X ⊢ Y

1α ⊢ Y < {α}{a}X

Φα ⊢ Y < {α}{a}X

Φα ; {α}{a}X ⊢ Y
reduce′

{α}{a}X ⊢ Y
swap-in′

Φα ; {a}{β}αaβ X ⊢ Y

Φα ⊢ Y < {a}{β}αaβ X

1α ⊢ Y < {a}{β}αaβ X

1α ; {a}{β}αaβ X ⊢ Y

Φα ⊢ 1α

Y ⊢ 1α > {α}{a}X

1α; Y ⊢ {α}{a}X

1α ⊢ {α}{a}X < Y

Φα ⊢ {α}{a}X < Y

Φα ; Y ⊢ {α}{a}X

Y ⊢ Φα > {α}{a}X
reduce′

Y ⊢ {α}{a}X
swap-in′

Y ⊢ Φα > {a}{β}αaβ X

The old swap-out rules (translated into D’.EAK) are derivable using the new swap-out

rules:

Φα ⊢ 1α

1α ; {a}{β1} X ⊢ Y | αaβ1

1α ⊢ Y < {a}{β1} X | αaβ1

Φα ⊢ Y < {a}{β1} X | αaβ1

Φα ; {a}{β1} X ⊢ Y | αaβ1
reduce′

{a}{β1} X ⊢ Y | αaβ1

· · ·

· · ·

· · ·

· · ·

· · ·

Φα ⊢ 1α

1α ; {a}{βn} X ⊢ Y | αaβn

1α ⊢ Y < {a}{βn} X | αaβn

Φα ⊢ Y < {a}{βn} X | αaβn

Φα ; {a}{βn} X ⊢ Y | αaβn
reduce′

{a}{βn} X ⊢ Y | αaβn
swap-out′

{α}{a}X ⊢ ;
(
Y | αaβ

)

1α ⊢ {α}{a}X > ;
(
Y | αaβ

)

{α}{a}X; 1α ⊢ ;
(
Y | αaβ

)

1α; {α}{a}X ⊢ ;
(
Y | αaβ

)

Φα ⊢ 1α

Y ⊢ 1α > {a}{β1} X | αaβ1

1α ; Y ⊢ {a}{β1} X | αaβ1

1α ⊢ {a}{β1} X | αaβ1 < Y

Φα ⊢ {a}{β1} X | αaβ1 < Y

Φα ; Y ⊢ {a}{β1} X | αaβ1

Y ⊢ Φα > {a}{β1} X | αaβ1
reduce′

Y ⊢ {a}{β1} X | αaβ1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Φα ⊢ 1α

Y ⊢ 1α > {a}{βn} X | αaβn

1α ; Y ⊢ {a}{βn} X | αaβn

1α ⊢ {a}{βn} X | αaβn < Y

Φα ⊢ {a}{βn} X | αaβn < Y

Φα ; Y ⊢ {a}{βn} X | αaβn

Y ⊢ Φα > {a}{βn} X | αaβn
reduce′

Y ⊢ {a}{βn} X | αaβn
swap-out′

;
(
Y | αaβ

)
⊢ {α}{a}X

1α ⊢ ;
(
Y | αaβ

)
> {α}{a}X

;
(
Y | αaβ

)
; 1α ⊢ {α}{a}X

;
(
Y | αaβ

)
; 1α ⊢ {α}{a}X

;
(
Y | αaβ

)
⊢ 1α > {α}{a}X

Appendix C. Special Rules in D’.EAK 234

C.2 Soundness of comp rules in the final coalgebra

We address the reader to Section 2.5 and [GKP13] for details on the final coalgebra

semantics for dynamic epistemic logic. To prove the soundness of the comp rules in the

final coalgebra it suffices to check that for every formula A,

[α][α−1][[A]]Z ⊆ [[Pre(α)→ A]]Z and [[Pre(α) ; A]]Z ⊆ 〈α〉〈α
−1〉[[A]]Z.

We will make use of the following general fact:

Fact C.1. Let R be a binary relation on a set X and let R−1 be its converse. Then,

[Dom(R) × Dom(R)] ∩ ∆X ⊆ R; R−1,

where Dom(R) = {x ∈ X | xRy for some y ∈ X}, and ∆X = {(x, x) | x ∈ X}.

Proof. Straightforward. �

Fact C.2. The following comp rules:

Y ⊢ {α} {α

}

X

Y ⊢ Pre(α) > X

{α} {α

}

X ⊢ Y

Pre(α) ; X ⊢ Y

are sound in the final coalgebra.

Proof.

〈α〉〈α−1〉[[A]]Z = α−1[α[[[A]]Z]]

= (α;α−1)[[[A]]Z]

⊇ S [[[A]]Z] Fact C.1

= Dom(α) ∩ [[A]]Z

= [[Pre(α) ; A]]Z,

[α][α−1][[A]]Z = (α−1[([α−1][[A]]Z)
c])c

= (α−1[α[[[A]]c
Z
]])c

= ((α;α−1)[[[A]]c
Z
])c

⊆ (S [[[A]]c
Z
])c Fact C.1

= (Dom(α) ∩ [[A]]c
Z
])c

= Dom(α)c ∪ [[A]]Z

= [[Pre(α)→ A]]Z,

where S = [Dom(R) × Dom(R)] ∩ ∆X . �

Appendix D

Cut Elimination for D’.EAK

In the present section, we report on the remaining cases for the verification of condition

C8 for D’.EAK; these cases are needed already for the cut elimination á la Gentzen for

D.EAK, but do not appear in [GKP13].

First we consider the atom rule (see page 105).

Γp ⊢ p p ⊢ ∆p

Γp ⊢ ∆p Γp ⊢ ∆p

Now we treat the introductions of the connectives of the propositional base (we also

treat here the cases relative to the two additional arrows ← and

∧

added to our pre-

sentation of D.EAK):

I ⊢ ⊤

... π

I ⊢ X
⊤ ⊢ X

I ⊢ X

... π

I ⊢ X

... π

X ⊢ I
X ⊢ ⊥ ⊥ ⊢ I

X ⊢ I

... π

X ⊢ I

235

Appendix D. Cut Elimination for D’.EAK 236

... π1

X ⊢ A

... π2

Y ⊢ B
X ; Y ⊢ A ∧ B

... π3

A ; B ⊢ Z

A ∧ B ⊢ Z

X ; Y ⊢ Z

... π2

Y ⊢ B

... π1

X ⊢ A

... π3

A ; B ⊢ Z

B ; A ⊢ Z

A ⊢ B > Z
X ⊢ B > Z

B ; X ⊢ Z

X ; B ⊢ Z

B ⊢ X > Z
Y ⊢ X > Z

X ; Y ⊢ Z

... π3

Z ⊢ B ; A

Z ⊢ B ∨ A

... π1

B ⊢ Y

... π2

A ⊢ X
B ∨ A ⊢ Y ; X

Z ⊢ Y ; X

... π3

Z ⊢ B ; A

Z ⊢ A ; B

A > Z ⊢ B

... π1

B ⊢ Y
A > Z ⊢ Y

Z ⊢ A ; Y

Z ⊢ Y ; A

Y > Z ⊢ A

... π2

A ⊢ X
Y > Z ⊢ X

Z ⊢ Y ; X

... π1

Y ⊢ A > B
Y ⊢ A→ B

... π2

X ⊢ A

... π3

B ⊢ Z
A→ B ⊢ X > Z

Y ⊢ X > Z

... π2

X ⊢ A

... π1

Y ⊢ A > B
A ; Y ⊢ B

... π3

B ⊢ Z

A ; Y ⊢ Z

Y ; A ⊢ Z

A ⊢ Y > Z
X ⊢ Y > Z

Y ; X ⊢ Z

X ; Y ⊢ Z

Y ⊢ X > Z

... π1

Y ⊢ B < A
Y ⊢ B← A

... π2

B ⊢ Z

... π3

X ⊢ A
B← A ⊢ Z < X

Y ⊢ Z < X

... π2

X ⊢ A

... π1

Y ⊢ B < A
Y; A ⊢ B

... π3

B ⊢ Z

Y; A ⊢ Z

A; Y ⊢ Z

A ⊢ Z < Y
X ⊢ Z < Y

X; Y ⊢ Z

Y; X ⊢ Z

Y ⊢ Z < X

Appendix D. Cut Elimination for D’.EAK 237

... π2

A ⊢ Y

... π3

Z ⊢ B
Y > Z ⊢ A

∧

B

... π1

A > B ⊢ X
A

∧

B ⊢ X
Y > Z ⊢ X

... π3

Z ⊢ B

... π1

A > B ⊢ X
B ⊢ A ; X

Z ⊢ A ; X

Z ⊢ X ; A

X > Z ⊢ A

... π2

A ⊢ Y
X > Z ⊢ Y

Z ⊢ X ; Y

Z ⊢ Y ; X

Y > Z ⊢ X

... π2

Y ⊢ B

... π3

A ⊢ Z
Y < Z ⊢ B ∧ A

... π1

B < A ⊢ X
B ∧ A ⊢ X

Y < Z ⊢ X

... π3

Y ⊢ B

... π1

B < A ⊢ X
B ⊢ X; A

Y ⊢ X; A

Y ⊢ A; X

Y < X ⊢ A

... π2

A ⊢ Z
Y < X ⊢ Z

Y ⊢ Z ; X

Y ⊢ X ; Z

Y < Z ⊢ Y

Now we turn to the part of D’.EAK with static modalities. We omit the proofs for 〈a

〉 and

[a

]

, because they are analogous to the transformations of 〈a〉 and [a].

... π1

X ⊢ A
{a}X ⊢ 〈a〉A

... π2

{a}A ⊢ Y

〈a〉A ⊢ Y

{a}X ⊢ Y

... π1

X ⊢ A

... π2

{a}A ⊢ Y

A ⊢ {a

}

Y

X ⊢ {a

}

Y

{a}X ⊢ Y

... π1

X ⊢ {a}A

X ⊢ [a]A

... π2

A ⊢ Y
[a]A ⊢ {a}Y

X ⊢ {a}Y

... π1

X ⊢ {a}A

{a

}

X ⊢ A

... π2

A ⊢ Y

{a

}

X ⊢ Y

X ⊢ {a}Y

The transformations of the dynamic modalities are analogous to the ones of static modal-

ities and, again, we only show them for 〈α〉 and [α].

... π1

X ⊢ A
{α}X ⊢ 〈α〉A

... π2

{α}A ⊢ Y

〈α〉A ⊢ Y

{α}X ⊢ Y

... π1

X ⊢ A

... π2

{α}A ⊢ Y

A ⊢ {α

}

Y

X ⊢ {α

}

Y

{α}X ⊢ Y

Appendix D. Cut Elimination for D’.EAK 238

... π1

X ⊢ {α}A

X ⊢ [α]A

... π2

A ⊢ Y
[α]A ⊢ {α}Y

X ⊢ {α}Y

... π1

X ⊢ {α}A

{α

}

X ⊢ A

... π2

A ⊢ Y

{α

}

X ⊢ Y

X ⊢ {α}Y

Appendix E

Completeness of D’.EAK

To prove, indirectly, the completeness of D’.EAK it is enough to show that all the axioms

and rules of IEAK are theorems and, respectively, derived or admissible rules of D’.EAK.

Below we show the derivations of the dynamic axioms and we leave the remaining

axioms and rules to the reader.

• 〈α〉 p ⊣⊢ 1α ∧ p

Φα ⊢ 1α {α} p ⊢ p

Φα ; {α} p ⊢ 1α ∧ p
reduce′

{α} p ⊢ 1α ∧ p

〈α〉 p ⊢ 1α ∧ p

{α

}

p ⊢ p

{α} {α

}

p ⊢ 〈α〉 p
comp

Φα ; p ⊢ 〈α〉 p

Φα ⊢ 〈α〉 p < p

1α ⊢ 〈α〉 p < p

1α ; p ⊢ 〈α〉 p

1α ∧ p ⊢ 〈α〉 p

• [α] p ⊣⊢ 1α → p

p ⊢ {α

}

p

[α] p ⊢ {α} {α

}

p
comp

[α] p ⊢ Φα > p

Φα ; [α] p ⊢ p

Φα ⊢ p < [α] p

1α ⊢ p < [α] p

1α ; [α] p ⊢ p

[α] p ⊢ 1α > p

[α] p ⊢ 1α → p

Φα ⊢ 1α p ⊢ {α} p

1α → p ⊢ Φα > {α} p
reduce′

1α → p ⊢ {α} p

1α → p ⊢ [α] p

239

Appendix E. Completeness of D’.EAK 240

• 〈α〉⊤ ⊣⊢ 1α

Φα ⊢ 1α
I ⊢ 1α < Φα

nec
{α} I ⊢ 1α < Φα

I ⊢ {α

}

(1α < Φα)

⊤ ⊢ {α

}

(1α < Φα)

{α}⊤ ⊢ 1α < Φα
Φα ; {α}⊤ ⊢ 1α

reduce′

{α}⊤ ⊢ 1α
〈α〉⊤ ⊢ 1α

I ⊢ ⊤
nec

{α

}

I ⊢ ⊤

{α} {α

}

I ⊢ 〈α〉⊤
comp

Φα ; I ⊢ 〈α〉⊤

Φα ⊢ 〈α〉⊤

1α ⊢ 〈α〉⊤

• [α]⊥ ⊣⊢ ¬1α

⊥ ⊢ I
nec

⊥ ⊢ {α

}

I

[α]⊥ ⊢ {α} {α

}

I
comp

[α]⊥ ⊢ Φα > I

Φα ; [α]⊥ ⊢ I

Φα ; [α]⊥ ⊢ ⊥

Φα ⊢ ⊥ < [α]⊥

1α ⊢ ⊥ < [α]⊥

1α ; [α]⊥ ⊢ ⊥

[α]⊥ ⊢ 1α > ⊥

[α]⊥ ⊢ 1α → ⊥

[α]⊥ ⊢ ¬1α

Φα ⊢ 1α

⊥ ⊢ I
nec

⊥ ⊢ {α}I
{α
}

⊥ ⊢ I

{α

}

⊥ ⊢ ⊥

⊥ ⊢ {α}⊥

1α → ⊥ ⊢ Φα > {α}⊥

¬1α ⊢ Φα > {α}⊥
reduce′

¬1α ⊢ {α}⊥

¬1α ⊢ [α]⊥

• 〈α〉⊥ ⊣⊢ ⊥

⊥ ⊢ I
nec

⊥ ⊢ {α

}

I

{α}⊥ ⊢ I

{α}⊥ ⊢ ⊥

〈α〉⊥ ⊢ ⊥

⊥ ⊢ I
⊥ ⊢ 〈α〉⊥

• [α]⊤ ⊣⊢ ⊤

I ⊢ ⊤
[α]⊤ ⊢ ⊤

I ⊢ ⊤
nec

{α

}

I ⊢ ⊤

I ⊢ {α}⊤

⊤ ⊢ {α}⊤

⊤ ⊢ [α]⊤

Appendix E. Completeness of D’.EAK 241

• [α](A ∧ B) ⊣⊢ [α]A ∧ [α]B

A ⊢ A
A ; B ⊢ A

A ∧ B ⊢ A
[α](A ∧ B) ⊢ {α}A

[α](A ∧ B) ⊢ [α]A

B ⊢ B
A ; B ⊢ B

A ∧ B ⊢ B
[α](A ∧ B) ⊢ {α}B

[α](A ∧ B) ⊢ [α]B

[α](A ∧ B) ; [α](A ∧ B) ⊢ [α]A ∧ [α]B

[α](A ∧ B) ⊢ [α]A ∧ [α]B

A ⊢ A
[α]A ⊢ {α}A

{α

}

[α]A ⊢ A

B ⊢ B
[α]B ⊢ {α}B

{α

}

[α]B ⊢ B

{α

}

[α]A ; {α

}

[α]B ⊢ A ∧ B
mon

{α

}

([α]A ; [α]B) ⊢ A ∧ B

[α]A ; [α]B ⊢ {α}(A ∧ B)

[α]A ; [α]B ⊢ [α](A ∧ B)

[α]A ∧ [α]B ⊢ [α](A ∧ B)

• 〈α〉(A ∧ B) ⊣⊢ 〈α〉A ∧ 〈α〉B

A ⊢ A
A ; B ⊢ A

A ∧ B ⊢ A
{α}A ∧ B ⊢ 〈α〉A

〈α〉(A ∧ B) ⊢ 〈α〉A

B ⊢ B
A ; B ⊢ B

A ∧ B ⊢ B
{α}A ∧ B ⊢ 〈α〉B

〈α〉(A ∧ B) ⊢ 〈α〉B

〈α〉(A ∧ B) ; 〈α〉(A ∧ B) ⊢ 〈α〉A ∧ 〈α〉B

〈α〉(A ∧ B) ⊢ 〈α〉A ∧ 〈α〉B

A ⊢ A
balance

{α}A ⊢ {α}A

{α
}

{α}A ⊢ A

B ⊢ B
balance

{α}B ⊢ {α}B

{α

}

{α}B ⊢ B

{α
}

{α}A ; {α

}

{α}B ⊢ A ∧ B
mon

{α

}

({α}A ; {α}B) ⊢ A ∧ B

{α} {α

}

({α}A ; {α}B) ⊢ 〈α〉(A ∧ B)
comp

Φα ; ({α}A ; {α}B) ⊢ 〈α〉(A ∧ B)

(Φα ; {α}A) ; {α}B ⊢ 〈α〉(A ∧ B)

Φα ; {α}A ⊢ 〈α〉(A ∧ B) < {α}B
reduce′

{α}A ⊢ 〈α〉(A ∧ B) < {α}B

〈α〉A ⊢ 〈α〉(A ∧ B) < {α}B

〈α〉A ; {α}B ⊢ 〈α〉(A ∧ B)

{α}B ⊢ 〈α〉A > 〈α〉(A ∧ B)

〈α〉B ⊢ 〈α〉A > 〈α〉(A ∧ B)

〈α〉A ; 〈α〉B ⊢ 〈α〉(A ∧ B)

〈α〉A ∧ 〈α〉B ⊢ 〈α〉(A ∧ B)

• 〈α〉(A ∨ B) ⊣⊢ 〈α〉A ∨ 〈α〉B

A ⊢ A
{α}A ⊢ 〈α〉A

A ⊢ {α

}

〈α〉A

B ⊢ B
{α}B ⊢ 〈α〉B

B ⊢ {α

}

〈α〉B

A ∨ B ⊢ {α

}

〈α〉A ; {α

}

〈α〉B

A ∨ B ⊢ {α

}

(〈α〉A ; 〈α〉B)

{α}A ∨ B ⊢ 〈α〉A ; 〈α〉B

〈α〉(A ∨ B) ⊢ 〈α〉A ; 〈α〉B

〈α〉(A ∨ B) ⊢ 〈α〉A ∨ 〈α〉B

A ⊢ A
A ⊢ A ; B

A ⊢ A ∨ B
{α}A ⊢ 〈α〉(A ∨ B)

〈α〉A ⊢ 〈α〉(A ∨ B)

B ⊢ B
B ⊢ A ; B

B ⊢ A ∨ B
{α}B ⊢ 〈α〉(A ∨ B)

〈α〉B ⊢ 〈α〉(A ∨ B)

〈α〉A ∨ 〈α〉B ⊢ 〈α〉(A ∨ B) ; 〈α〉(A ∨ B)

〈α〉A ∨ 〈α〉B ⊢ 〈α〉(A ∨ B)

Appendix E. Completeness of D’.EAK 242

• [α](A ∨ B) ⊣⊢ 1α → (〈α〉A ∨ 〈α〉B)

A ⊢ A
{α}A ⊢ 〈α〉A

A ⊢ {α

}

〈α〉A

B ⊢ B
{α}B ⊢ 〈α〉B

B ⊢ {α

}

〈α〉B

A ∨ B ⊢ {α

}

〈α〉A ; {α

}

〈α〉B

A ∨ B ⊢ {α

}

(〈α〉A ; 〈α〉B)

[α](A ∨ B) ⊢ {α} {α

}

(〈α〉A ∨ 〈α〉B)
compα

R
[α](A ∨ B) ⊢ Φα > (〈α〉A ∨ 〈α〉B)

Φα ; [α](A ∨ B) ⊢ 〈α〉A ∨ 〈α〉B

Φα ⊢ 〈α〉A ∨ 〈α〉B < [α](A ∨ B)

1α ⊢ 〈α〉A ∨ 〈α〉B < [α](A ∨ B)

1α ; [α](A ∨ B) ⊢ 〈α〉A ∨ 〈α〉B

[α](A ∨ B) ⊢ 1α > (〈α〉A ∨ 〈α〉B)

[α](A ∨ B) ⊢ 1α → (〈α〉A ∨ 〈α〉B)

Φα ⊢ 1α

A ⊢ A
{α}A ⊢ {α}A

〈α〉A ⊢ {α}A

B ⊢ B
{α}B ⊢ {α}B

〈α〉B ⊢ {α}B

〈α〉A ∨ 〈α〉B ⊢ {α}A ; {α}B

〈α〉A ∨ 〈α〉B ⊢ {α}(A ; B)

{α

}

(〈α〉A ∨ 〈α〉B) ⊢ A ; B

{α

}

(〈α〉A ∨ 〈α〉B) ⊢ A ∨ B

〈α〉A ∨ 〈α〉B ⊢ {α}(A ∨ B)

1α → (〈α〉A ∨ 〈α〉B) ⊢ Φα > {α}(A ∨ B)
reduce′

R
1α → (〈α〉A ∨ 〈α〉B) ⊢ {α}(A ∨ B)

1α → (〈α〉A ∨ 〈α〉B) ⊢ [α](A ∨ B)

Appendix E. Completeness of D’.EAK 243

• 〈α〉(A→ B) ⊣⊢ 1α ∧ (〈α〉A→ 〈α〉B)

Φα ⊢ 1α

A ⊢ A
{α}A ⊢ {α}A

〈α〉A ⊢ {α}A

{α

}

〈α〉A ⊢ A

B ⊢ B
{α}B ⊢ 〈α〉B

B ⊢ {α

}

〈α〉B

A→ B ⊢ {α

}

〈α〉A > {α

}

〈α〉B

A→ B ⊢ {α

}

(〈α〉A > 〈α〉B)

{α}(A→ B) ⊢ 〈α〉A > 〈α〉B

{α}(A→ B) ⊢ 〈α〉A→ 〈α〉B

Φα ; {α}(A→ B) ⊢ 1α ∧ (〈α〉A→ 〈α〉B)
reduce′

{α}(A→ B) ⊢ 1α ∧ (〈α〉A→ 〈α〉B)

〈α〉(A→ B) ⊢ 1α ∧ (〈α〉A→ 〈α〉B)

A ⊢ A
{α}A ⊢ 〈α〉A

B ⊢ B
balance

{α}B ⊢ {α}B

〈α〉B ⊢ {α}B

〈α〉A→ 〈α〉B ⊢ {α}A > {α}B

〈α〉A→ 〈α〉B ⊢ {α}(A > B)

{α

}

(〈α〉A→ 〈α〉B) ⊢ A > B

{α

}

(〈α〉A→ 〈α〉B) ⊢ A→ B

{α} {α

}

(〈α〉A→ 〈α〉B) ⊢ 〈α〉(A→ B)
compα

L
Φα ; (〈α〉A→ 〈α〉B) ⊢ 〈α〉(A→ B)

(〈α〉A→ 〈α〉B) ; Φα ⊢ 〈α〉(A→ B)

Φα ⊢ (〈α〉A→ 〈α〉B) > 〈α〉(A→ B)

1α ⊢ (〈α〉A→ 〈α〉B) > 〈α〉(A→ B)

(〈α〉A→ 〈α〉B) ; 1α ⊢ 〈α〉(A→ B)

1α ; (〈α〉A→ 〈α〉B) ⊢ 〈α〉(A→ B)

1α ∧ (〈α〉A→ 〈α〉B) ⊢ 〈α〉(A→ B)

Appendix E. Completeness of D’.EAK 244

• [α](A→ B) ⊣⊢ 〈α〉A→ 〈α〉B

A ⊢ A
{α}A ⊢ {α}A

{α

}

{α}A ⊢ A

B ⊢ B
{α}B ⊢ 〈α〉B

B ⊢ {α

}

〈α〉B

A→ B ⊢ {α

}

{α}A > {α

}

〈α〉B

A→ B ⊢ {α

}

({α}A > 〈α〉B)

[α](A→ B) ⊢ {α} {α

}

({α}A > 〈α〉B)
compα

R[α](A→ B) ⊢ Φα > ({α}A > 〈α〉B)

Φα ; [α](A→ B) ⊢ {α}A > 〈α〉B

{α}A ; (Φα ; [α](A→ B)) ⊢ 〈α〉B

({α}A ;Φα) ; [α](A→ B) ⊢ 〈α〉B

[α](A→ B) ; ({α}A ;Φα) ⊢ 〈α〉B

{α}A ;Φα ⊢ [α](A→ B) > 〈α〉B

Φα ; {α}A ⊢ [α](A→ B) > 〈α〉B
reduce’

{α}A ⊢ [α](A→ B) > 〈α〉B

〈α〉A ⊢ [α](A→ B) > 〈α〉B

[α](A→ B) ; 〈α〉A ⊢ 〈α〉B

〈α〉A ; [α](A→ B) ⊢ 〈α〉B

[α](A→ B) ⊢ 〈α〉A > 〈α〉B

[α](A→ B) ⊢ 〈α〉A→ 〈α〉B

A ⊢ A
{α}A ⊢ 〈α〉A

B ⊢ B
{α}B ⊢ {α}B

〈α〉B ⊢ {α}B

〈α〉A→ 〈α〉B ⊢ {α}A > {α}B

〈α〉A→ 〈α〉B ⊢ {α}(A > B)

{α

}

(〈α〉A→ 〈α〉B) ⊢ A > B

{α

}

(〈α〉A→ 〈α〉B) ⊢ A→ B

〈α〉A→ 〈α〉B ⊢ {α}(A→ B)

〈α〉A→ 〈α〉B ⊢ [α](A→ B)

Appendix E. Completeness of D’.EAK 245

For ease of notation, in the following derivations we assume the actions β, such that αaβ

form the set {βi | 1 ≤ i ≤ n}.

• 〈α〉〈a〉A ⊢ 1α ∧
∨
{〈a〉〈β〉A |αaβ}

Φα ⊢ 1α

A ⊢ A
{β1}A ⊢ 〈β1〉A

{a}{β1}A ⊢ 〈a〉〈β1〉A

· · ·

· · ·

· · ·

A ⊢ A
{βn}A ⊢ 〈βn〉A

{a}{βn}A ⊢ 〈a〉〈βn〉A
swap-out’

{α}{a}A ⊢ ;
(
〈a〉〈βi〉A

)

{α}{a}A ⊢
∨(
〈a〉〈βi〉A

)

Φα ; {α}{a}A ⊢ 1α ∧
∨(
〈a〉〈βi〉A

)

reduce’

{α}{a}A ⊢ 1α ∧
∨(
〈a〉〈βi〉A

)

{a}A ⊢ {α

}

(1α ∧
∨(
〈a〉〈βi〉A

)
)

〈a〉A ⊢ {α

}

(1α ∧
∨(
〈a〉〈βi〉A

)
)

{α}〈a〉A ⊢ 1α ∧
∨(
〈a〉〈βi〉A

)

〈α〉〈a〉A ⊢ 1α ∧
∨(
〈a〉〈βi〉A

)

• 1α ∧
∨
{〈a〉〈β〉A |αaβ} ⊢ 〈α〉〈a〉A

A ⊢ A
{a}A ⊢ 〈a〉A

{α}{a}A ⊢ 〈α〉〈a〉A
swap-in’

Φα ; {a}{β1}A ⊢ 〈α〉〈a〉A

{a}{β1}A ;Φα ⊢ 〈α〉〈a〉A

Φα ⊢ {a}{β1}A > 〈α〉〈a〉A

1α ⊢ {a}{β1}A > 〈α〉〈a〉A

{a}{β1}A ; 1α ⊢ 〈α〉〈a〉A

1α ; {a}{β1}A ⊢ 〈α〉〈a〉A

{a}{β1}A ⊢ 1α > 〈α〉〈a〉A

{β1}A ⊢ {a

}

(1α > 〈α〉〈a〉A)

〈β1〉A ⊢ {a

}

(1α > 〈α〉〈a〉A)

{a}〈β1〉A ⊢ 1α > 〈α〉〈a〉A

〈a〉〈β1〉A ⊢ 1α > 〈α〉〈a〉A

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A ⊢ A
{a}A ⊢ 〈a〉A

{α}{a}A ⊢ 〈α〉〈a〉A
swap-in’

Φα ; {a}{βn}A ⊢ 〈α〉〈a〉A

{a}{βn}A ;Φα ⊢ 〈α〉〈a〉A

Φα ⊢ {a}{βn}A > 〈α〉〈a〉A

1α ⊢ {a}{βn}A > 〈α〉〈a〉A

{a}{βn}A ; 1α ⊢ 〈α〉〈a〉A

1α ; {a}{βn}A ⊢ 〈α〉〈a〉A

{a}{βn}A ⊢ 1α > 〈α〉〈a〉A

{βn}A ⊢ {a

}

(1α > 〈α〉〈a〉A)

〈βn〉A ⊢ {a

}

(1α > 〈α〉〈a〉A)

{a}〈βn〉A ⊢ 1α > 〈α〉〈a〉A

〈a〉〈βn〉A ⊢ 1α > 〈α〉〈a〉A
∨(
〈a〉〈βi〉A

)
⊢ ;
(
1α > 〈α〉〈a〉A

)

∨ (
〈a〉〈βi〉A

)
⊢ 1α > 〈α〉〈a〉A)

1α ;
∨(
〈a〉〈βi〉A

)
⊢ 〈α〉〈a〉A

1α ∧
∨(
〈a〉〈βi〉A

)
⊢ 〈α〉〈a〉A

Appendix E. Completeness of D’.EAK 246

• [α]〈a〉A ⊢ Pre(α)→
∨
{〈a〉〈β〉A |αaβ}

A ⊢ A
{β1}A ⊢ 〈β1〉A

{a}{β1}A ⊢ 〈a〉〈β1〉A

· · ·

· · ·

· · ·

A ⊢ A
{βn}A ⊢ 〈βn〉A

{a}{βn}A ⊢ 〈a〉〈βn〉A
swap-out’

{α}{a}A ⊢ ;
(
〈a〉〈βi〉A

)

{α}{a}A ⊢
∨(
〈a〉〈βi〉A

)

{a}A ⊢ {α

} ∨(
〈a〉〈βi〉A

)

〈a〉A ⊢ {α

} ∨(
〈a〉〈βi〉A

)

[α]〈a〉A ⊢ {α} {α

} ∨(
〈a〉〈βi〉A

)
compα

R

[α]〈a〉A ⊢ Φα >
∨(
〈a〉〈βi〉A

)

Φα ; [α]〈a〉A ⊢
∨(
〈a〉〈βi〉A

)

Φα ⊢
∨(
〈a〉〈βi〉A

)
< [α]〈a〉A

1α ⊢
∨(
〈a〉〈βi〉A

)
< [α]〈a〉A

1α ; [α]〈a〉A ⊢
∨(
〈a〉〈βi〉A

)

[α]〈a〉A ⊢ 1α >
∨(
〈a〉〈βi〉A

)

[α]〈a〉A ⊢ 1α →
∨(
〈a〉〈βi〉A

)

• Pre(α)→
∨
{〈a〉〈βi〉A |αaβ} ⊢ [α]〈a〉A

Φα ⊢ 1α

A ⊢ A

{a}A ⊢ 〈a〉A

{α}{a}A ⊢ {α}〈a〉A
swap-in’

Φα ; {a}{β1}A ⊢ {α}〈a〉A

{a}{β1}A ⊢ Φα > {α}〈a〉A
reduce’

{a}{β1}A ⊢ {α}〈a〉A

{β1}A ⊢ {a

}

{α}〈a〉A

〈β1〉A ⊢ {a

}

{α}〈a〉A

{a}〈β1〉A ⊢ {α}〈a〉A

〈a〉〈β1〉A ⊢ {α}〈a〉A

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A ⊢ A

{a}A ⊢ 〈a〉A

{α}{a}A ⊢ {α}〈a〉A
swap-in’

Φα ; {a}{βn}A ⊢ {α}〈a〉A

{a}{βn}A ⊢ Φα > {α}〈a〉A
reduce’

{a}{βn}A ⊢ {α}〈a〉A

{βn}A ⊢ {a

}

{α}〈a〉A

〈βn〉A ⊢ {a

}

{α}〈a〉A

{a}〈βn〉A ⊢ {α}〈a〉A

〈a〉〈βn〉A ⊢ {α}〈a〉A
∨(
〈a〉〈βi〉A

)
⊢ ;
(
{α}〈a〉A

)

∨ (
〈a〉〈βi〉A

)
⊢ {α}〈a〉A

1α →
∨(
〈a〉〈βi〉A

)
⊢ Φα > {α}〈a〉A

reduce’
1α →

∨(
〈a〉〈βi〉A

)
⊢ {α}〈a〉A

1α →
∨(
〈a〉〈βi〉A

)
⊢ [α]〈a〉A

Appendix E. Completeness of D’.EAK 247

• [α][a]A ⊢ Pre(α)→
∧
{[a][β]A |αaβ}

A ⊢ A
[a]A ⊢ {a}A

[α][a]A ⊢ {α}{a}A
swap-in′

[α][a]A ⊢ Φα > {a}{β1}A

Φα ; [α][a]A ⊢ {a}{β1}A

{a

}

(Φα ; [α][a]A) ⊢ {β1}A

{a

}

(Φα ; [α][a]A) ⊢ [β1]A

Φα ; [α][a]A ⊢ {a}[β1]A

Φα ; [α][a]A ⊢ [a][β1]A

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A ⊢ A
[a]A ⊢ {a}A

[α][a]A ⊢ {α}{a}A
swap-in′

[α][a]A ⊢ Φα > {a}{βn}A

Φα ; [α][a]A ⊢ {a}{βn}A

{a

}

(Φα ; [α][a]A) ⊢ {βn}A

{a

}

(Φα ; [α][a]A) ⊢ [βn]A

Φα ; [α][a]A ⊢ {a}[βn]A

Φα ; [α][a]A ⊢ [a][βn]A

;
(
Φα ; [α][a]A

)
⊢
∧(

[a][βi]A
)

Φα ; [α][a]A ⊢
∧(

[a][βi]A
)

[α][a]A ;Φα ⊢
∧(

[a][βi]A
)

Φα ⊢ [α][a]A >
∧(

[a][βi]A
)

1α ⊢ [α][a]A >
∧(

[a][βi]A
)

[α][a]A ; 1α ⊢
∧(

[a][βi]A
)

1α ; [α][a]A ⊢
∧(

[a][βi]A
)

[α][a]A ⊢ 1α >
∧(

[a][βi]A
)

[α][a]A ⊢ 1α →
∧(

[a][βi]A
)

• Pre(α)→
∧
{[a][β]A |αaβ} ⊢ [α][a]A

Φα ⊢ 1α

A ⊢ A
[β1]A ⊢ {β1}A

[a][β1]A ⊢ {a}{β1}A

· · ·

· · ·

· · ·

A ⊢ A
[βn]A ⊢ {βn}A

[a][βn]A ⊢ {a}{βn}A
swap-out′

;
(
[a][βi]A

)
⊢ {α}{a}A

∧(
[a][βi]A

)
⊢ {α}{a}A

1α →
∧(

[a][βi]A
)
⊢ Φα > {α}{a}A

reduce′

1α →
∧(

[a][βi]A
)
⊢ {α}{a}A

{α

}

(1α →
∧(

[a][βi]A
)
) ⊢ {a}A

{α

}

(1α →
∧(

[a][βi]A
)
) ⊢ [a]A

1α →
∧(

[a][βi]A
)
⊢ {α}[a]A

1α →
∧(

[a][βi]A
)
⊢ [α][a]A

Appendix E. Completeness of D’.EAK 248

• 〈α〉[a]A ⊢ Pre(α) ∧
∧
{[a][β]A |αaβ}

Φα ⊢ 1α

A ⊢ A
[a]A ⊢ {a}A

balance
{α}[a]A ⊢ {α}{a}A

swap-in′

{α}[a]A ⊢ Φα > {a}{β1}A

Φα ; {α}[a]A ⊢ {a}{β1}A
reduce′

{α}[a]A ⊢ {a}{β1}A

{α}[a]A ⊢ {a}{β1}A

{a

}

{α}[a]A ⊢ {β1}A

{a

}

{α}[a]A ⊢ [β1]A

{α}[a]A ⊢ {a}[β1]A

{α}[a]A ⊢ [a][β1]A

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A ⊢ A

[a]A ⊢ {a}A
balance

{α}[a]A ⊢ {α}{a}A
swap-in′

{α}[a]A ⊢ Φα > {a}{βn}A

Φα ; {α}[a]A ⊢ {a}{βn}A
reduce′

{α}[a]A ⊢ {a}{βn}A

{α}[a]A ⊢ {a}{βn}A

{a

}

{α}[a]A ⊢ {βn}A

{a

}

{α}[a]A ⊢ [βn]A

{α}[a]A ⊢ {a}[βn]A

{α}[a]A ⊢ [a][βn]A

;
(
{α}[a]A

)
⊢
∧(

[a][βi]A
)

{α}[a]A ⊢
∧(

[a][βi]A
)

Φα ; {α}[a]A ⊢ 1α ∧
∧(

[a][βi]A
)

reduce′

{α}[a]A ⊢ 1α ∧
∧(

[a][βi]A
)

〈α〉[a]A ⊢ 1α ∧
∧(

[a][βi]A
)

• Pre(α) ∧
∧
{[a][β]A |αaβ} ⊢ 〈α〉[a]A

A ⊢ A
[β1]A ⊢ {β1}A

[a][β1]A ⊢ {a}{β1}A

· · ·

· · ·

· · ·

A ⊢ A

[βn]A ⊢ {βn}A

[a][βn]A ⊢ {a}{βn}A
swap-out′

;
(
[a][βi]A

)
⊢ {α}{a}A

∧(
[a][βi]A

)
⊢ {α}{a}A

{α

} ∧(
[a][βi]A

)
⊢ {a}A

{α

} ∧(
[a][βi]A

)
⊢ [a]A

{α} {α

} ∧(
[a][βi]A

)
⊢ 〈α〉[a]A

Φα ;
∧(

[a][βi]A
)
⊢ 〈α〉[a]A

∧(
[a][βi]A

)
;Φα ⊢ 〈α〉[a]A

Φα ⊢
∧(

[a][βi]A
)
> 〈α〉[a]A

1α ⊢
∧(

[a][βi]A
)
> 〈α〉[a]A

∧(
[a][βi]A

)
; 1α ⊢ 〈α〉[a]A

1α ;
∧(

[a][βi]A
)
⊢ 〈α〉[a]A

1α ∧
∧(

[a][βi]A
)
⊢ 〈α〉[a]A

Appendix F

Cut Elimination for the Dynamic

Calculus for EAK

Let us recall that C’8 only concerns applications of the cut rules in which both occur-

rences of the given cut-term are non parametric. Notice that non parametric occurrences

of atomic terms of type Fm involve an axiom on at least one premise, thus we are re-

duced to the following cases (the case of the constant ⊥ is symmetric to the case of ⊤

and is omitted):

Φp ⊢ p p ⊢ Ψp

Φp ⊢ Ψp Φp ⊢ Ψp
I ⊢ ⊤

... π

I ⊢ X
⊤ ⊢ X

I ⊢ X

... π

I ⊢ X

Notice that non parametric occurrences of any given (atomic) operational term a of type

Fnc or Ag are confined to axioms a ⊢ a. Hence:

a ⊢ a a ⊢ a
a ⊢ a a ⊢ a

In each case above, the cut in the original derivation is strongly uniform by assumption,

and is eliminated by the transformation. As to cuts on non atomic terms, let us restrict

our attention to those cut-terms the main connective of which is △ i, Ni , −⊲ i, −◮ i for

0 ≤ i ≤ 3 (the remaining operational connectives are straightforward and left to the

reader). In the derivations below, for every 0 ≤ i ≤ 3, the symbols ✩ , ❚ , ✧ and ❘

holds for the following structural symbols:

249

Appendix F. Cut Elimination for the Dynamic Calculus for EAK 250

i = 0 i = 1 i = 2 i = 3

✩ ✩ 0 ✩ 1 ✩ 2
∼✩ 3

❚ ❚ 0 ❚ 1 ❚ 2
∼❚ 3

✧ ✷∼ 0 ✧ 1 ✷∼ 2 ✷∼ 3

❘ ❘∼ 0 ❘ 1 ❘∼ 2 ❘∼ 3

... π0

x ⊢ a

... π1

y ⊢ b

x✦i y ⊢ a△ ib

... π2

a✦i b ⊢ z

a△ ib ⊢ z

x✦i y ⊢ z

... π1

y ⊢ b

... π0

x ⊢ a

... π2

a✦i b ⊢ z

a ⊢ z❘i b

x ⊢ z❘i b

x✦i b ⊢ z

b ⊢ x❚i z

y ⊢ x❚i z

x✦i y ⊢ z

... π1

y ⊢ a✩i b

y ⊢ a−⊲i b

... π0

x ⊢ a

... π2

b ⊢ z

a−⊲i b ⊢ x✩i z

y ⊢ x✩i z

... π0

x ⊢ a

... π1

y ⊢ a✩i b

a◗i y ⊢ b

a ⊢ b✧ i y

x ⊢ b✧ i y

x◗i y ⊢ b

... π2

b ⊢ z

x◗i y ⊢ z

y ⊢ x✩i z

... π0

x ⊢ a

... π1

y ⊢ b

x◗i y ⊢ aNi b

... π2

a◗i b ⊢ z

aNi b ⊢ z

x◗i y ⊢ z

... π1

y ⊢ b

... π0

x ⊢ a

... π2

a◗i b ⊢ z

a ⊢ z✧ i b

x ⊢ z✧ i b

x◗i b ⊢ z

b ⊢ x✩i z

y ⊢ x✩i z

x◗i y ⊢ z

Appendix F. Cut Elimination for the Dynamic Calculus for EAK 251

... π1

y ⊢ a❚i b

y ⊢ a−◮i b

... π0

x ⊢ a

... π2

b ⊢ z

a−◮i b ⊢ x❚i z

y ⊢ x❚i z

... π0

x ⊢ a

... π1

y ⊢ a❚i b

a✦i y ⊢ b

a ⊢ b❘i y

x ⊢ b❘i y

x✦i y ⊢ b

... π2

b ⊢ z

x✦i y ⊢ z

y ⊢ x❚i z

In each case above, the cut in the original derivation is strongly uniform by assumption,

and after the transformation, cuts of lower complexity are introduced which can be

easily verified to be strongly uniform for each 0 ≤ i ≤ 3.

Appendix G

Completeness for the Dynamic

Calculus for EAK

To prove the completeness of the Dynamic Calculus it is enough to show that all the

axioms and rules of IEAK are theorems and, respectively, derived or admissible rules of

Dynamic Calculus. Below we show the derivations of the dynamic axioms.

• α△ p ⊣⊢ (α△⊤) ∧ p

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤ α✦ p ⊢ p

(α✦ I) ; (α✦ p) ⊢ (α△⊤) ∧ p

α✦ (I ; p) ⊢ (α△⊤) ∧ p

I ; p ⊢ α❚ (α△⊤) ∧ p

p ⊢ α❚ (α△⊤) ∧ p

α✦ p ⊢ (α△⊤) ∧ p

α△ p ⊢ (α△⊤) ∧ p

α ⊢ α

α◗ p ⊢ p

I ⊢ (α◗ p) > p

⊤ ⊢ (α◗ p) > p

(α◗ p) ;⊤ ⊢ p

α✦ ((α◗ p) ;⊤) ⊢ α△ p

(α✦⊤) ; p ⊢ α△ p

α✦⊤ ⊢ α△ p < p

α△⊤ ⊢ p > α△ p

α△⊤ ; p ⊢ α△ p

(α△⊤) ∧ p ⊢ α△ p

253

Appendix G. Completeness for the Dynamic Calculus for EAK 254

• α−⊲ p ⊣⊢ (α△⊤)→ p

α ⊢ α p ⊢ α❚ p

α−⊲ p ⊢ α✩ (α❚ p)

α◗ (α−⊲ p) ⊢ α❚ p

I ⊢ (α◗ (α−⊲ p)) > α❚ p

⊤ ⊢ (α◗ (α−⊲ p)) > α❚ p

(α◗ (α−⊲ p)) ;⊤ ⊢ α❚ p

α✦ ((α◗ (α−⊲ p)) ;⊤) ⊢ p

(α−⊲ p) ; (α✦⊤) ⊢ p

α△⊤ ⊢ (α−⊲ p) > p

(α−⊲ p) ; (α△⊤) ⊢ p

(α△⊤) ; (α−⊲ p) ⊢ p

α−⊲ p ⊢ (α△⊤) > p

α−⊲ p ⊢ (α△⊤)→ p

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤ p ⊢ α✩ p

(α△⊤)→ p ⊢ (α✦ I) > (α✩ p)

(α△⊤)→ p ⊢ α✩ (I > p)

α◗ ((α△⊤)→ p) ⊢ I > p

α◗ ((α△⊤)→ p) ⊢ p

(α△⊤)→ p ⊢ α✩ p

(α△⊤)→ p ⊢ α−⊲ p

• 〈α〉⊤ ⊣⊢ 1α α△⊤ ⊣⊢ α△⊤

α ⊢ α ⊤ ⊢ ⊤

α✦⊤ ⊢ α△⊤
α△⊤ ⊢ α△⊤

• α−⊲⊥ ⊣⊢ α△⊤ → ⊥

α ⊢ α

⊥ ⊢ I

⊥ ⊢ α❚ I

α−⊲⊥ ⊢ α✩ (α ❚ I)

α◗ (α−⊲⊥) ⊢ α ❚ I

I ⊢ (α◗ (α−⊲⊥)) > (α ❚ I)

⊤ ⊢ (α◗ (α−⊲⊥)) > (α ❚ I)

α◗ (α−⊲⊥) ;⊤ ⊢ α ❚ I

α✦ (α◗ (α−⊲⊥) ;⊤) ⊢ I

α−⊲⊥ ; (α✦⊤) ⊢ I

α−⊲⊥ ; (α✦⊤) ⊢ ⊥

α✦⊤ ⊢ α−⊲⊥ > ⊥
α△⊤ ⊢ α−⊲⊥ > ⊥

α−⊲⊥ ;α△⊤ ⊢ ⊥
α△⊤ ;α−⊲⊥ ⊢ ⊥

α−⊲⊥ ⊢ α△⊤ > ⊥
α−⊲⊥ ⊢ α△⊤ → ⊥

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤

⊥ ⊢ I

⊥ ⊢ α✩ I

α◗⊥ ⊢ I

α◗⊥ ⊢ ⊥

⊥ ⊢ α✩⊥

α△⊤ → ⊥ ⊢ α✦ I > α ✩⊥

α△⊤ → ⊥ ⊢ α✩ (I > ⊥)

α◗ (α△⊤ → ⊥) ⊢ I > ⊥

I;α◗ (α△⊤ → ⊥) ⊢ ⊥

I ⊢ ⊥ < α◗ (α△⊤ → ⊥)

α◗ (α△⊤ → ⊥) ⊢ ⊥

α△⊤ → ⊥ ⊢ α✩⊥
α△⊤ → ⊥ ⊢ α−⊲⊥

Appendix G. Completeness for the Dynamic Calculus for EAK 255

• α△⊥ ⊣⊢ ⊥

⊥ ⊢ I

⊥ ⊢ α❚ I

α✦⊥ ⊢ I
α△⊥ ⊢ I
α△⊥ ⊢ ⊥

⊥ ⊢ I
⊥ ⊢ α△⊥

• α−⊲⊤ ⊣⊢ ⊤

I ⊢ ⊤
α−⊲⊤ ⊢ ⊤

I ⊢ ⊤

α◗ I ⊢ ⊤

I ⊢ α✩⊤

⊤ ⊢ α✩⊤

α◗⊤ ⊢ ⊤

⊤ ⊢ α✩⊤
⊤ ⊢ α−⊲⊤

• α−⊲ (A ∧ B) ⊣⊢ α−⊲ A ∧ α−⊲ B

α ⊢ α

A ⊢ A
A ; B ⊢ A

A ∧ B ⊢ A

α−⊲ (A ∧ B) ⊢ α✩ A

α−⊲ (A ∧ B) ⊢ α−⊲ A

α ⊢ α

B ⊢ B
A ; B ⊢ B

A ∧ B ⊢ B

α−⊲ (A ∧ B) ⊢ α✩ B

α−⊲ (A ∧ B) ⊢ α−⊲ B

α−⊲ (A ∧ B) ;α−⊲ (A ∧ B) ⊢ α−⊲ A ∧ α−⊲ B

α−⊲ (A ∧ B) ⊢ α−⊲ A ∧ α−⊲ B

α ⊢ α A ⊢ A

α−⊲ A ⊢ α✩ A

α◗ (α−⊲ A) ⊢ A

α ⊢ α B ⊢ B

α−⊲ B ⊢ α✩ B

α◗ (α−⊲ B) ⊢ B

α◗ (α−⊲ A) ;α◗ (α−⊲ B) ⊢ A ∧ B

α◗ (α−⊲ A ;α−⊲ B) ⊢ A ∧ B

α−⊲ A ;α−⊲ B ⊢ α✩ (A ∧ B)

α−⊲ A ∧ α−⊲ B ⊢ α−⊲ (A ∧ B)

Appendix G. Completeness for the Dynamic Calculus for EAK 256

• α△ (A ∧ B) ⊣⊢ α△A ∧ α△B

α ⊢ α

A ⊢ A
A ; B ⊢ A

A ∧ B ⊢ A

α✦ A ∧ B ⊢ α△A
α△ (A ∧ B) ⊢ α△A

α ⊢ α

B ⊢ B
A ; B ⊢ B

A ∧ B ⊢ B

α✦ A ∧ B ⊢ α△B
α△ (A ∧ B) ⊢ α△B

α△ (A ∧ B) ;α△ (A ∧ B) ⊢ α△A ∧ α△B

α△ (A ∧ B) ⊢ α△A ∧ α△B

α ⊢ α

A ⊢ A
balance

α✦ A ⊢ α✩ A

α◗ (α✦ A) ⊢ A

B ⊢ B
balance

α✦ B ⊢ α✩ B

α◗ (α✦ B) ⊢ B

α◗ (α✦ A) ;α◗ (α✦ B) ⊢ A ∧ B

α◗ (α✦ A ;α✦ B) ⊢ A ∧ B

α✦ (α◗ (α✦ A ;α✦ B)) ⊢ α△ (A ∧ B)

α◗ (α✦ A ;α✦ B) ⊢ α❚ (α△ (A ∧ B))

I ⊢ α◗ (α✦ A ;α✦ B) > α❚ (α△ (A ∧ B))

α◗ (α✦ A ;α✦ B) ; I ⊢ α❚ (α△ (A ∧ B))

α✦ (α◗ (α✦ A ;α✦ B)); I) ⊢ α△ (A ∧ B)
con j

(α✦ A ;α✦ B);α✦ I ⊢ α△ (A ∧ B)

α✦ A ; (α✦ B;α✦ I) ⊢ α△ (A ∧ B)

α✦ B;α✦ I ⊢ α✦ A > α△ (A ∧ B)

α✦ (B; I) ⊢ α✦ A > α△ (A ∧ B)

B; I ⊢ α❚ (α✦ A > α△ (A ∧ B))

I ⊢ B > (α❚ (α✦ A > α△ (A ∧ B)))

B ⊢ α❚ (α✦ A > α△ (A ∧ B))

α✦ B ⊢ α✦ A > α△ (A ∧ B)

α△B ⊢ α✦ A > α△ (A ∧ B)

α✦ A ;α△B ⊢ α△ (A ∧ B)

α✦ A ⊢ α△ (A ∧ B) < α△B

α△A ⊢ α△ (A ∧ B) < α△B

α△A ;α△B ⊢ α△ (A ∧ B)

α△A ∧ α△B ⊢ α△ (A ∧ B)

Appendix G. Completeness for the Dynamic Calculus for EAK 257

• α△ (A ∨ B) ⊣⊢ α△A ∨ α△B

α ⊢ α A ⊢ A

α✦ A ⊢ α△A

A ⊢ α❚ (α△A)

α ⊢ α B ⊢ B

α✦ B ⊢ α△B

B ⊢ α❚ (α△B)

A ∨ B ⊢ α❚ (α△A);α❚ (α△B)

A ∨ B ⊢ α❚ (α△A ;α△B)

α✦ A ∨ B ⊢ α△A ;α△B

α△ (A ∨ B) ⊢ α△A ;α△B

α△ (A ∨ B) ⊢ α△A ∨ α△B

α ⊢ α

A ⊢ A
A > A ⊢ B

A ⊢ A ; B

A ⊢ A ∨ B

α✦ A ⊢ α△ (A ∨ B)

α△A ⊢ α△ (A ∨ B)

α ⊢ α

B ⊢ B
B < B ⊢ A

B ⊢ A ; B

B ⊢ A ∨ B

α✦ B ⊢ α△ (A ∨ B)

α△B ⊢ α△ (A ∨ B)

α△A ∨ α△B ⊢ α△ (A ∨ B) ;α△ (A ∨ B)

α△A ∨ α△B ⊢ α△ (A ∨ B)

Appendix G. Completeness for the Dynamic Calculus for EAK 258

• α−⊲ (A ∨ B) ⊣⊢ (α△⊤)→ (α△A ∨ α△B)

α ⊢ α

α ⊢ α A ⊢ A

α✦ A ⊢ α△A

A ⊢ α❚ (α△A)

α ⊢ α B ⊢ B

α✦ B ⊢ α△B

B ⊢ α❚ (α△B)

A ∨ B ⊢ α❚ (α△A);α❚ (α△B)

A ∨ B ⊢ α❚ (α△A ;α△B)

α✦ (A ∨ B) ⊢ α△A ;α△B

α✦ (A ∨ B) ⊢ α△A ∨ α△B

A ∨ B ⊢ α❚ (α△A ∨ α△B)

α−⊲ (A ∨ B) ⊢ α✩ (α❚ (α△A ∨ α△B))

α◗ (α−⊲ (A ∨ B)) ⊢ α❚ (α△A ∨ α△B)

I ⊢ α◗ (α−⊲ (A ∨ B)) > α❚ (α△A ∨ α△B)

(α◗ (α−⊲ (A ∨ B))) ; I ⊢ α❚ (α△A ∨ α△B)

α✦ ((α◗ (α−⊲ (A ∨ B))) ; I) ⊢ α△A ∨ α△B
conj0△

(α−⊲ (A ∨ B)) ;α✦ I ⊢ α△A ∨ α△B

α✦ I ⊢ α−⊲ (A ∨ B) > α△A ∨ α△B

I ⊢ α✩ (α−⊲ (A ∨ B) > α△A ∨ α△B)

⊤ ⊢ α✩ (α−⊲ (A ∨ B) > α△A ∨ α△B)

α✦⊤ ⊢ α−⊲ (A ∨ B) > α△A ∨ α△B

α△⊤ ⊢ α−⊲ (A ∨ B) > α△A ∨ α△B

(α−⊲ (A ∨ B)) ; (α△⊤) ⊢ α△A ∨ α△B

(α△⊤) ; (α−⊲ (A ∨ B)) ⊢ α△A ∨ α△B

(α−⊲ (A ∨ B)) ⊢ (α△⊤) > α△A ∨ α△B

(α−⊲ (A ∨ B)) ⊢ (α△⊤)→ (α△A ∨ α△B)

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤

A ⊢ A

α✦ A ⊢ α✩ A

α△A ⊢ α✩ A

B ⊢ B

α✦ B ⊢ α✩ B

α△B ⊢ α✩ B

α△A ∨ α△B ⊢ α✩ A ;α✩ B

α△A ∨ α△B ⊢ α✩ (A ; B)

α◗ (α△A ∨ α△B) ⊢ A ; B

α◗ (α△A ∨ α△B) ⊢ A ∨ B

α△A ∨ α△B ⊢ α✩ (A ∨ B)

(α△⊤)→ (α△A ∨ α△B) ⊢ α✦ I > α✩ (A ∨ B)

(α△⊤)→ (α△A ∨ α△B) ⊢ α✩ (I > (A ∨ B))

α◗ ((α△⊤)→ (α△A ∨ α△B)) ⊢ I > (A ∨ B)

I ;α◗ ((α△⊤)→ (α△A ∨ α△B)) ⊢ A ∨ B

I ⊢ (A ∨ B) < α◗ ((α△⊤)→ (α△A ∨ α△B))

α◗ ((α△⊤)→ (α△A ∨ α△B)) ⊢ A ∨ B

(α△⊤)→ (α△A ∨ α△B) ⊢ α✩ (A ∨ B)

(α△⊤)→ (α△A ∨ α△B) ⊢ α−⊲ (A ∨ B)

Appendix G. Completeness for the Dynamic Calculus for EAK 259

• α △ (A→ B) ⊣⊢ (α△⊤) ∧ (α△A→ α△B)

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤

A ⊢ A

α✦ A ⊢ α✩ A

α△A ⊢ α✩ A

α◗ (α△A) ⊢ A

α ⊢ α B ⊢ B

α✦ B ⊢ α△B

B ⊢ α❚ (α△B)

A→ B ⊢ (α◗ (α△A)) > (α❚ (α△B))

A→ B ⊢ α❚ (α△A > α△B)

α✦ (A→ B) ⊢ α△A > α△B

α✦ (A→ B) ⊢ α△A→ α△B

(α ✦ I) ;α✦ (A→ B) ⊢ (α△⊤) ∧ (α△A→ α△B)

α ✦ (I ; A→ B) ⊢ (α△⊤) ∧ (α△A→ α△B)

I ; A→ B ⊢ α ❚ ((α△⊤) ∧ (α△A→ α△B))

I ⊢ (α ❚ ((α△⊤) ∧ (α△A→ α△B))) < (A→ B)

A→ B ⊢ α ❚ ((α△⊤) ∧ (α△A→ α△B))

α ✦ (A→ B) ⊢ (α△⊤) ∧ (α△A→ α△B)

α △ (A→ B) ⊢ (α△⊤) ∧ (α△A→ α△B)

α ⊢ α A ⊢ A

α✦ A ⊢ α△A

B ⊢ B

α✦ B ⊢ α✩ B

α△B ⊢ α✩ B

α△A→ α△B ⊢ α✦ A > α✩ B

α△A→ α△B ⊢ α✩ (A > B)

α◗ (α△A→ α△B) ⊢ A > B

α◗ (α△A→ α△B) ⊢ A→ B

α✦ (α◗ (α△A→ α△B)) ⊢ α△ (A→ B)

α◗ (α△A→ α△B) ⊢ α❚ (α△ (A→ B))

I ⊢ α◗ (α△A→ α△B) > α❚ (α△ (A→ B))

α◗ (α△A→ α△B) ; I ⊢ α❚ (α△ (A→ B))

α✦ (α◗ (α△A→ α△B) ; I) ⊢ α△ (A→ B)

α△A→ α△B ; (α✦ I) ⊢ α△ (A→ B)

α✦ I ⊢ α△A→ α△B > α△ (A→ B)

I ⊢ α❚ (α△A→ α△B > α△ (A→ B))

⊤ ⊢ α❚ (α△A→ α△B > α△ (A→ B))

α✦⊤ ⊢ α△A→ α△B > α△ (A→ B)

α△⊤ ⊢ α△A→ α△B > α△ (A→ B)

α△A→ α△B ;α△⊤ ⊢ α△ (A→ B)

α△⊤ ;α△A→ α△B ⊢ α△ (A→ B)

α△⊤ ∧ (α△A→ α△B) ⊢ α△ (A→ B)

Appendix G. Completeness for the Dynamic Calculus for EAK 260

• α−⊲ (A→ B) ⊣⊢ α△A → α△B

α ⊢ α

A ⊢ A

α✦ A ⊢ α✩ A

α◗ (α✦ A) ⊢ A

α ⊢ α B ⊢ B

α✦ B ⊢ α△B

B ⊢ α❚ (α△B)

A→ B ⊢ α◗ (α✦ A) > α❚ (α△B)

A→ B ⊢ α❚ (α✦ A > α△B)

α−⊲ (A→ B) ⊢ α✩ (α❚ (α✦ A > α△B))

α◗ (α−⊲ (A→ B) ⊢ α❚ (α✦ A > α△B)

I ⊢ α◗ (α−⊲ (A→ B) > α❚ (α✦ A > α△B)

α◗ (α−⊲ (A→ B) ; I ⊢ α❚ (α✦ A > α△B)

α✦ (α◗ (α−⊲ (A→ B) ; I) ⊢ α✦ A > α△B
con j

α−⊲ (A→ B) ; (α✦ I) ⊢ α✦ A > α△B

(α✦ I) ;α−⊲ (A→ B) ⊢ α✦ A > α△B

α✦ A ; ((α✦ I) ;α−⊲ (A→ B)) ⊢ α△B

(α✦ A ; (α✦ I)) ;α−⊲ (A→ B) ⊢ α△B

α✦ A ; (α✦ I) ⊢ α△B < α−⊲ (A→ B)

α✦ (A ; I) ⊢ α△B < α−⊲ (A→ B)

A ; I ⊢ α❚ (α△B < α−⊲ (A→ B))

I ⊢ A > (α❚ (α△B < α−⊲ (A→ B)))

A ⊢ α❚ (α△B < α−⊲ (A→ B))

α✦ A ⊢ α△B < α−⊲ (A→ B)

α△A ⊢ α△B < α−⊲ (A→ B)

α△A ⊢ α△B < α−⊲ (A→ B)

α△A ;α−⊲ (A→ B) ⊢ α△B

α−⊲ (A→ B) ⊢ α△A > α△B

α−⊲ (A→ B) ⊢ α△A → α△B

α ⊢ α A ⊢ A

α✦ A ⊢ α△A

α ⊢ α B ⊢ B

α✦ B ⊢ α✩ B

α△B ⊢ α✩ B

α△A→ α△B ⊢ α✦ A > α✩ B

α△A→ α△B ⊢ α✩ (A > B)

α◗ (α△A→ α△B) ⊢ A > B

α◗ (α△A→ α△B) ⊢ A→ B

α△A→ α△B ⊢ α✩ A→ B
α△A→ α△B ⊢ α−⊲ (A→ B)

Appendix G. Completeness for the Dynamic Calculus for EAK 261

• 1α ∧
∨
{〈a〉〈β〉A |αaβ} ⊢ 〈α〉〈a〉A (α△⊤) ∧ (a△ ((aNα)△A)) ⊢ α△ (a△A)

α ⊢ α

a ⊢ a A ⊢ A

a✦ A ⊢ a△A

α✦ (a✦ A) ⊢ α△ (a△A)

a✦ A ⊢ α❚ (α△ (a△A))

A ⊢ a❚ (α❚ (α△ (a△A)))
swap-inR

A ⊢ (a◗α)❚ (a❚ ((α✦ I) > (α△ (a△A))))

(a◗α)✦ A ⊢ a❚ ((α✦ I) > (α△ (a△A)))

a◗α ⊢ (a❚ ((α✦ I) > (α△ (a△A))))❘ A

aNα ⊢ (a❚ ((α✦ I) > (α△ (a△A))))❘ A

(aNα)△A ⊢ a❚ ((α✦ I) > (α△ (a△A)))

a✦ ((aNα)△A) ⊢ (α✦ I) > (α△ (a△A))

a△ ((aNα)△A) ⊢ (α✦ I) > (α△ (a△A))

(α✦ I); (a△ ((aNα)△A)) ⊢ α△ (a△A)

α✦ I ⊢ (α△ (a△A)) < (a△ ((aNα)△A))

I ⊢ α❚ ((α△ (a△A)) < (a△ ((aNα)△A)))

⊤ ⊢ α❚ ((α△ (a△A)) < (a△ ((aNα)△A)))

α✦⊤ ⊢ (α△ (a△A)) < (a△ ((aNα)△A))

α△⊤ ⊢ (α△ (a△A)) < (a△ ((aNα)△A))

(α△⊤); (a△ ((aNα)△A)) ⊢ α△ (a△A)

(α△⊤) ∧ (a△ ((aNα)△A)) ⊢ α△ (a△A)

Appendix G. Completeness for the Dynamic Calculus for EAK 262

• [α][a]A ⊢ Pre(α)→
∧
{[a][β]A |αaβ} α−⊲ (a−⊲ A) ⊢ (α△⊤)→ (a−⊲ ((aNα)−⊲ A))

α ⊢ α

a ⊢ a A ⊢ A

a−⊲ A ⊢ a✩ A

α−⊲ (a−⊲ A) ⊢ α✩ (a✩ A)

α◗ (α−⊲ (a−⊲ A)) ⊢ a✩ A

a◗ (α◗ (α−⊲ (a−⊲ A))) ⊢ A
swap-inL

(a◗α)◗ (a◗ ((α✦ I); (α−⊲ (a−⊲ A)))) ⊢ A

a◗α ⊢ A✧ (a◗ ((α✦ I); (α−⊲ (a−⊲ A))))

aNα ⊢ A✧ (a◗ ((α✦ I); (α−⊲ (a−⊲ A))))

(aNα)◗ (a◗ ((α✦ I); (α−⊲ (a−⊲ A)))) ⊢ A

a◗ ((α✦ I); (α−⊲ (a−⊲ A))) ⊢ (aNα)✩ A

a◗ ((α✦ I); (α−⊲ (a−⊲ A))) ⊢ (aNα)−⊲ A

(α✦ I); (α−⊲ (a−⊲ A)) ⊢ a✩ ((aNα)−⊲ A)

(α✦ I); (α−⊲ (a−⊲ A)) ⊢ a−⊲ ((aNα)−⊲ A)

α✦ I ⊢ (a−⊲ ((aNα)−⊲ A)) < (α−⊲ (a−⊲ A))

I ⊢ α❚ ((a−⊲ ((aNα)−⊲ A)) < (α−⊲ (a−⊲ A)))

⊤ ⊢ α❚ ((a−⊲ ((aNα)−⊲ A)) < (α−⊲ (a−⊲ A)))

α✦⊤ ⊢ (a−⊲ ((aNα)−⊲ A)) < (α−⊲ (a−⊲ A))

α△⊤ ⊢ (a−⊲ ((aNα)−⊲ A)) < (α−⊲ (a−⊲ A))

(α△⊤); (α−⊲ (a−⊲ A)) ⊢ a−⊲ ((aNα)−⊲ A)

(α−⊲ (a−⊲ A)) ⊢ (α△⊤) > (a−⊲ ((aNα)−⊲ A))

(α−⊲ (a−⊲ A)) ⊢ (α△⊤)→ (a−⊲ ((aNα)−⊲ A))

• 〈α〉[a]A ⊢ Pre(α) ∧
∧
{[a][β]A |αaβ} α△ (a−⊲ A) ⊢ (α△⊤) ∧ (a−⊲ ((aNα)−⊲ A))

α ⊢ α I ⊢ ⊤

α✦ I ⊢ α△⊤

a ⊢ a A ⊢ A

a−⊲ A ⊢ a✩ A
balance

α✦ (a−⊲ A) ⊢ α✩ (a✩ A)

α◗ (α✦ (a−⊲ A)) ⊢ a✩ A

a◗ (α◗ (α✦ (a−⊲ A))) ⊢ A
swap-inL

(a◗α)◗ (a◗ ((α✦ I); (α✦ (a−⊲ A)))) ⊢ A

a◗α ⊢ A❘ (a◗ ((α✦ I); (α✦ (a−⊲ A))))

aNα ⊢ A❘ (a◗ ((α✦ I); (α✦ (a−⊲ A))))

(aNα)◗ (a◗ ((α✦ I); (α✦ (a−⊲ A)))) ⊢ A

a◗ ((α✦ I); (α✦ (a−⊲ A))) ⊢ (aNα)✩ A

a◗ ((α✦ I); (α✦ (a−⊲ A))) ⊢ (aNα)−⊲ A

(α✦ I); (α✦ (a−⊲ A)) ⊢ a✩ ((aNα)−⊲ A)

(α✦ I); (α✦ (a−⊲ A)) ⊢ a−⊲ ((aNα)−⊲ A)
reduce′

L
α✦ (a−⊲ A) ⊢ a−⊲ ((aNα)−⊲ A)

(α✦ I); (α✦ (a−⊲ A)) ⊢ (α△⊤) ∧ (a−⊲ ((aNα)−⊲ A))
reduce′

L
α✦ (a−⊲ A) ⊢ (α△⊤) ∧ (a−⊲ ((aNα)−⊲ A))

α△ (a−⊲ A) ⊢ (α△⊤) ∧ (a−⊲ ((aNα)−⊲ A))

Appendix G. Completeness for the Dynamic Calculus for EAK 263

• Pre(α) ∧
∧
{[a][β]A |αaβ} ⊢ 〈α〉[a]A (α△⊤) ∧ a−⊲ ((aNα)−⊲ A) ⊢ α△ (a−⊲ A)

α ⊢ α

a ⊢ a

a ⊢ a α ⊢ α

a◗α ⊢ aNα A ⊢ A

(aNα)−⊲ A ⊢ (a◗α)✩ A

a−⊲ ((αNα)−⊲ A) ⊢ a✩ ((a◗α)✩ A)

a◗ (a−⊲ ((αNα)−⊲ A)) ⊢ (a◗α)✩ A

(a◗α)◗ (a◗ (a−⊲ ((αNα)−⊲ A))) ⊢ A
swap-outL

a◗ (α◗ (a−⊲ ((αNα)−⊲ A))) ⊢ A

α◗ (a−⊲ ((αNα)−⊲ A)) ⊢ a✩ A

α◗ (a−⊲ ((αNα)−⊲ A)) ⊢ a−⊲ A

I ⊢ α◗ (a−⊲ ((αNα)−⊲ A)) > a−⊲ A

α◗ (a−⊲ ((αNα)−⊲ A)) ; I ⊢ a−⊲ A

α✦ (α◗ (a−⊲ ((αNα)−⊲ A)) ; I) ⊢ α△ (a−⊲ A)
con j0△

a−⊲ ((αNα)−⊲ A) ; (α✦ I) ⊢ α△ (a−⊲ A)

α✦ I ⊢ a−⊲ ((αNα)−⊲ A) > α△ (a−⊲ A)

I ⊢ α❚ (a−⊲ ((αNα)−⊲ A) > α△ (a−⊲ A))

⊤ ⊢ α❚ (a−⊲ ((αNα)−⊲ A) > α△ (a−⊲ A))

α✦⊤ ⊢ a−⊲ ((αNα)−⊲ A) > α△ (a−⊲ A)

α△⊤ ⊢ a−⊲ ((αNα)−⊲ A) > α△ (a−⊲ A)

a−⊲ ((αNα)−⊲ A) ;α△⊤ ⊢ α△ (a−⊲ A)

(α△⊤) ; a−⊲ ((aNα)−⊲ A) ⊢ α△ (a−⊲ A)

(α△⊤) ∧ a−⊲ ((aNα)−⊲ A) ⊢ α△ (a−⊲ A)

Appendix H

The Proper Display-Type Calculus for

Monotone Modal Logic

Structural Rules

Id p ⊢ p

X ⊢ Y
I1

L
I ; X ⊢ Y

Y ⊢ X
I1
R

Y ⊢ I ; X

I2
L

X ⊢ Y

X ; I ⊢ Y

Y ⊢ X
I2
R

Y ⊢ X ; I

I ⊢ X
IWL

Y ⊢ X
X ⊢ I

IWR
X ⊢ Y

Y ⊢ Z
W1

L X ; Y ⊢ Z
Z ⊢ X

W1
RZ ⊢ Y ; X

X ⊢ Z
W2

L X ; Y ⊢ Z
Z ⊢ Y

W2
RZ ⊢ Y ; X

X ; X ⊢ Y
CL

X ⊢ Y

Y ⊢ X ; X
CR

Y ⊢ X

Y ; X ⊢ Z
EL

X ; Y ⊢ Z

Z ⊢ X ; Y
ER

Z ⊢ Y ; X

X ; (Y ; Z) ⊢ W
AL

(X ; Y) ; Z ⊢ W

W ⊢ (Z ; Y) ; X
AR

W ⊢ Z ; (Y ; X)

265

Appendix H. The Proper Display-Type Calculus for Monotone Modal Logic 266

Display Postulates

X ⊢ Z ; ∗Y
(∗, ;)

X ; Y ⊢ Z
(; , ∗)

Y ⊢ ∗ X ; Z

Z ; ∗Y ⊢ X
(∗, ;)

Z ⊢ X ; Y
(; , ∗)

∗ X ; Z ⊢ Y

X ⊢ Z < Y
(<, ;)

X ; Y ⊢ Z
(; , >)

Y ⊢ X > Z

Z < Y ⊢ X
(<, ;)

Z ⊢ X ; Y
(; , >)

X > Z ⊢ Y

Note that the following rules are derivable:

∗ X ⊢ Y
∗Y ⊢ X

Y ⊢ ∗ X
X ⊢ ∗Y

X ⊢ Y

∗ ∗ X ⊢ Y

The following table shows the operational rules for the propositional base:

Operational Rules

⊥L
⊥ ⊢ I

X ⊢ I ⊥R
X ⊢ ⊥

I ⊢ X⊤L
⊤ ⊢ X

⊤R
I ⊢ ⊤

A ; B ⊢ Z
∧L

A ∧ B ⊢ Z

X ⊢ A Y ⊢ B ∧R
X ; Y ⊢ A ∧ B

A ⊢ X B ⊢ Y∨L
A ∨ B ⊢ X ; Y

Z ⊢ A ; B
∨R

Z ⊢ A ∨ B

X ⊢ A B ⊢ Y→L
A→ B ⊢ X > Y

Z ⊢ A > B →R
Z ⊢ A→ B

X ⊢ A¬L
¬A ⊢ ∗ X

A ⊢ X ¬R
∗ X ⊢ ¬A

◦ A ⊢ X(∀∃)L
(∀∃)A ⊢ X

X ⊢ A (∀∃)R
◦ X ⊢ (∀∃)A

A ⊢ X(∃∀)L
(∃∀)A ⊢ ◦ X

X ⊢ ◦ A (∃∀)R
X ⊢ (∃∀)A

Appendix I

The Calculus for the Propositional

Base of PDL

Propositions Structural Rules

X ⊢ Y
I1

L
I ⊢ Y < X

X ⊢ Y
I1
R

X < Y ⊢ I

X ⊢ Y
I2

L
I ⊢ X > Y

X ⊢ Y
I2
R

Y > X ⊢ I

X ⊢ Z
W1

L Y ⊢ Z < X
X ⊢ Z

W1
RX < Z ⊢ Y

X ⊢ Z
W2

L Y ⊢ X > Z
X ⊢ Z

W2
RZ > X ⊢ Y

X , X ⊢ Y
CL

X ⊢ Y

Y ⊢ X , X
CR

Y ⊢ X

X , (Y ,Z) ⊢ W
AL

(X ,Y) ,Z ⊢ W

W ⊢ (Z ,Y) , X
AR

W ⊢ Z , (Y , X)

Y , X ⊢ Z
EL

X ,Y ⊢ Z

Z ⊢ X ,Y
ER

Z ⊢ Y , X

X > (Y ; Z) ⊢ W
GriL

(X > Y) ; Z ⊢ W

W ⊢ X > (Y ; Z)
GriR

W ⊢ (X > Y) ; Z

The last rules in the table above, GriL and GriR, are known as Grishin’s rules: here they

are useful to force the classical behaviour of our propositional base (if we remove Gri,

we will obtain a weaker logic cfr. []).

Propositions Display Postulates

X ,Y ⊢ Z

Y ⊢ X > Z

Z ⊢ X ,Y

X > Z ⊢ Y

X ,Y ⊢ Z

X ⊢ Z < Y

Z ⊢ X ,Y

Z < Y ⊢ X

267

Appendix I. The Calculus for the Propositional Base of PDL 268

Below we list the rules for the operational connective (note that the latest three connec-

tives with the name of the rule in brackets are those which do not belong to the language

of the axioms that we have implicitly chosen).

Propositions Operational Rules

⊥L
⊥ ⊢ I

X ⊢ I
⊥R

X ⊢ ⊥
I ⊢ X

⊤L
⊤ ⊢ X

⊤R
I ⊢ ⊤

A , B ⊢ X
∧L

A ∧ B ⊢ X

X ⊢ A Y ⊢ B
∧R

X ,Y ⊢ A ∧ B
A ⊢ X B ⊢ Y

∨L
A ∨ B ⊢ X ,Y

X ⊢ A , B
∨R

X ⊢ A ∨ B

X ⊢ A B ⊢ Y→L
A→ B ⊢ X > Y

X ⊢ A > B →R
X ⊢ A→ B

B ⊢ Y X ⊢ A
(←L)

B← A ⊢ Y < X
Z ⊢ B < A

(←R)
Z ⊢ B← A

A > B ⊢ Z
(

∧

L)
A

∧
B ⊢ Z

A ⊢ X Y ⊢ B
(

∧

R)
X > Y ⊢ A

∧

B

B < A ⊢ X
(∧ L)

B ∧ A ⊢ X
Y ⊢ B A ⊢ X

(∧ R)
Y < X ⊢ B ∧ A

Appendix J

Cut Elimination for PDL, Principal

Stage

In the present subsection, we report on the verification of condition C’8 of the definition

of quasi-proper multi-type display calculi (cf. Section 6.2.2).

Let us recall that C’8 only concerns applications of the cut rules in which both occur-

rences of the given cut-term are non parametric. Notice that non parametric occurrences

of atomic terms of type Fm involve an axiom on at least one premise, thus we are re-

duced to the following cases (the case of the constant ⊥ is symmetric to the case of ⊤

and is omitted):

p ⊢ p p ⊢ p

p ⊢ p p ⊢ p
I ⊢ ⊤

... π

I ⊢ X
⊤ ⊢ X

I ⊢ X

... π

I ⊢ X

Notice that non parametric occurrences of any given (atomic) operational term a of type

Act and d of type Tact are confined to axioms a ⊢ a and d ⊢ d, so the proofs are anal-

ogous to the previous case of operational term p of type Fm and they are omitted. In

each of these cases, the cut in the original derivation is strongly-uniform by assumption,

and is eliminated by the transformation. As to cuts on non atomic terms, let us now

restrict our attention to those cut-terms the main connective of which is △ i, N i, −⊲ i, −◮ i

for 0 ≤ i ≤ 1. Here below we show the proofs only for the white heterogeneous connec-

tives: the proofs for the black heterogeneous connectives are exactly the same modulo

a uniform substitution of each white connective by the same black connective (both at

the operational and structural level).

269

Appendix J. Cut Elimination for PDL, Principal Stage 270

... π0

x ⊢ a

... π1

y ⊢ b

x✦ iy ⊢ a△ ib

... π2

a✦ ib ⊢ z

a△ ib ⊢ z

x✦ iy ⊢ z

... π1

y ⊢ b

... π0

x ⊢ a

... π2

a✦ ib ⊢ z

a ⊢ z❘∼ ib

x ⊢ z❘∼ ib

x✦ ib ⊢ z

b ⊢ x❚ iz

y ⊢ x❚ iz

x✦ iy ⊢ z

... π1

y ⊢ a✩ib

y ⊢ a−⊲ib

... π0

x ⊢ a

... π2

b ⊢ z

a−⊲ib ⊢ x✩iz

y ⊢ x✩iz

... π0

x ⊢ a

... π1

y ⊢ a✩ib

a◗ iy ⊢ b

a ⊢ b✷∼ iy

x ⊢ b✷∼ iy

x◗ iy ⊢ b

... π2

b ⊢ z

x◗ iy ⊢ z

y ⊢ x✩iz

In each of these cases, the cut in the original derivation is strongly-uniform by assump-

tion, and after the transformation, cuts of lower complexity are introduced which can

be easily verified to be strongly-uniform for each 0 ≤ i ≤ 1.

Finally, let us consider the unary modalities test ?i for 0 ≤ i ≤ 1, positive iteration + and

its left adjont −.

... π1

X ⊢ A
X?i ⊢ A?i

... π2

A?i ⊢ Y

A?i ⊢ Y

X?i ⊢ Y

... π1

X ⊢ A

... π2

A?i ⊢ Y

A ⊢ Y

?

i

X ⊢ Y

?

i

X?i ⊢ Y

... π1

Π ⊢ α

Π⊕ ⊢ α+

... π2

α⊕ ⊢ ∆

α+ ⊢ ∆

Π⊕ ⊢ ∆

... π1

Π ⊢ α

... π2

α⊕ ⊢ ∆

α ⊢ ∆⊖

Π ⊢ ∆⊖

Π⊕ ⊢ ∆

... π1

Π ⊢ δ⊖

Π ⊢ δ−

... π2

δ ⊢ ∆

δ− ⊢ ∆⊖

Π ⊢ ∆⊖

... π1

Π ⊢ δ⊖

Π⊕ ⊢ δ

... π2

δ ⊢ ∆

Π⊕ ⊢ ∆

Π ⊢ ∆⊖

Appendix J. Cut Elimination for PDL, Principal Stage 271

In each case above, the cut in the original derivation is strongly-uniform by assumption,

and after the transformation, cuts of lower complexity are introduced which can be

easily verified to be strongly-uniform for each 0 ≤ i ≤ 1 in the first proof and also for the

remaining two proofs.

The remaining operational connectives are straightforward and left to the reader.

Appendix K

Completeness for PDL

Box-Choice (α ∪ β)−⊲ A ⊣⊢ (α−⊲ A) ∧ (β−⊲ A)

α ⊢ α
W ≬

α ⊢ α ≬ β

α ⊢ α ∪ β A ⊢ A

(α ∪ β)−⊲ A ⊢ α✩ A

(α ∪ β)−⊲ A ⊢ α−⊲ A

β ⊢ β
W ≬

β ⊢ α ≬ β

β ⊢ α ∪ β A ⊢ A

(α ∪ β)−⊲ A ⊢ β✩ A

(α ∪ β)−⊲ A ⊢ β−⊲ A

(α ∪ β)−⊲ A , (α ∪ β)−⊲ A ⊢ (α−⊲ A) ∧ (β−⊲ A)
CL

(α ∪ β)−⊲ A ⊢ (α−⊲ A) ∧ (β−⊲ A)

α ⊢ α A ⊢ A

α−⊲ A ⊢ α✩ A

α◗α−⊲ A ⊢ A

α ⊢ A✧ α−⊲ A

β ⊢ β A ⊢ A

β−⊲ A ⊢ β✩ A

β◗ β−⊲ A ⊢ A

β ⊢ A✧ β−⊲ A

α ∪ β ⊢ (A✧ α−⊲ A) ≬ (A✧ β−⊲ A)
choice ⊳

α ∪ β ⊢ A✧ (α−⊲ A , β−⊲ A)

α ∪ β◗ (α−⊲ A , β−⊲ A) ⊢ A

α−⊲ A , β−⊲ A ⊢ α ∪ β✩ A

(α−⊲ A) ∧ (β−⊲ A) ⊢ α ∪ β✩ A

(α−⊲ A) ∧ (β−⊲ A) ⊢ (α ∪ β)−⊲ A

273

Appendix K. Completeness for PDL 274

Box-Composition (α ; β)−⊲ A ⊣⊢ α−⊲ (β−⊲ A)

α ⊢ α β ⊢ β

α ; β ⊢ α ; β A ⊢ A

(α ; β)−⊲ A ⊢ (α ; β)✩ A
act j ⊲

(α ; β)−⊲ A ⊢ α✩ (β✩ A)

α◗ (α ; β)−⊲ A ⊢ β✩ A

α◗ (α ; β)−⊲ A ⊢ β−⊲ A

(α ; β)−⊲ A ⊢ α✩ β−⊲ A

(α ; β)−⊲ A ⊢ α−⊲ (β−⊲ A)

α ⊢ α

β ⊢ β A ⊢ A

β−⊲ A ⊢ β✩ A

α−⊲ (β−⊲ A) ⊢ α✩ (β✩ A)
act j ⊲

α−⊲ (β−⊲ A) ⊢ (α ; β)✩ A

(α ; β)◗α−⊲ (β−⊲ A) ⊢ A

α ; β ⊢ A✧ α−⊲ (β−⊲ A)

α△β ⊢ A✧ α−⊲ (β−⊲ A)

α△β◗α−⊲ (β−⊲ A) ⊢ A

α−⊲ (β−⊲ A) ⊢ α△β✩ A

α−⊲ (β−⊲ A) ⊢ (α△β)−⊲ A

Box-Test A?−⊲ B ⊣⊢ A→ B

A ⊢ A B ⊢ B
A→ B ⊢ A > B

? ⊲

A→ B ⊢ A?✩ B

A?◗ A→ B ⊢ B

A? ⊢ B✧ A→ B

A? ⊢ B✧ A→ B

A?◗ A→ B ⊢ B

A→ B ⊢ A?✩ B
A→ B ⊢ A?−⊲ B

A ⊢ A
A? ⊢ A? B ⊢ B

A?−⊲ B ⊢ A?✩ B
? ⊲

A?−⊲ B ⊢ A > B
A?−⊲ B ⊢ A→ B

Box-Distributivity α−⊲ (A ∧ B) ⊣⊢ α−⊲ A ∧ α−⊲ B

α ⊢ α

A ⊢ A
W,

A , B ⊢ A

A ∧ B ⊢ A

α−⊲ (A ∧ B) ⊢ α✩ A

α−⊲ (A ∧ B) ⊢ α−⊲ A

α ⊢ α

B ⊢ B
W,

A , B ⊢ B

A ∧ B ⊢ B

α−⊲ (A ∧ B) ⊢ α✩ B

α−⊲ (A ∧ B) ⊢ α−⊲ B

α−⊲ (A ∧ B) , α−⊲ (A ∧ B) ⊢ (α−⊲ A) ∧ (α−⊲ B)
CL

α−⊲ (A ∧ B) ⊢ (α−⊲ A) ∧ (α−⊲ B)

Appendix K. Completeness for PDL 275

α ⊢ α A ⊢ A

α−⊲ A ⊢ α✩ A

α◗α−⊲ A ⊢ A

α ⊢ α B ⊢ B

α−⊲ B ⊢ α✩ B

α◗α−⊲ B ⊢ B

(α◗α−⊲ A) , (α◗α−⊲ B) ⊢ A ∧ B
monN

α◗ (α−⊲ A , α−⊲ B) ⊢ A ∧ B

α−⊲ A , α−⊲ B ⊢ α✩ A ∧ B

α−⊲ A ∧ α−⊲ B ⊢ α✩ A ∧ B
α−⊲ A ∧ α−⊲ B ⊢ α−⊲ (A ∧ B)

Bibliography

[Ack35] W. Ackermann. Untersuchung über das Eliminationsproblem der mathe-

matischen Logic. Mathematische Annalen, 110:390 – 413, 1935.

[Acz88] Peter Aczel. Non-Well-Founded Sets. CSLI, Stanford, 1988.

[AM89] Peter Aczel and Nax Paul Mendler. A final coalgebra theorem. In Category

Theory and Computer Science, pages 357–365, 1989.

[AMS12] Guillaume Aucher, Bastien Maubert, and François Schwarzentruber. Gen-

eralized del-sequents. In Logics in Artificial Intelligence, volume 7519 of

Lecture Notes in Computer Science, pages 54–66. Springer, 2012.

[AMV04] Jirí Adámek, Stefan Milius, and Jiri Velebil. On coalgebra based on classes.

Theoretical Computer ScienceComput. Sci., 316(1):3–23, 2004.

[AMV05] Jirí Adámek, Stefan Milius, and Jiri Velebil. A general final coalgebra

theorem. Mathematical Structures in Computer Science, 15(3):409–432,

2005.

[Auc10] Guillaume Aucher. Characterizing updates in dynamic epistemic logic. In

Knowledge Representation and Reasoning, 2010.

[Auc11] Guillaume Aucher. DEL-sequents for progression. Journal of Applied Non-

Classical Logics, 21(3-4):289–321, 2011.

[AV93] Samson Abramsky and Steven Vickers. Quantales, observational logic and

process semantics. Mathematical Structures in Computer Science, 3:161–

227, 6 1993.

[Bal03] Alexandru Baltag. A coalgebraic semantics for epistemic programs. Electr.

Notes Theor. Comput. Sci., 82(1):17–38, 2003.

[Bar93] Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical

Computer Science, 114(2):299–315, 1993. See also Theoretical Computer

Science 124(1):189-192, 1994.

277

Bibliography 278

[BCS07] Alexandru Baltag, Bob Coecke, and Mehrnoosh Sadrzadeh. Epistemic ac-

tions as resources. J. Log. Comput., 17(3):555–585, 2007.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic, vol-

ume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, Cambridge, 2001.

[Bel82] Nuel Belnap. Display logic. Journal of Philosophical Logic, 11:375–417,

1982.

[Bel90] Nuel Belnap. Linear logic displayed. Notre Dame Journal of Formal Logic,

31(1):14–25, 1990.

[BFS00] Giulia Battilotti, Claudia Faggian, and Giovanni Sambin. Basic logic: Re-

flection, symmetry, visibility. Journal of Symbolic Logic, 65, 2000.

[BMS99] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of

public announcements, common knowledge and private suspicious. Tech-

nical Report SEN-R9922, CWI, Amsterdam, 1999.

[BvDHdL10] Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago

de Lima. Tableaux for public announcement logic. Journal of Logic and

Computation, 20(1):55–76, 2010.

[CC06] A. Chagrov and L. A. Chagrova. The truth about algorithmic problems

in correspondence theory. In G. Governatori, I. Hodkinson, and Y. Ven-

ema, editors, Advances in Modal Logic, volume 6, pages 121–138. College

Publications, 2006.

[CDGT13a] R. Clouston, J.E. Dawson, R. Goré, and A. Tiu. Annotation-free sequent

calculi for full intuitionistic linear logic. CSL, pages 197–214, 2013.

[CDGT13b] R. Clouston, J.E. Dawson, R. Goré, and A. Tiu. Annotation-free sequent

calculi for full intuitionistic linear logic - extended version. CoRR, 2013.

[CFPS14] Willem Conradie, Yves Fomatati, Alessandra Palmigiano, and Sumit

Sourabh. Sahlqvist correspondence for intuitionistic modal µ-calculus.

submitted, 2014.

[CGP14] W. Conradie, S. Ghilardi, and A. Palmigiano. Unified correspondence. In

A. Baltag and S. Smets, editors, Johan F.A.K. van Benthem on Logical and

Informational Dynamics, Outstanding Contributions to Logic. Springer, in

print 2014.

Bibliography 279

[CGV06] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence

and completeness in modal logic I: The core algorithm SQEMA. Logical

Methods in Computer Science, 2(1:5), 2006.

[Che80] Brian F. Chellas. Modal logic, an intoduction. Cambridge University Press,

1980.

[CJ96] José Carmo and Andrew J. I. Jones. Deontic database constrains, violation

and recovery. Studia Logica, 57:139–165, 1996.

[CP12] W. Conradie and A. Palmigiano. Algorithmic correspondence and canon-

icity for distributive modal logic. Annals of Pure and Applied Logic,

163(3):338 – 376, 2012.

[CP14] Willem Conradie and Alessandra Palmigiano. Algorithmic correspondence

and canonicity for non-distributive logics. submitted, 2014.

[CPS] W. Conradie, A. Palmigiano, and S. Sourabh. Algebraic modal correspon-

dence: Sahlqvist and beyond. Submitted.

[CS07] Corina Cîrstea and Mehrnoosh Sadrzadeh. Coalgebraic epistemic update

without change of model. In CALCO’07, pages 158–172, 2007.

[Cur63] Haskell B. Curry. Foundations of Mathematical Logic. McGraw-Hill, New

York, 1963.

[dAFH09] R.Q. de Araujo Fernandes and E.H. Haeusler. A topos-theoretic approach

to counterfactual logic. Electronic Notes in Theoretical Computer Science,

256:33–47, 2009.

[DCGT14] Jeremy Dawson, Ranald Clouston, Rajeev Goré, and Alwen Tiu. From

display calculi to deep nested sequent calculi: Formalised for full intu-

itionistic linear logic. In Proceedings of IFIP Theoretical Computer Science,

Lecture Notes in Computer Science, International Federation for Informa-

tion Processing, 2014.

[Doš89] Kosta Došen. Duality between modal algebras and neighbourhood frames.

Studia Logica, 48(2):219–234, June 1989.

[DP02] B. A. Davey and H. A. Priestley. Lattices and Order. Cambridge Univerity

Press, 2002.

[DST13] Roy Dyckhoff, Mehrnoosh Sadrzadeh, and Julien Truffaut. Algebra, proof

theory and applications for an intuitionistic logic of propositions, actions

and adjoint modal operators. ACM Transactions on Computational Logic,

14(4), 2013.

Bibliography 280

[FGK+14a] Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Palmigiano,

and Vlasta Sikimić. A multi-type display calculus for dynamic epistemic

logic. (Forthcoming), 2014.

[FGK+14b] Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Palmigiano,

and Vlasta Sikimić. Multi-type sequent calculi. In Michal Zawidzki An-

drzej Indrzejczak, Janusz Kaczmarek, editor, Trends in Logic XIII, pages

81–93. Lodź University Press, 2014.

[FGK+14c] Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Palmigiano,

and Vlasta Sikimić. A proof-theoretic semantic analysis of dynamic epis-

temic logic. (forthcoming), 2014.

[FGKP14] Sabine Frittella, Giuseppe Greco, Alexander Kurz, and Alessandra Palmi-

giano. Multi-type display calculus for propositional dynamic logic. (forth-

coming), 2014.

[FL79] Michael J. Fisher and Richard E. Ladner. Propositional dynamic logic of

regular programs. Journal of Computer and System Sciences, 18:194–211,

1979.

[FPS14] Sabine Frittella, Alessandra Palmigiano, and Luigi Santocanale. Dual char-

acterizations for finite lattices via correspondence theory for monotone

modal logic. (submitted), 2014.

[FS84] G. Fischer Servi. Axiomatizations for some intuitionistic modal logics.

Rend. Sem. Mat Polit. di Torino, 42:179 – 194, 1984.

[Gen69] Gerhard Gentzen. The collected papers of Gerhard Gentzen / edited by M. E.

Szabo. North-Holland Pub. Co Amsterdam, 1969.

[Ger99] Jelle Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, ILLC, Univer-

sity of Amsterdam, 1999.

[GG97] Jelle Gerbrandy and Willem Groeneveld. Reasoning about information

change. Journal of Logic, Language and Information, 6(2):147–169, 1997.

[GKP13] Giuseppe Greco, Alexander Kurz, and Alessandra Palmigiano. Dynamic

epistemic logic displayed. In Huaxin Huang, Davide Grossi, and Olivier

Roy, editors, Proceedings of the 4th International Workshop on Logic, Ratio-

nality and Interaction (LORI-4), volume 8196 of LNCS, 2013.

[GM97] S. Ghilardi and G. Meloni. Constructive canonicity in non-classical logics.

Annals of Pure and Applied Logic, 86:1 – 32, 1997.

Bibliography 281

[Gol76] R. Goldblatt. Metamathematics of modal logic. Report on Mathematical

Logic, 6(7):41–77, 1976.

[Gol92a] R. Goldblatt. Logics of time and computation. volume 7. CSLI Publica-

tions, 1992.

[Gol92b] Robert Goldblatt. Parallel action: Concurrent dynamic logic with indepen-

dent modalities. Studia Logica, 51(3/4):551–578, 1992.

[Gor96] R. Goré. On the completeness of classical modal display logic. In H Wans-

ing, editor, Proof Theory of Modal Logic, volume 2 of Applied Logic:137–

140, 1996.

[Gor97] Rajeev Goré. Cut-free display calculi for relation algebras. In D van Dalen

and M Bezem, editors, CSL96: Selected Papers of the Annual Conference of

the European Association for Computer Science Logic, volume LNCS 1258,

pages 198–210, 1997.

[Gor98] Rajeev Goré. Substructural logics on display. Logic Journal of IGPL,

6(3):451–504, 1998.

[Gor00] Rajeev Goré. Dual intuitionistic logic revisited. In Roy Dyckhoff, editor,

Automated Reasoning with Analytic Tableaux and Related Methods, volume

1847 of Lecture Notes in Computer Science, pages 252–267. Springer, 2000.

[GPT10] Rajeev Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof

search for bi-intuitionistic tense logic. In Advances in Modal Logic, pages

156–177, 2010.

[GV06] V. Goranko and D. Vakarelov. Elementary canonical formulae: Extending

Sahlqvist theorem. Annals of Pure and Applied Logic, 141(1-2):180 – 217,

2006.

[Han03] Helle Hansen. Monotonic modal logic. Master’s thesis, University of Ams-

terdam, 2003.

[Har] Chrysafis Hartonas. Analytic cut for propositional dynamic logic. unpub-

lished manuscript, -.

[Har13a] Chrysafis Hartonas. On the dynamic logic of agency and action. Studia

Logica, 2013.

[Har13b] Chrysafis Hartonas. Reasoning about types of action and agent capabili-

ties. Logic Journal of the IGPL, 21(5):703–742, 2013.

Bibliography 282

[Hei96] Aviad Heifetz. Common belief in monotonic epistemic logic. Mathematical

Social Sciences, 32:109–123, 1996.

[Her03] Andreas Herzig. Modal probability, belief, and actions. Fundamenta Infor-

maticae, 57(2-4):323–344, 2003.

[HK04] Helle Hvid Hansen and Clemens Kupke. A coalgebraic perspective on

monotone modal logic. Electronic Notes in Theoretical Computer Science,

106:121–143, 2004.

[HKP07] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Bisimulation for

neighbourhood structures. volume 4624, pages 279–293. Springer, 2007.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,

2000.

[Jón94] Bjarni Jónsson. On the Canonicity of Sahlqvist Identities. Studia Logica,

53:473–491, 1994.

[JT51] B. Jónsson and A. Tarski. Boolean algebras with operators. Amer. J. Math.,

(73):891–939, 1951.

[KP81] Dexter Kozen and Rohit Parikh. An elementary proof of the completeness

of pdl. Theoretical Computer Science, 14(113-118), 1981.

[KP13] Alexander Kurz and Alessandra Palmigiano. Epistemic updates on alge-

bras. Logical Methods in Computer Science, 2013. abs/1307.0417.

[KR05] Alexander Kurz and Jirí Rosický. Operations and equations for coalgebras.

Mathematical Structures in Computer Science, 15(1):149–166, 2005.

[Kra96] Marcus Kracht. Power and weakness of the modal display calculus. In

Proof theory of modal logic, pages 93–121. Kluwer, 1996.

[Kri63] Saul Kripke. Semantical considerations on modal logic. Acta Philosophica

Fennica, 16(83-94), 1963.

[Kur01] Alexander Kurz. Modal rules are co-implications. In CMCS, volume 44 of

Electronic Notes in Theoretical Computer Science, pages 241–253, 2001.

[Kur02] Alexander Kurz. Logics admitting final semantics. In FoSSaCS, volume

2303 of Lecture Notes in Computer Science, pages 238–249, 2002.

[KW99] Marcus Kracht and Frank Wolter. Normal monomodal logics can simulate

all others. Journal of Symbolic Logic, 64:99–138, 1999.

Bibliography 283

[Lem57] E. J. Lemmon. New foundations for lewis modal systems. volume 22,

pages 176–186. Association for Symbolic Logic, June 1957.

[Lew18] Clarence Irving Lewis. A survey of symbolic logic. Internet Archive:

https://archive.org/details/asurveyofsymboli00lewiuoft, 1918.

[Lew73] David Lewis. Causation. The Jounal of Philosophy, 70(17):556–567, Octo-

ber 1973.

[LL32] Clarence Irving Lewis and Cooper H. Langford. Symbolic logic. Dover

reprint, 1959., 1932.

[Lut06] Carsten Lutz. Complexity and succinctness of public announcement logic.

AAMAS ’06 Proceedings or the fifth international joint conference on Au-

tonomous agents and multiagent system, pages 137–143, 2006.

[Mon70] R. Montague. Universal grammar. Theoria, 36:373–398, 1970.

[Moo95] Michael Moortgat. Multimodal linguistic inference. Logic Journal of the

IGPL, 3(2-3):371–401, 1995.

[MPS13] Minghui Ma, Alessandra Palmigiano, and Mehrnoosh Sadrzadeh. Al-

gebraic semantics and model completeness for intuitionistic public an-

nouncement logic. Annals of Pure and Applied Logic, 2013. to appear.

[Nat90] J. B. Nation. An approach to lattice varieties of finite height. Algebra

Universalis, 27(4):521–543, 1990.

[NM10] Sara Negri and Paolo Maffezzoli. A Gentzen-style analysis of public an-

nouncement logic. pages 293–313. University of the Basque Country

Press, 2010.

[NM11] Sara Negri and Paolo Maffezioli. A proof theoretical perspective on public

announcement logic. Logic and Philosophy of Science, 9:49–59, 2011.

[Pac07] Eric Pacuit. Neighborhood semantics for modal logic, an introduction,

2007.

[Par85] Rohit Parikh. The logic of games and its applications. In Annals of Discrete

Mathematics, pages 111–140. Elsevier, 1985.

[Pau99] Marc Pauly. Bisimulation for general non-normal modal logic. Manuscript,

1999.

[Pau01] Marc Pauly. Logic for Social Software. PhD thesis, University of Amsterdam,

2001.

Bibliography 284

[Pau02] Marc Pauly. A modal logic for coalitional power in games. Journal of Logic

and Computation, 12(1):149–166, 2002.

[Pla07] Jan Plaza. Logics of public communications. Synthese, 158(2):165–179,

2007.

[Pog10] F. Poggiolesi. Gentzen Calculi for Modal Propositional Logic. Trends in logic.

Springer, 2010.

[PP03] Marc Pauly and Rohit Parikh. Game logic - an overview. Studia Logica,

75(2):165–182, 2003.

[Pra91] Vaughan Pratt. Action logic and pure induction. In Proceedings JELIA

1990, volume LNCS 478, pages 97–120. Springer, 1991.

[Pri54] A. N. Prior. The paradoxes of derived obligation. Mind, 63:64–65, 1954.

[Pri58] A. N. Prior. Escapism: The logical basis of ethics. Melden, pages 135–14,

1958.

[Pri62] A. N. Prior. Formal Logic. Oxford University Press, 1962.

[Res98] Greg Restall. Displaying and deciding substructural logics i: logics with

contraposition. Journal of Philosophical Logic, 1998.

[Res00] Greg Restall. An Introduction to Substructural Logics. Routledge, London,

2000.

[Res06] Pedro Resende. Lectures on étale groupoids, inverse semigroups and quan-

tales, 2006.

[Sah75] Henrik Sahlqvist. Correspondence and completeness in the first and

second-order semantics for modal logic. In S. Kanger, editor, The 3rd Scan-

dinavian Logic Symposium, Uppsala 1973, pages 110–143, 1975.

[San09] Luigi Santocanale. A duality for finite lattices. preprint, 2009.

[Sco70] Dana Scott. Advice on modal logic. pages 143–173. D. Reidel, 1970.

[Seg82] Krister Segerberg. A completeness theorem in the modal logic of pro-

grams. Universal Algebra, 9:31–46, 1982.

[Sem05] M. V. Semënova. On lattices that are embeddable into lattices of subor-

ders. Algebra Logika, 44(4):483–511, 514, 2005.

[SH06] Peter Schroeder-Heister. Validity concepts in proof-theoretic semantics.

In R. Kale and Peter Schroeder-Heister, editors, Proof-Theoretic Semantics,

volume 148, pages 525–571. 2006.

Bibliography 285

[SH13] Peter Schroeder-Heister. Proof-theoretic semantics. In Edward N. Zalta,

editor, The Stanford Encyclopedia of Philosophy. Spring 2013 edition, 2013.

[Sik13] Vlasta Sikimić. Towards a Proof-Theoretic Semantics for Dynamic Log-

ics. Master’s thesis, MSc in Logic, ILLC, Universiteit van Amsterdam, The

Netherlands, 2013.

[SV89] G. Sambin and V. Vaccaro. A new proof of Sahlqvist’s theorem on modal

definability and completeness. Journal of Symbolic Logic, 54:992–999,

1989.

[tCMV05] B. ten Cate, M. Marx, and P. Viana. Hybrid logics with Sahlqvist axioms.

Logic Journal of the IGPL, 13(3):293 – 300, 2005.

[Tho75] S. Thomason. Categories of frames for modal logic. The Journal of Sym-

bolic Logic, 40:439–442, 1975.

[vB85] J. van Benthem. Modal Logic and Classical Logic. Indices : Monographs in

Philosophical Logic and Formal Linguistics, Vol 3. Bibliopolis, 1985.

[vB06] J. F. A. K. van Benthem. Modal frame correspondence and fixed-points.

Studia Logica, 83:133 – 155, 2006.

[vBBH12] J. F. A. K. van Benthem, N. Bezhanishvili, and I. Hodkinson. Sahlqvist

correspondence for modal µ-calculus. Studia Logica, 100:31–60, 2012.

[vDvdHK03] Hans P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Concurrent dy-

namic epistemic logic. In Synthese Library Series, editor, V.F. Hendricks,

K.F. Jørgensen, S.A. Pedersen (eds.), Knowledge Contributors, volume 322,

pages 105–143. Kluwer Academic Publishers, 2003.

[vDvdHK07] Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic

Epistemi Logic. Springer, 2007.

[vW51] G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

[vW53] G. H. von Wright. An essay in modal logic. New York: Humanities Press,

1953.

[vW56] G. H. von Wright. A note on deontic logic and derived obligation. Mind,

65:507–509, 1956.

[vW68] G. H. von Wright. An essay in deontic logic and the general theory of

action. Amsterdam: North Holland Publishing Company, 1968.

Bibliography 286

[vW71] G. H. von Wright. A new system of deontic logic. Danish Yearbook of

Philosophy, 1:173–182, 1971.

[Wan94] Heinrich Wansing. Sequent calculi for normal modal propositional logics.

Journal of Logic and Computation, 4:125–142, 1994.

[Wan98] Heinrich Wansing. Displaying Modal Logic. Kluwer, 1998.

[Wan00] Heinrich Wansing. The idea of a proof-theoretic semantics and the mean-

ing of the logical operations. Studia Logica, 64(1):3–20, 2000.

[Wan02] Heinrich Wansing. Sequent systems for modal logics. Handbook of Philo-

sophical Logic, 8:61–45, 2002.

	Abstract
	Acknowledgements
	Contents
	Prologue
	Introduction
	Synopsis
	Contribution

	Résumé en français
	I Correspondence Theory
	1 Dual Characterizations for Finite Lattices via Correspondence Theory for Monotone Modal Logic
	1.1 Introduction
	1.2 Preliminaries
	1.2.1 Dual equivalence for finite lattices
	1.2.2 An environment for correspondence
	1.2.3 The standard translation
	1.2.4 An informal presentation of the algorithm ALBA

	1.3 Algorithmic correspondence for monotone modal logic
	1.3.1 Two-sorted frames
	1.3.2 Basic ALBA on two-sorted frames

	1.4 Enhancing the algorithm for correspondence
	1.4.1 Enriched two-sorted frames
	1.4.2 Correspondence rules for enriched two-sorted frames
	1.4.3 Closed right Ackermann rule

	1.5 Characterizing uniform upper bounds on the length of D+-chains in finite lattices
	1.6 Conclusions and further directions

	II Proof Theory
	2 A Proof-Theoretic Semantic Analysis of Dynamic Epistemic Logic
	2.1 Introduction
	2.2 Preliminaries on proof-theoretic semantics and Display Calculi
	2.2.1 Basic ideas in proof-theoretic semantics
	2.2.2 Display calculi
	2.2.3 Wansing's criteria

	2.3 Belnap-style metatheorem for quasi-proper display calculi
	2.3.1 Quasi-proper display calculi
	2.3.2 Belnap-style metatheorem

	2.4 Dynamic Epistemic Logics and their proof systems
	2.4.1 The logic of epistemic actions and knowledge
	2.4.2 The intuitionistic version of EAK
	2.4.3 Proof theoretic formalisms for PAL and DEL
	2.4.4 First attempt at a display calculus for EAK

	2.5 Final coalgebra semantics of dynamic logics
	2.5.1 The final coalgebra
	2.5.2 Final coalgebra semantics of modal logic

	2.6 Proof-Theoretic Semantics for EAK
	2.6.1 The calculus D'.EAK
	2.6.2 Properties of D'.EAK
	2.6.3 Belnap-style cut elimination for D'.EAK

	2.7 Conclusions and further directions
	2.7.1 Conclusions
	2.7.2 Further directions

	3 Multi-Type Display Calculus for Dynamic Epistemic Logic
	3.1 Introduction
	3.2 Multi-type calculi, and cut elimination metatheorem
	3.2.1 Multi-type calculi
	3.2.2 Relativized display property
	3.2.3 Quasi-proper multi-type display calculi
	3.2.4 Belnap-style metatheorem for multi-types

	3.3 The Dynamic Calculus for EAK
	3.4 Soundness
	3.5 Completeness and cut elimination
	3.5.1 Derivable rules and completeness
	3.5.2 Belnap-style cut elimination, and subformula property

	3.6 Conservativity
	3.7 Conclusions and further directions

	4 Display-Type Calculi via Visibility
	4.1 Introduction
	4.2 Quasi-proper multi-type display-type calculi
	4.3 Cut elimination metatheorem

	5 Display-Type Calculus for Monotone Modal Logic
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Syntax and semantics of monotone modal logic
	5.2.2 Visibility and cut elimination

	5.3 Proper display-type calculi, and their metatheorem
	5.3.1 Proper display-type calculi
	5.3.2 Cut elimination metatheorem for proper display-type calculi

	5.4 A calculus for monotone modal logic
	5.4.1 The basic calculus for MML
	5.4.2 Soundness
	5.4.3 Completeness
	5.4.4 Cut elimination

	6 Multi-Type Display Calculus for Propositional Dynamic Logic
	6.1 Introduction
	6.2 Basic facts and definitions
	6.2.1 Propositional Dynamic Logic
	6.2.2 Proper multi-type display calculi, and their cut elimination metatheorem

	6.3 Language and rules
	6.4 Soundness
	6.5 Completeness
	6.6 Cut elimination
	6.7 The open issue of conservativity
	6.8 Conclusions

	Conclusions
	Appendices
	A Proof of Lemma 1.34
	B The Cut Elimination Metatheorems
	C Special Rules in D'.EAK
	C.1 Derived rules in D'.EAK
	C.2 Soundness of comp rules in the final coalgebra

	D Cut Elimination for D'.EAK
	E Completeness of D'.EAK
	F Cut Elimination for the Dynamic Calculus for EAK
	G Completeness for the Dynamic Calculus for EAK
	H The Proper Display-Type Calculus for Monotone Modal Logic
	I The Calculus for the Propositional Base of PDL
	J Cut Elimination for PDL, Principal Stage
	K Completeness for PDL
	Bibliography

