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CHAPTER 1

Introduction

Hundreds of thousands of dams are now in use throughout the world and some of them have

been operating for several centuries.

Dams represent important economic stakes due to the numerous roles they fulfill: storing

water for irrigation, producing hydroelectricity, supplying water to towns and businesses, etc.

Moreover, they contribute to the management of limited global water resources that are subject

to poor distribution and considerable seasonal variations. Dams are heterogeneous structures

featured by multiple behaviors that evolve through time because of their natural aging. This

aging can be accelerated by environmental causes (climatic conditions, floods and earthquakes)

or by internal causes (poor design or construction conditions, insufficient or inadequate mainte-

nance...). These causes involve, during the life of the structure, the occurrence and the develop-

ment of deterioration phenomena, more or less dependent and stemming from miscellaneous and

complex sources. These degradation phenomena can jeopardize the dam safety possibly leading

to the structure failure which can have dramatic consequences on the people and assets located

downstream.

In order to increase the reliability and availability of the system, failures or faults resulting

from the malfunctions of the system should be detected and repaired to remain the system

functioning correctly and to keep its physical integrity. At the present, all over the world, the

assessment of the performance and safety of dams, their diagnosis and proposals for corrective

actions are carried out by expert engineers during dam reviews: numerous communications of

the triennial congress organized by the International Committee on Large Dams present expert-

based approaches for dam diagnosis [Cur13]. However, the acquisition of the necessary skills to

carry out the diagnosis task manually can be long. As a consequence, it is relevant to develop

support tools to help engineers with this task.

1.1 Diagnosis of Dam Safety

Regarding the former, performing the diagnosis of dam safety presents several difficulties linked

to different features of the dam.

The first difficulty is about the multiplicity of the behaviors and the heterogeneity of the

components that compose the hydraulic dam. Indeed, the hydraulic dam is composed by com-

ponents which have a different functional role in the global system.

The second difficulty is about the temporal characteristics of the system which are the core

of the solving problem method of dynamic systems like dams. Indeed, the evolution of the dam

behavior is represented by a set of phenomena which present the possible states of the system

1
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over the time. The time can be either continuous (continuous signals as functions of time) or

discrete (an interpretation by the human). The diagnosis approach method must allow taking

into account this temporal characteristic.

The third difficulty is about the nature of the system knowledge. Indeed, dams are character-

ized by a several types of knowledge: knowledge coming from expert called visual observations

(for example the detection of leakage on the downstream shoulder, detection of cracks on the

facing, etc.), knowledge coming from monitoring devices called program observation like piezom-

etry, flow change, etc., presented as mathematical models (hydraulic gradient, spillway capacity,

etc.). It is important to note that visual observations are at the origin of the detection of most

of dam anomalies [PR01].

The Knowledge Engineering (KE) discipline provides methods, techniques and tools which

facilitate and improve the construction models based on the the expert knowledge. However,

the model validation, if possible, only can be carried out with respect to that which the expert

knows and makes explicit about the process, but not regarding the knowledge interpretation.

Visual Observation :

-In September 1988, during an annual visit 

control, a particularly wet area is repaired at 

the downstream toe of the embankment.

Two months latter , the wetland was enlarged 

and localized sliding are observable on about 

ten meters in length in the downstream berm.

Sensor measurement Sensor measurement 

Figure 1.1: Example of knowledge base available at the end of a dam review (extract)

Figure 1.1 presents an example of data used during a dam expertise, here it concerns the

Cublize dam [PRB06]. Two types of measurements were performed on Cublize dam. The first

ones concern visual observations describing on the one hand, the presence of a wet area on the

downstream toe of the dam and its increase during time and on the other hand, the detection

of a sliding of the downstream embankment. Both data indicate an abnormal presence of water

in the work. The second type of measurement is instrumental ones: piezometry, flow and water

level in the reservoir. Both types of measurement were necessary to carry out the diagnosis task.
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This example reflects the usual way of processing performed by experts during reviews and show

the necessity to develop an algorithm able to deal with these different kinds of measurement

and that allow to combine the raw data process with the cognitive models used by the experts

to assess the safety of dam.

The last difficulty is about the fault detection task. In fact, the presence of the faults

must be known before they become serious. However, in some cases, the fault can not be

known in advance. In the case of the dam, the fault is more likely some phenomenon we

did not expect or an exogenous condition influencing the system behavior in an undesirable

way. Besides, the phenomena can be interpreted differently from one expert to another. An

abstraction representation of the diagnosis results is needed to deal with the different diagnosis

objectives interpreted by the expert.

1.2 Model-Based Reasoning

The increasing complexity of engineered systems led the Model-Based Reasoning (MBR) commu-

nity to focus its research on diagnosis tasks based on models with multiple levels of abstraction.

Abstractions are useful for reducing the computational complexity of diagnosis reasoning, ac-

counting for observations at qualitative levels, and handling systems whose available knowledge

relating to components is heterogeneous.

Many approaches have exploited structural, behavior and functional models [CR04], [CGTT93]

and [TMEPTS01]. The main claim of these approaches is certainly the requirement for the avail-

ability and use of a large variety of knowledge sources (models) linked to the physical system

that is the object of the reasoning activity. In fact, it is widely recognized that no single model

is adequate for a wide range of problem solving tasks.

However these approaches suffer from two principal drawbacks:

1. First, these approaches use the abstraction level to achieve different tasks (monitoring,

diagnosis, prediction ...). Therefore, the abstraction level of the design task requires the

definition of a lot of components, some of which might be meaningless in the diagnosis task.

This leads to model a large number of components and hence a complexity to compute

diagnosis system which is the objective of our works. Consequently, the main goal of the

modeling task is to determinate the right level of abstraction in which the models have to

be constructed to obtain a more efficient diagnosis since the number of diagnose increases

exponentially with the number of components.

2. The second difficulty concerns the case of dynamic systems. Indeed, in these type of

systems, the observation is timed, unlike in static systems where the observations are given

at only one point of time. This is restrictive in several fields. The dynamic characteristics

of the system poses many problems with the existing approaches to perform the diagnosis

task.

Only very few approaches allows to reach these two requirements. Among these, the Timed

Observation Theory [LG06] provides the mathematical and the methodological tools for the

modeling, the supervision, the diagnosis and the prognosis of complex dynamic processes. In

particular, the TOM4D methodology (Timed Observations Modeling For Diagnosis) based on a
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quadripartite model of a dynamic process that can be used for an efficient diagnosis task. One

of the main advantages of the TOM4D methodology is its ability to combine raw process data

with expert’s knowledge to provide the abstract (or conceptual) model of a process an expert

uses to formulate its diagnosis knowledge. TOM4D is then particularly well suited to provide an

adequate model of dynamic and complex system to obtain an efficient diagnosis by implementing

the models for diagnosis task.

To remedy these problems, dams deterioration and failure models and scenarios have been

proposed in the literature. Nevertheless, these methods present some limits: they are qualitative,

e.g., based on the FMEA (Failure Modes and Effects Analysis) approach [PRB06], or they only

consider the future of the dam [FFS00], or they fail to take into account the whole set of available

data, in particular visual data.

These limits have been encountered in many domains, notably in the computer science

area where three main approaches of diagnosis are currently developed: the Logical Theory of

Diagnosis, the Discrete Event System (D.E.S) and the Multi-Models approach.

• The logical Theory of Diagnosis, or diagnosis from first principles, was pioneered by Reiter

[Rei87]. The basic idea is to predict the behavior of the system using behavioral and

structural models of the system and its components and to compare it with observations

of the actual behavior of the real system. Despite of the important contributions in the

domain of temporal logic, there is still a difficulty to take into account the time of the

observations in the diagnosis reasoning.

• In Discrete Event System community (D.E.S), the system is modeled as a finite state

machine, where the states of the machine describe conditions of the components. The

only dynamics represented in the FSM (Finite State Machine) is that the system can go

from normal to faulty. The observations (sensor readings) are included as a mapping from

the fault states to certain observable events (tests). To diagnose a fault corresponds to

identify which state or set of states the system belongs to.

The application of this approach on the diagnosis continuous time system implies a con-

siderable number of discrete events. This leads to very large automate. The size of the

diagnose can be exponential given the important number of states. Besides, these kinds

of approaches say nothing about the visual observations which are the origin for many

observations on systems like the dam. Finally, in the case of the dam diagnosis, it is

very difficult to match the set of trajectories resulting from the diagnosis task with the

set of phenomena interpreted by an expert. We believe then that the problem comes

from the concepts used in D.E.S (event, state, and trajectory). Adding a sound cognitive

and abstraction level to this approach is necessary to solve the problem. Nevertheless,

establishing the meaning regarding the experts semantics of models obtained from data is

complex.

• In Multi-Model based diagnosis, the system is modeled by means of three models: a

structural model describing the components and their interconnections, a behavior model

describing how components operate and interact with each other, and a functional model

describing the different roles that the components can play in the physical process of which

they are part. The large number of components of the resulting model leads to computing
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difficulties in the diagnosis task. The main problem is to determinate the right level of

abstraction in which the models have to be built to obtain an efficient diagnosis. Most

modeling approaches use the abstraction level of the available models, generally design

models. However the abstraction level of the design task requires the definition of a lot

of components, some of which might be meaningless in the diagnosis task. This results

in a high computational cost since the number of possible diagnosis increases exponen-

tially with the number of components. Define models that only consider components that

are concerned with diagnosing allowing a more efficient diagnosis since the number of

components is minimal.

With regard to the previously presented difficulties and context, the challenge lies in treating

knowledge from different sources to define a modeling method for diagnosis and to compute the

diagnosis objective for complex and dynamic system.

Therefore, we propose to develop a method able to deal with data of various types, to take

into account the temporal characteristics of the system and applied for industrial system with

different diagnosis objectives. The level of abstraction of the models is also a key feature:

without a relevant level of abstraction, it is impossible to guarantee the global consistency of

the diagnosis engine. An expert usually uses a set of models at a level of abstraction which is

directly linked with the diagnosis task and not with the design task. The objective is thus to get

an abstracted description of the system that is homogeneous with the expert abstraction level.

1.3 Contributions

The objective of our works is to propose a model-based diagnosis approach that takes into

account the limitations presented in the community of Model-Based Diagnosis.

Only very few approaches allows to reach these requirements. Among these, the Timed

Observation Theory [LG06] provides the mathematical and the methodological tools for the

modeling, the supervision, the diagnosis and the prognosis of complex dynamic processes. This

theory is important because it can be applied to any observed systems. The application of

the TOT mathematical framework has given birth a modeling approach for diagnosis TOM4D

(Timed Observations Modeling For Diagnosis). In particular, the TOM4D methodology allows

to build a quadripartite model of a dynamic process that can be used for an efficient diagnosis

task. One of the main advantages of the TOM4D methodology is its ability to combine raw

process data with expert’s knowledge to provide the abstract (or conceptual) model of a process

an expert uses to formulate its diagnosis knowledge. TOM4D is then particularly well suited to

provide an adequate model of a dam with the aim to ensure the compliance of its current state

with the reliability and safety requirements, to diagnose the (past) causes of the deterioration of

the reliability and the safety, and to forecast the reliability and safety evolutions at different time

scales. Our first contribution is so concerned with the extension of the TOM4D methodology to

networks of dynamic process.

Our second contribution is the design of diagnosis algorithm based on the TOM4D models.

The proposed algorithm is based on the fact that observation models should be consistent with

the available timed observations observation. Otherwise, an explanation for error needs to be

provided. Therefore, we used the concept of observation class and path of observation class
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occurrences as the result of diagnosis algorithm by analogy with the notion of trajectory used

in D.E.S. The flexibility of the notion of observation class path makes easier to connect the

diagnosis results with different diagnosis purposes: identify the phenomena (in the case of the

dams), the set of trajectories, the default components, the mode assignment ... (cf. Figure 1.2)

Diagnosis 
Engine

Model 
Description Observations

Program observation : Expert observation:Program observation : 
sensor

Expert observation:
Visual observation

Dynamic 
system

Heterogeneous 
system

Multi Behavior 
System

Figure 1.2: Diagnosis algorithm proposition

1.4 Document Structure

In the document, the problem statement of this thesis and our main contributions are described

above in this introductory chapter.

The next chapter proposes a state of art concerning the three main diagnosis approaches: the

Logical Theory of Diagnosis, the Discrete Event System (D.E.S) and the Multi-Models approach.

To clarify the presentation and illustrate the particularities of the approaches, the example of

an hydraulic system is used as a didactic example. This example will then be used all over this

document in order to describe our contributions.

Chapter 3, is dedicated to an introduction of main concepts and theorems of the Timed Ob-

servation Theory which constitute the mathematical framework within our works are developed.

Chapter 4 presents the TOM4D methodology which is based on the idea that experts use

implicit models to formulate their knowledge about a process and the way of diagnosing it. The

systems concerned with this approach are typically characterized by a complex and heteroge-

neous structure that evolves over the time. The presentation of the TOM4D methodology is

based on the didactic example described in the state of the art chapter.

Based on the models defined in TOM4D methodology, chapter 5 proposes an adequate diag-

nosis algorithm that allows identifying the faults occurring on a network of dynamic processes.
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The objective of the diagnosis is to detect timely the faults based on observations of different

natures (visual and numerical observations).

Chapter 6 is the real-world application chapter of this document. Both the TOM4D modeling

approach and its corresponding diagnosis algorithm are applied to assess the hydraulic dam

safety.This chapter shows the operational flavor of our contribution in a complex real-world

problem.

Finally, Chapter 7 concludes this manuscript with a short synthesis of our contributions to

position it in its global scientific context so that some perspectives of our works can be proposed.
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CHAPTER 2

State of the Art

The diagnosis is the process of observing a system to detect any malfunctions from these ob-

servations and to identify their origin. Since the 60’s, numerous different techniques have been

proposed used to allow a computer to perform an automatic diagnosis. They come from research

works in the fields of Artificial Intelligence (AI) and Automatic Control (AC) and they are used

in various activity sectors, such as the medical sector or the industrial one. The problem that

is concerned with this document relates to the diagnosis of a dam in service.

2.1 The Hydraulic Dam Diagnosis Problem

A dam is an art work established across the bed of a watercourse, for regulating the flow of water

or for storing water. It is a construction that lives, works and deteriorates under the influence

of forces, mainly pressure forces exerted by the water, to which it is subjected. Account held

in the risk of dam failure and the extent of damage consequently on people, properties and

environment, even if the probability of such a risk is extremely low, monitoring of dams to

prevent accidents is a crucial task, highly regulated, which is the subject of numerous studies

and research works.

The causes of rupture may be technical, when the failure is caused by a malfunction of the

dewatering valves, by a faulty design, a construction defect or a defect in material, by the aging

of the construction, or they may be natural, when the failure is the result of an earthquake, of

an exceptional flood or of a landslide. They may even be human, resulting from a lack of prior

studies, of execution control, of monitoring, of maintenance or resulting from an act of malice.

The phenomenon of dam failure depends on the specific characteristics of the dam. Thus, the

failure can be gradual, by retrogressive erosion, in the case of an embankment dam, or abrupt,

by toppling or sliding of one or more blocks, in the case of a concrete dam. The risk is lower

for concrete structures than for embankment ones. The accidents of dams identified by the

International Commission on Large Dams (ICOLD) are classified by type of dam, by age and

by cause of the accident. The most frequent causes of failure are [CIG95]:

• an excessive level of water upstream of the dam, due to improper spillway design, debris

blockage of spillways, or settlement of the dam crest,

• foundation defects, including settlement and slope instability,

• the internal erosion caused by seepage,

9
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• structural failures of the materials used in dam construction, resulting of the degradation

of these materials.

The diagnosis of dams, with the risk analysis, is an essential task to ensure dam safety

[PBRV04]. Its objective is to prevent the degradation of dams on the long term. A diagnosis task

is firstly to detect deficiencies of the structure which may weaken it, such as cracks, irreversible

deformations or leaks for example. And once the abnormality has been detected, it is interested

in identifying the cause of this anomaly. In other words, it is interested in identifying the involved

component whose knowledge is essential to define the actions to implement to simply monitor,

to repair or to remove the dam. Diagnosis is made from many physical measurements or visual

observations taken at different time on the structure: movements, piezometry, pore pressure,

drainage flows or leaks, crack openings, etc. The various diagnosis approaches that have been

implemented by civil engineers, have not necessarily been formalized with the concepts and in

terms dedicated to system diagnosis as used in AI or AC. Nevertheless, there are approaches

based on physical or functional dam modeling, and others that are based on statistical analysis of

observed data or on expertise [PBR04, TBP09]. So it is possible to establish the same dichotomy

as that between the methods of system diagnosis from AI and AC research, depending on the

type of handled knowledge (Figure 2.1). The first category consists of methods based on the so

called internal knowledge about the behavior of the dam considered as a set of interconnected

components. In contrast, the second category consists of methods that exploit the knowledge

that is said external knowledge this time, about the effects (symptoms) on the system allowing

to establish correlations between faults and symptoms.

Figure 2.1: Classification of diagnostic methods based on the type of knowledge

The complexity of the diagnosis task and the need for performing it as soon as possible to

prevent the consequences of faults, have motivated the attempts to automate this task. The

methods developed in diagnosis tools vary according to the considered criteria: the used kind

of knowledge, the way of structuring this knowledge, the involved scientific community and

the application domain. The classification presented in Figure 2.1 represents only one of many

possibilities of classification, the one which is established according to the type of knowledge.

Note that there is a variety of terms widely used to identify a fault in the field of diagnosis.
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Then, we can find: default, failure, fault, malfunction, dysfunction, defect, anomaly, abnormal-

ity, etc. These terms correspond to very similar concepts but that are differentiated according to

the implicated community and to the context specific to the application problem. While a fault

is most often associated with an abnormal behavior of a physical component, a failure refers to

the inability of the studied system to provide a required function under the specified operating

conditions. For simplicity, we equivalently use all these terms to present the different diagnosis

approaches.

This chapter starts with section 2.3 where a brief overview of the diagnosis methods that only

use a model of faults (i.e. without using an explicit model of the system behavior). In section

2.4, we particularly focus on diagnosis based on analytical models of (normal or abnormal)

behavior of the system, models that are the main diagnosis tool in the three diagnosis scientific

communities: the FDI (as Fault Detection and Isolation) community that comes from the AC

community, the DX (from the acronym of the International Workshop on Principles of Diagnosis)

as a part of the AI community and the DES (Discrete Event System) community.

Whenever it is possible, the concepts used all along this document will be illustrated with

the same didactic example provided by [CPR00]. The aim of this choice is both to facilitate

the understanding of concepts with a unique example, before applying them on a real-world

system which is, by nature, much more complex, and to allow the comparison of the different

contributions proposed in this document. The following section (section 2.2) of the chapter

describes this example.

2.2 A Didactic Example

This section introduces a simple but representative example of the hydraulic system of Figure

2.2 as it has been proposed by Lucas Console, Claudia Picardi, and Marina Ribaudo in [CPR00].

This example will be used as a guideline to present the various diagnostic techniques that are

broached in this document.

Figure 2.2: An hydraulic system

The hydraulic system ”is formed by a pump P which delivers water to a tank TA via a pipe

PI ; another tank CO is used as a collector for water that may leak from the pipe. For the sake

of simplicity we assume that the pump is always on and supplied of water.

The pump P has three modes of behavior: ok (the pump produces a normal output flow),

leaking (it produces a low output flow) and blocked (no output flow). The pipe PI can be ok

(delivering to the tank the water it receives from the pump) or leaking (in this case we assume

that it delivers to the tank a low output when receiving a normal or low input, and no output

when receiving no input). The tanks TA and CO are always in mode ok, i.e., they simply receive
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water.

We assume that three sensors are available (see the eyes in Figure 2.2): flowp measures the

flow from the pump, which can be normal (nrmp), low (lowp), or zero (zrop); levelta measures

the level of the water in TA, which can be normal (nrmta), low (lowta), or zero (zrota); levelco

records the presence of water in CO, either present (preco) or absent (absco).”

2.3 Diagnosis based on faults and their effects

Thanks to his ability to learn, to manage imprecise information and to decide in presence of a

complex combination of information, the human expert demonstrates skills in fault detection

and definition of a correct diagnosis, without needing any model on the system. The main idea

of diagnosis based on a fault model is to build the diagnosis process by reproducing the hu-

man reasoning. Diagnosis based on faults is thus built from causal relationships between faults

(causes) and effects on the system (symptoms). These causal relationships are the qualitative

knowledge of the experts about the diagnosis process. Therefore, they are system-specific and

empirical. They can be explicit, acquired from experts, expressed as rules in the case of an

expert system, or represented by a fault tree. Otherwise, they are implicit, possibly automati-

cally learned by machine learning techniques, and diagnosis is made by classification or pattern

recognition. The diagnosis process only uses observations on the system to detect faults. The

principle of diagnosis approaches based on a fault model is shown in Figure 2.3).

Figure 2.3: Principles of diagnosis based on the relationship between causes and effects

2.3.1 Diagnosis based on the causal relationships between faults and effects

These diagnosis approaches are based on a model of associative knowledge of the faults and of

their effects. As they require the enumeration of all possible faults, they are closely linked to

the diagnosis process and they mostly suffer from a lack of evolutivity and re-usability.

For instance, expert systems were developed int the mid 1960s and are mainly used as tools

for decision support. They use rules that represent knowledge of the experts, specific to the

problem resolution, of the form: IF (P is true) AND (P → Q) THEN (Q is true). The first

expert systems used for fault diagnosis are described in [SW89, Pau86]. Diagnosis on expert

systems [Ang10] is made by deductive reasoning to infer new facts from certified facts and rules.
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This reasoning is simple and provides explanations easily understandable by the users. Expert

systems are poorly evolutive: any change in the problem or in the system undermines all the

rules. Moreover, as the rules depend on the considered problem, they cannot be reused for

another problem.

Failure Modes and Effects Analysis (FMEA) was developed in the 1950s to assure reliability

and safety of a product or a process. It is an inductive approach: the faults caused by an effect

observed on an entity of the system are determined from this effect. The method identifies the

opportunities for failure, the causes of those failures and the effects on system performance.

This aim is both to identify the points of failure and to classify failures by impact. Failures are

prioritized according to the severity of their consequences, their frequency, and the ease with

which they can be detected. FMEA has yet been applied on diagnosis of dams [PBRV04].

The fault tree [LY77, PL76, TP79], is a diagnosis method based on a tree structure of

the possible combination of events that result in the production of an undesirable event. The

undesirable event (the fault) constitutes the top of the tree, the immediate causes that produce

this event are introduced into the tree by using the logical operators and and or. And so on, the

tree is incrementally built until the basic events are added as leaves of the tree. The fault tree

is suited for top-down analysis, aimed at analyzing the effects of initiating faults on a system,

and it is not good for finding all possible faults. In contrast, FMEA is a bottom-up analysis

method aimed at analyzing the effects of faults of a single component on a subsystem.

2.3.2 Diagnosis by classification or pattern recognition

Some works have been conducted to reduce the dependence of the diagnosis task to the expertise

of a human operator. It is practically to acquire the diagnosis principles with no need for the

expert. These works proceed by supervised or not supervised machine learning. Such approaches

assume that the available knowledge on the system is limited to its past and present observation.

And the fault model useful for the diagnosis process is built by classification, from the collection

of data during system operating. These approaches are highly dependent on the volume of data

ad are often limited to fault detection.

The supervised machine learning methods such as neural networks [Bis94, NP90] allow to

discover a model of causal relations from a history of the observations where the symptoms have

previously been diagnosed and labeled by the corresponding causes. Then the model is used to

find the causes of dysfunction in new cases of operation. The causes are determined through

the model, by probabilistic or fuzzy classification. The major drawback of this type of method

lies with the learning time [Dub01].

When faults have not previously been diagnosed, it is still possible to make a categorization

of faults by means of statistical (unsupervised) classification. The only available knowledge

about the process is a set of observations and fault discrimination depends on a large volume

of observations. These statistical methods assume that the values provided by the sensors have

certain statistical characteristics on which thresholds can be calculated for example, from the

study of the evolution of the mean or the variance of a variable, the exceeding of a threshold

indicating the presence of an anomaly.

The automatic acquisition of correlation rules requires less expertise than developing an

expert system. By cons, without this expert knowledge, it is very difficult to assign a real ex-
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planation (a fault diagnosis) to an observed and recognized situation (symptoms). By using the

observations of the system rather than the structure and the behavior of the system, systems of

automatic acquisition of diagnosis models produce a weakly intuitive and explanatory diagnosis.

Therefore, in order to make the acquisition of diagnosis principles automatic without the inter-

vention of the expert, it becomes essential to rely on the knowledge of a lower level, these that

describes the system structure and behavior. And the words ’system model’ used to describe

these internal knowledge are opposed to ’fault model’ which represent the external knowledge

in terms of associations between faults and effects.

2.4 Model-based diagnosis

Model-based diagnosis (MBD) refers to methods for which diagnosis is built from a model of

the system (and not a model of faults) [MK92]. MBD was born in the 1980s with the work of

Raymond Reiter [Rei87] and Johan de Kleer [DKW87]. This kind of diagnosis is implemented

by an algorithm that generates diagnosis hypotheses using both the observations measured on

the real system and the ones measured on a model of this sytem that describes its normal or

abnormal behavior. The system is generally represented in terms of components, interconnected

by their inputs and outputs. Unlike diagnosis methods exclusively based on faults, MBD requires

no prior knowledge of faults, it is based on a comparison between the actually observed behavior

and the expected behavior of the system ([CD99], discrepancy detection problem in [DH92]).

The common principles of MBD are illustrated in Figure 2.4.

Figure 2.4: MBD principles

Detecting the presence of defects is the essential step, prior to the proper diagnosis of these

defects, that is to say prior to their localization and to the identification of their causes. Defect

detection determines the normality or abnormality of the system functioning, by comparing

observations of the actual behavior of the system, obtained via sensors, with predictions of

its expected behavior, calculated with the model of good or bad behavior. When the model

only describes the normal behavior of the system, any deviation or inconsistency between the

observed behavior and the expected behavior is a manifestation of a failure. Otherwise, the

detection is done by recognizing the observations as faults that are recorded in the model of

bad behavior. The complementary phase of detection involves refining the location of the faults

until the subsystems responsible of the faults are found.

Describing the system only by its normal behavior, by dispensing with any description of
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its failure modes, is a part of a rather favorable approach to the design of the system, together

with its monitoring process. The difficulty is to correctly and fully describe the functioning of

the system. The description of the abnormal behavior of the system depends, in turn, on the

ability to predict all the faults of the system, and the difficulty lies in the completeness of the

description. An error in the model of normal or abnormal behavior inevitably results in either

the undesired detection of faults that are not, or in the inability to detect certain faults. The

validity of the model, that is to say its completeness and the absence of errors, is among the

first assumptions of MBD.

A multitude of MBD methods have been developed, which have resulted in numerous com-

parative studies [CDD+00b, CDL+04, Nyb01]. These methods can be differentiated according

to the type of models they use:

• Methods of the DX approach from AI research, based on qualitative models expressed as

logical propositions;

• Methods for continuous systems of the FDI approach from AC research, using quantitative

models, often expressed in terms of differential algebraic equations;

• Methods for DES, which also employ qualitative models, based on purely discrete represen-

tation of the system operation, by exploiting the discrete nature of the variables (e.g. open

and closed values of a valve) or by abstracting continuous dynamics in discrete, qualitative

and finite states.

2.4.1 Logical approach of diagnosis

Diagnosis approach in the logical approach defined by the DX community is to determine,

given a description of a system and behavioral observations of this system conflicting with the

expected behavior, the system components which restore consistency with the observed behavior

when they are considered faulty [Rei87]. In logical theories as they were introduced by Reiter

[Rei87] and De Kleer [DKW87], the behavior of the system components and the observations

are described in first-order logic. Many studies have subsequently improved these theories by

incorporating more expressive languages [DKMR92]. In this section, the logical framework of

MBD as originally defined by Raymond Reiter is recalled without addressing the variants of

later approaches.

2.4.1.1 Diagnosis problem

The system model is designed independently of diagnosis purposes. It expresses how the system

functions when its normally behaves. Since the diagnosis goal is to find the part (component) of

the system that is responsible for a given abnormal behavior, the model must be structured into

components, so that the responsibility for some of the behavior of the system can be assigned

to each component.

Definition 2.1 The description of the system is defined by a triplet SD = ( COMPTY PES ,

CONNS , TY PEBEHAV IORS ) where, if COMPS means all names of system components:

• COMPTY PES = {typei(c)/c ∈ COMPS} is the set of system components with their

types, where the predicate typei(c) means ”component c is of type i”;
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• CONNS = {ini(c) = outj(d)/c ∈ COMPS, d ∈ COMPS} is the set of relations between

the inputs and the outputs of the components, where the predicate ini(c) = outj(d) means

”an input of component c is an output of component d” et ini (respectively outj) is the

function which associates one of the inputs of a component (respectively one of its outputs)

to the component;

• TY PEBEHAV IORS = {typei(x) ∧ ok(x) → Φ(x)/x ∈ COMPS} is the set of normal

behaviors of the component types, where typei(x) ∧ ok(x) → Φ(x) means ”for any compo-

nent x, if x is of typei and is assumed to normaly behave, then it behaves as described by

the first order logical formula Φ(x)”.

Predicates ok(x) et ¬ok(x) imply that component x normaly behaves and it abnormaly

behaves, respectively.

Example 2.1 Let us consider the hydraulic system introduced in section 2.2. We can distin-

guish four types of components (COMPTY PES1) making up this system and four components

(COMPS1, one for each type) connected together according to CONNS1:

COMPS1 = {c1, c2, c3, c4}

COMPTY PES1 = {pump(c1), pipe(c2), tankTA(c3), tankCO(c4)}

CONNS1 = {out1(c1) = in1(c2), out1(c2) = in1(c3), out2(c2) = in1(c4)}
The normal behavior of each component is shown by :

TY PEBEHAV IORS1 = {

pump(x) ∧ ok(x) → out1(x) = nrmp ,

pipe(x) ∧ ok(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) = zrop)

∧out1(x) = in1(x) ∧ out2(x) = zrop ,

tankTA(x) ∧ ok(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) = zrop)

∧(in1(x) = nrmp → out1(x) = nrmta)

∧(in1(x) = lowp → out1(x) = lowta)

∧(in1(x) = zrop → out1(x) = zrota) ,

tankCO(x) ∧ ok(x) → (in1(x) = lowp ∨ in1(x) = zrop)

∧(in1(x) = lowp → out1(x) = preco)

∧(in1(x) = zrop → out1(x) = absco)

}

MS1 = (COMPTY PES1, CONNS1, TY PEBEHAV IORS1) provides the complete model

of the hydraulic system, ready for diagnosis process.

A diagnosis is necessary as soon as there is a deviation between the observed behavior of the

system and its expected behavior as described by the model [DH92]. Since system behavior is

described by a set of logical formulas, this difference is revealed when the logical formulas rep-

resenting observations on the system are inconsistent with the assumption that all components

are normally functioning.

Definition 2.2 A diagnosis problem is defined by a triplet (SD,COMPS,OBS) where SD is

a description of the system, COMPS is a set of component names designating the components

of the system, and OBS is a set of first order logical formulas expressing observations on the

system, such as the set of formulas SD ∪ {ok(c)/c ∈ COMPS} ∪OBS is inconsistent.
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Example 2.2 Let us consider the triplet (SD1, COMPS1, OBS1) with SD1 et COMPS1 corre-

sponding to the sets obtained for the system hydraulic in Example 2.1, and OBS1 = {out1(c1) =

nrmp, out1(c3) = lowta, out1(c4) = preco}. With the hypthesis that all the components are correct

and given the observation on the value out1(c1) (that is to say flowp), it is possible to obtain the

expected values of the system, out1(c3) (actually levelta) et out1(c4) (actually levelco), by simple

derivation :

• out1(c1) = nrmp , out1(c1) = in1(c2)

⊢ in1(c2) = nrmp

• pipe(c2) ∧ ok(c2), pipe(x) ∧ ok(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) = zrop) ∧

out1(x) = in1(x) ∧ out2(x) = zrop

⊢ (in1(c2) = nrmp∨ in1(c2) = lowp∨ in1(c2) = zrop)∧out1(c2) = in1(c2)∧out2(c2) = zrop

• in1(c2) = nrmp, (in1(c2) = nrmp ∨ in1(c2) = lowp ∨ in1(c2) = zrop)∧ out1(c2) = in1(c2)∧

out2(c2) = zrop

⊢ out1(c2) = nrmp ∧ out2(c2) = zrop

• out1(c2) = in1(c3), out1(c2) = nrmp

⊢ in1(c3) = nrmp

• tankTA(c3) ∧ ok(c3), tankTA(x) ∧ ok(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) =

zrop) ∧ (in1(x) = nrmp → out1(x) = nrmta) ∧ (in1(x) = lowp → out1(x) = lowta) ∧

(in1(x) = zrop → out1(x) = zrota)

⊢ (in1(c3) = nrmp ∨ in1(c3) = lowp ∨ in1(c3) = zrop) ∧ (in1(c3) = nrmp → out1(c3) =

nrmta) ∧ (in1(c3) = lowp → out1(c3) = lowta) ∧ (in1(c3) = zrop → out1(c3) = zrota)

• in1(c3) = nrmp, (in1(c3) = nrmp ∨ in1(c3) = lowp ∨ in1(c3) = zrop) ∧ (in1(c3) = nrmp →

out1(c3) = nrmta) ∧ (in1(c3) = lowp → out1(c3) = lowta) ∧ (in1(c3) = zrop → out1(c3) =

zrota)

⊢ out1(c3) = nrmta

• out2(c2) = in1(c4), out2(c2) = zrop

⊢ in1(c4) = zrop

• tankCO(c4) ∧ ok(c4), tankCO(x) ∧ ok(x) → (in1(x) = lowp ∨ in1(x) = zrop) ∧ (in1(x) =

lowp → out1(x) = preco) ∧ (in1(x) = zrop → out1(x) = absco)

⊢ (in1(c4) = lowp ∨ in1(c4) = zrop) ∧ (in1(c4) = lowp → out1(c4) = preco) ∧ (in1(c4) =

zrop → out1(c4) = absco)

• in1(c4) = zrop, (in1(c4) = lowp ∨ in1(c4) = zrop) ∧ (in1(c4) = lowp → out1(c4) = preco) ∧

(in1(c4) = zrop → out1(c4) = absco)

⊢ out1(c4) = absco
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Thus, SD1 ∪ {ok(c)/c ∈ COMPS1} ∪ {out1(c1) = nrmp} ⊢ out1(c3) = nrmta

SD1 ∪ {ok(c)/c ∈ COMPS1} ∪ {out1(c1) = nrmp} ⊢ out1(c4) = absco
The value of the output of c3, as predicted by the model, is nrmta, whereas its observed

value is given in OBS1 and is lowta. And the value of the output of c4, predicted by the model,

is absco , whereas its observed value, given in OBS1, is preco. Therefore, SD1 ∪ {ok(c)/c ∈

COMPS1} ∪OBS1 is inconsistent and (SD1, COMPS1, OBS1) is a diagnosis problem.

The diagnosis is based on the notion of conflict [Rei87, DKW87] between the observations of

the system and the predictions made by the model. A minimal set of components that restores

the consistency with observation once you stop to consider them correct, is precisely called a

diagnosis based on consistency. This is the minimal set of components such that, if we replace

ok(c) by ¬ok(c) for each component c in the diagnosis problem, the set of formulas describing

the system and the observations, becomes consistent.

Definition 2.3 A set of component names ∆ ⊆ COMPS is a diagnosis for the diagnosis

problem (SD,COMPS,OBS), if ∆ is a minimal set such that SD ∪ {ok(c)/c ∈ COMPS −

∆} ∪ {¬ok(c)/c ∈ ∆} ∪OBS is consistent.

Example 2.3 We want to make a diagnosis for the diagnosis problem of Example 2.2. As-

suming that the component c3 is defective, in other words deleting the hypothesis ok for this

component, amounts somehow to remove the description of its behavior of the desciption of the

system. Its output is then unknown and can take any value. In particular, the model no longer

implies that out1(c3) = nrmta and the consistency with the observation out1(c3) = lowta is re-

stored. In the same way, if we suppose that component c4 is faulty, the consistency is restored

with the observation out1(c4) = preco. Therefore, {c3, c4} is a diagnosis for our problem.

c2 being faulty, its outputs become unknown. Because they are used to determine the outputs

of c3 and c4, the latter are also unknown. The outputs of c3 and c4 are indeterminate and they

accept any values. The consistency with OBS1 est recovered and {c2} is a diagnosis for our

problem too.

Finally, the set of the diagnoses for this problem is : {{c1}, {c2}, {c3, c4}}.

The diagnosis algorithm is the way to calculate the diagnoses of a problem diagnosis, which

meet the Definition 2.3 stated above.

2.4.1.2 Diagnosis algorithm

A diagnosis in the logical approach of diagnosis is obtained by using a model of the system

where only the normal behavior of the components is detailed. It is defined in Definition 2.3, as

a minimal set of components such as a superset of this diagnosis is not necessarily a diagnosis.

This definition of diagnosis cannot be directly usable at the algorithmic level. It is interesting

to take into account the following property of a diagnosis to focus the diagnosis algorithm on

finding maximal subsets of non-defective components, rather than looking for minimal subsets

of defective components.

Theorem 2.1 A set ∆ ⊆ COMPS is a diagnosis for the diagnosis problem (SD, COMPS,

OBS), iff ∆ is a minimal set (in other words COMPS −∆ is a maximal set) such that SD ∪

{ok(c)/c ∈ COMPS −∆} ∪OBS is consistent.
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The diagnosis is then computed in breadth-first traversing the lattice formed by the set

of subsets of COMPS ordered by inclusion. This lattice is the search space of the diagnosis

algorithm [DKW87].

Example 2.4 The lattice for the set COMPS1 of the diagnosis problem of Example 2.2 is

graphically represented by the Hasse diagram in Figure 2.5.

Figure 2.5: Search space of subsets of components implicated in the diagnosis of the hydraulic system

And the diagnosis algorithm is as follows.

Algorithm 2.1 for each subset X of the breadth-first, left to right traversal of the lattice

starting from the root (that is to say from the empty subset ∅)

if SD ∪ {ok(c)/c ∈ COMPS −X} ∪OBS is consistent

then

X is a diagnosis

eliminate its descendants (as supersets of X)

else (that is to say if COMPS −X is a conflict as defined by Reiter [Rei87])

eliminate the nodes Y such that Y ∩ COMPS −X = ∅ (Y cannot be a diagnosis)

endif

endfor

This algorithm has been optimized to avoid browsing all the nodes of the lattice, by using

the concept of conflict that defines a conflict as a set of components which cannot all normally

behave, and by using the property of a diagnosis, which says that the intersection of a diagnosis

with any conflict is not empty.

Example 2.5 Let us apply this algorithm to the diagnosis problem of Example 2.2.

• For X = ∅, COMPS1 −X = {c1, c2, c3, c4} is a conflict, therefore ∅ is not a diagnosis.

• For X = {c1}, since COMPS1 − X = {c2, c3, c4} is not a conflict, {c1} is a diagnosis

and its descendants in the lattice will not be browsed, the concerned descendants are :

{c1, c2}, {c1, c3}, {c1, c4}, {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}, {c1, c2, c3, c4}.
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• For X = {c2}, COMPS1 − X = {c1, c3, c4} is not a conflict, c2 is a diagnostic and the

remaining descendants in the lattice are removed : {c2, c4}, {c2, c3, c4}.

• For X = {c3}, COMPS1 − X = {c1, c2, c4} is a conflict, the following node is deleted :

{c4}.

• For X = {c3, c4}, since COMPS1 −X = {c1, c2} is not a conflict, {c3, c4} is a diagnosis.

We get the three diagnoses we set out in Example 3 : {c1}, {c2}, {c3, c4}.

2.4.1.3 Diagnosis with dysfunctioning modes

Although the original idea of the logical approach of diagnosis is to pass knowledge about defects

and their effects, such a knowledge, when available, is essential to identify the defects after having

localized them. Extensions of the logical theory of diagnosis [CT90, CT91, SD89, DKW89] were

then proposed so that the system model describes different types of malfunction, in addition

to the normal behavior. Several behavioral modes can be now defined for each component.

Indeed, instead of having only two behavioral modes per component (normal and abnormal)

such that only the normal one is modeled, several faulty modes are added to the normal mode

[?]. For this, the notion of behavior of a component has to be changed. For each component

type t, we introduce a predicate associated with each behavior mode : ok for normal behavior

of the component type t, and as many predicates as defective modes of the type t. An unknown

mode may be added to account the impossibility of describing all possible faults, devoid of any

behavior model, and supposed to bring together all unlisted faulty behaviors.

Example 2.6 If we still look at the hydraulic system, the pump has now three listed operation

modes, ok, leaking and blocked:

pump(x) ∧ ok(x) → out1(x) = nrmp

pump(x) ∧ leaking(x) → out1(x) = lowp

pump(x) ∧ locked(x) → out1(x) = zrop

And the behavior of any component type is provided by :
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TY PEBEHAV IORS2 = {

pump(x) ∧ ok(x) → out1(x) = nrmp,

pump(x) ∧ leaking(x) → out1(x) = nrmp,

pump(x) ∧ blocked(x) → out1(x) = zrop,

pipe(x) ∧ ok(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) = zrop)

∧out1(x) = in1(x) ∧ out2(x) = zrop,

pipe(x) ∧ leaking(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) = zrop)

∧((in1(x) = nrmp ∨ in1(x) = lowp) →

out1(x) = lowp ∧ out2(x) = zrop)

∧(in1(x) = zrop → out1(x) = zrop ∧ out2(x) = zrop),

tankTA(x) ∧ ok(x) → (in1(x) = nrmp ∨ in1(x) = lowp ∨ in1(x) = zrop)

∧(in1(x) = nrmp → out1(x) = nrmta)

∧(in1(x) = lowp → out1(x) = lowta)

∧(in1(x) = zrop → out1(x) = zrota),

tankCO(x) ∧ ok(x) → (in1(x) = lowp ∨ in1(x) = zrop)

∧(in1(x) = lowp → out1(x) = preco)

∧(in1(x) = zrop → out1(x) = absco)

}

Diagnoses are no longer sets of components that are supposed to be faulty to restore the

consistency [DKMR92]. They have become assignations of behavior modes to components. And

a diagnosis consists in finding a set of causes (components with a particular operation mode)

which implies the symptom defined by the observations. However, some observations, those

on the system inputs, cannot be deduced from the model. They must therefore be added to

the model to enable deductions on outputs, they define the execution context of the model.

As a result, they are separated from observations that relate to outputs and actually represent

symptoms.

Example 2.7 The diagnosis problem of Example 2.6 is converted to abductive diagnosis by

setting the following set of observations :

• the context (observations on inputs) : CNTXT = {out1(c1) = nrmp}

• the sysmptoms (observations on outputs) : SMPTM = {out1(c3) = lowta, out1(c4) =

preco}

And the set of abductive diagnoses for this problem is : {{leaking(c2)}}

With respect to the DX approach, we have seen that it relies upon a logically based the-

ory for diagnosis of static systems. From a logical point of view, fault detection is performed

through a consistency check between actual system behavior and observations, organized around

the conflict idea [Rei87, DKW87]. In this approach, fault isolation is automatically derived from

the phase of conflict detection. As the model of the system (the so called system descrip-

tion) is based on components, the aim of diagnosis is to find the faulty components of the

system. However, there are two ways to complete fault isolation within the DX community :

a consistency-based technique or an abduction-based one. While consistency-based diagnosis
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tries to reject the behavior modes of the components which are not consistent with current

observations, abduction-based diagnosis tries to explain current observations by assignating a

consistent behavioral mode to the components.

We will see that, although the basic principles of diagnosis are the same, the FDI community

has developed its own concepts, tools and techniques, guided by a different context of modeling,

quantitative rather than qualitative.

2.4.2 Diagnosis approach by analytical redundancy

The principle of redundancy in the FDI diagnosis approach [Dub01] is to make available several

means to acquire a same information to diagnose a fault. The analytical redundancy, as opposed

to material redundancy (of sensors for example), provides the redundancy to detect faults from

the available observations through the system model. Diagnosis, in the approach proposed by the

FDI community, is thus to generate indicators of faults, called residues, measuring deviations

from the normal behavior of the system determined by the system model. A residue is a

numerical value that expresses incompatibility or inconsistency between measurements made on

the observed variables of the system, and calculations on the system model. The main quality

of a residue is that it is sensitive of faults and insensitive to disturbances (measurement noise

for example).

Diagnosis approaches based on residues are primarily dedicated to the detection phase which

comprises generating the most telling symptoms of the current state of the system. The analysis

of the obtained residues allows at least for determining whether or not there is a fault (detection),

on which component of the system the default has occurred (localization), and possibly what

is the nature of the fault (identification). Most of the time, residue analysis is performed

using a threshold, fixed by a learning technique, beyond witch the residue is declared abnormal.

Identifying the thresholds can be challenging : a too large value will prevent the detection of some

faults, while a too small value will cause the inadvertent detection of nonexistent faults. There

are alternative methods to direct comparison of a residue (or of the mean of the residues) to a

threshold, dedicated to the evaluation of residues : parity space methods [CW84, GS90, Ger97],

observers methods [Bea71, Jon73, AF97, Fra96], parameter estimation methods , etc. However,

most methods of detection boil ultimately down to thresholding. In some cases, the assessment

of the presence of a fault is not boolean, and consists in assigning a level of belief to dysfunction

hypotheses, diagnosis must then uses techniques from fuzzy logic [Zad65].

2.4.2.1 Diagnosis problem

Most of the work of the FDI community does not explicitly use the concept of component to

describe the system. The model describes the system as a whole using variables and outlines

existing constraints between these variables. The formalization of the constraints on the variables

depends on the type of knowledge : analytical knowledge, production rules, numeric tables,

etc. It is typically provided in the form of differential algebraic equations. Among the variables

describing the system, it is usual to distinguish between (observable) known variables, consisting

of measured variables and reference variables, and (unobservable) unknown variables.
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Definition 2.4 The system model is defined by a pair SM = (BM,OM) made up by a behav-

ioral model (BM) representing constraints on variables and an observation model (OM) which

lists the observable variables of the system.

Definition 2.5 A diagnosis problem is defined by the model of the system SM , a set of observa-

tions OBS assigning values to observed variables and a set of faults F where a fault corresponds

to a faulty component or a set of faulty components [CDD+00a].

We will ensure that the observed behavior of the system is normal or abnormal, by comparing

it with that obtained using the system model. The behavior is considered abnormal when the

observations and the data from the model are inconsistent. For a given diagnosis problem, the

consistency of observations with respect to the model is established by checking that the observed

behavior satisfies specific constraints, built from the model and called analytical redundancy

relations. An analytical redundancy relation [FD00, Ger98, IB97, Pat97] is a constraint that

contains only observed variables, so it can always be evaluated from the set of observations

OBS. It is obtained from the model by removing the unknown variables. This is a function

of known variables that satisfies the behavior of the model when its result (residue) exceeds a

certain tolerance threshold ([BSL01, KN02, EMG98]). Analytical redundancy relations must

be calculated with the observed values, and achieving a residue which exceeds a threshold is

expected to clearly set out the presence of a defect. The notions of residue and threshold are

provided for reducing the value ranges of the variables to be considered to boolean values (true

when the residue exceeds the threshold, false otherwise), rather than to all possible real values.

Once the defects found, the problem is to isolate the defects, from signatures linking residues

to faults, listed and validated by experts. Given the system model, the expected trace of a

fault on the various analytical redundancy relations is designated as the signature of the fault

([PC91, Ger91, Fra96, CDD+00a]). The signatures of a set of faults are combined in the table

of signatures. This matrix correlating analytical redundancy relations with faults, is the basis

for the isolation of defects in the FDI approach. It is a model of bad behaviors.

For example, the boolean matrix in Figure 2.6 identifies four faults from three residues. It

states, among other things, that the residue r3 is affected by the fault f2 and is not affected by

the other faults. In this matrix, the signature of the fault f1 is given by the vector (1, 0, 0).

Figure 2.6: A matrix of fault signatures

The analytical redundancy relations are instantiated with the observed values. Then, the

associated residues are calculated, providing an observed signature that can be compared to the

theoretical signatures of the matrix. This comparison is a decision problem. Interpretation of
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the columns of the signature table is provided to generate a set of diagnoses, in terms of the

faults represented in this table.

For example, with respect to the signature matrix of Figure 2.6, the signature of the obser-

vation defined by the vector (1, 0, 0) states that the residue r1 is abnormal, indicating a fault,

and the residues r2 and r3 correspond to ”normal” values. It coincides with the (theoretical)

signatures of the faults f1 and f4. This implies two possible diagnoses : {f1} and {f4}.

Definition 2.6 All diagnoses are given by faults whose signature is consistent with the observed

signature.

The diagnosis approach by analytical redundancy of the FDI community considers fault

diagnosis as two separate tasks : fault detection and fault isolation. It is based on generating

and evaluating a set of analytical redundancy relations derived from the system model and the

available measurements (observations) coming from sensors. Fault detection involves computing

the results (residues) of the relations by using the observed values, and checking if these residues

exceed or not the associated thresholds. Finally, the residue evaluation defines the observed

signature of the fault, so fault isolation consists in looking for the theoretical signature in the

fault signature matrix that matches with the observed signature. And fault isolation requires

considering all possible combinations of defects to capture multiple faults.

These diagnosis methods are used whenever the system can be represented by a mathematical

model in the form of differential equations. There are other FDI methods, applicable when the

system can be described as a DES, in other words when the system can be modeled by a

finite state machine. For such systems, an observation is seen as a sequence of events and the

diagnostic problem consists in comparing the observed event sequence with all the possible event

sequences that can be generated by the model. The MBD approach for DES is explored in the

next section.

2.4.3 Diagnosis of discrete event system

The diagnosis of DES is appeared in the 1990s with the work of Sampath [SSL+95, SSL+96].

The methods that emerge from this consist to infer the occurrences of fault events considered

to be not observable, using the observable events generated by the system.

A DES is a dynamic system whose state can be modeled by a finite set of variables and whose

evolution is discrete : time and system states continuously evolve, but the state changes are only

considered as special moments, upon the occurrence of certain events. The state space of the

DES model is discrete. The behavior of a DES can be modeled by means of transition systems

(finite state machine, timed automata, Petri nets, timed Petri nets) or by means of process

algebras as PEPA for example [CPR02, CPR00]. We consider in this section the diagnosis

approaches for DES based on finite state machines [CL99].

In the context of DES diagnosis, two types of events are distinguished : the observable events,

those whose occurrence can be observed, and the unobservable events that contain, among other,

the faults. The DES model describes the normal and abnormal behavior of the system. The

defects to be detected and diagnosed are known a priori and are represented by unobservable

events. The goal of diagnosis is to detect and if possible to identify faults from the occurrence
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of observable events. The program that performs the diagnosis, called diagnoser, operates as a

deterministic finite state machine that can be automatically built from the DES.

2.4.3.1 Diagnosis problem

Definition 2.7 A model of DES is a finite state machine (X,Σ, T, x0) where X is a finite set

of states, Σ is a finite set of events, T ⊆ (XxΣxX) is a finite set of transitions and x0 is the

initial state of the system.

When there is no constraint on the final state of the system, we consider that all states are

final. Only paths of the finite state machine that depart from the initial state and terminate in

a final state represent a possible behavior of the system. The event sequence on a path is called

a trace. The observable trace of a trace is obtained by removing unobservable events from the

trace. Thus, the finite state machine that models the DES generates all observable traces of the

system, nomal ones (whitout fault event) as defective ones (containing fault events).

The diagnosis of DES is to study possible changes of a partially observable system to deter-

mine any malfunction by identifying the unobservable events that explain the observations.

Definition 2.8 A diagnostic problem is defined by the system model (the finite state machine),

the set of the observable events and observations in the form of a sequence of observed events.

Definition 2.9 A diagnosis is the set of possible faults whose occurrence is consistent with the

observations, that is to say the set of faults belonging to a trace of the finite state machine whose

the observable trace corresponds to the observation.

The immediate diagnosis algorithm is based on searching all possible paths on the model,

consistent with the provided observations, in order to find relatively simple information such as

the occurrence of fault events or the current state of the system. The complexity of this search

can be exponential as the number of paths in a finite state machine is often an exponential

function of the size of the finite state machine.

2.4.3.2 Diagnosis algorithm

The diagnosis algorithm can be based on the construction of another finite state machine, called

diagnoser, defined on the alphabet of the observable events, allowing to estimate the state of

the system and to detect and to identfy the produced defects. The diagnoser, recognizing the

sequence of observed events, yields an estimate of the current state of the system and of all

occurring faults. Each state of the diagnoser is labeled by a set of pairs of the form (a state of

the (model of) system, a partition of the set of faults) where the partition provides all faults

found in the path reaching the state. For example, ”3{f1}, 5{}, 5{f1}, 8{f1, f2}” is a suitable

label for a diagnoser state. Three classes of states can be distinguished : the healthy states

in which it is garanteed that no fault has occurred and for which all partitions are empty, the

faulty states in which it is garanteed that a fault as occurred and for which no partition is

empty, the ambiguous states in which some partitions are empty and others are not. The state

”3{f1}, 5{}, 5{f1}, 8{f1, f2}” of a diagnoser is an example of ambiguous state.

To explain how a dignoser operates, let us consider the example of Figure 2.7. This example

provides, in the left part of the figure, the finite state machine modeling a system, where the
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events f1 and f2 represent faults, o1 and o2 are the only observable events and e1 is an un-

observable event. Starting from the initial state of the system model, since e1 and f1 are not

observable, it is impossible to know whether the system is in state 2 in the case of a normal

behavior, or in the state 4 indicating the occurrence of a fault f1. This situation is shown on the

diagnoser, in the right part of the figure, by the initial state labeled ”2{}, 4{f1}”. From the oc-

currence of the event o1, the system model indicates that the system can be in state 1 indicating

a normal behavior, or in state 4 indicating the occurrence of a fault f1. This situation is shown

on the diagnoser by the state, labeled ”1{}, 4{f1}”, reached from the initial state ”2{}, 4{f1}”

on the occurrence of the observable event o1. This state ”1{}, 4{f1}” of the diagnoser cannot

help to isolate the fault f1 or to ensure the good behavior of the system. Only the occurrence

of the event o2 results in isolating the defect f2 (reaching the faulty state ”3{f2}”).

The diagnoser, built from the finite state machine of the system, can recognize sequences of

observations, necessarily formed of the only observable events o1 and o2. Thus, the sequence

of observations (o1, o2, o2) is recognized by the diagnoser and explained by the occurrence of

the fault f2. For the observation sequence (o1, o1), it is possible either that the behavior of the

system is not faulty, or that f1 has occurred.

Figure 2.7: A diagnoser obtained from a finite state machine

The diagnoser is deterministic by construction. The algorithm for building the diagnoser

from the system model is based on the list of the states reachable from a state by occurrence of

an observable event and on fault propagation.

Algorithm 2.2 Step 1

Create the initial state X corresponding to the states that are directly

reachable from the initial state of the system model, whithout occurrence

of observable events.

Step 2

For each observable event o, build a state Y of the diagnoser containing

all the states reachable by o from X, by propagating failures.

Step 3

Consider instead of X, each newly created state Y, and return to step 2

until convergence.

Example 2.8 Let us take again the example of the hydraulic system. The model of the system is

given in the form of a finite state machine in the left part of Figure 2.8. This model incorporates

normal and abnormal behaviors of the pump and the pipe. Il also expresses fault events using the
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unobservable events f1, f2 and f3 representing a leak of the pump, a blockage of the pump and a

leak of the pipe, respectively. Any indication of the three sensors is an observation. The normal

behavior of the system is described by the initial state in which the system remains as long as

the measures of the sensors correspond to the observation o1. From this state, it is possible to

model the occurrence of fauls lby the unobservable events f1, f2 and f3. The diagnoser built from

this model for diagnosing the hydraulic system is provided in the right part of Figure 2.8. Using

this diagnoser, the observations (o1, o1, o1, o3) can be explained by the occurrence of the fault f2,

the observations (o1, o1, o1, o4, o6) can be explained by the ocurrence of the faults f2 and f3, the

observation (o4) is explained by the occurrence of the fault f3 at least.

Figure 2.8: A diagnoser for the hydraulic system

The principle of MBD of DES can be summarized as follows. In a first step, a model of

normal and abnormal behavior of the DES is constructed in the form of a finite state machine,

including faults as events. Intuitively, a fault, associated with the occurrence of an unobservable

event, is followed by a finite sequence of observable events that does not occur in the absence

of the fault. From this model, the diagnosis tool, called diagnoser, is built, implementing a

deterministic finite state machine. The diagnoser is used during system functioning. From a

sequence of observable events generated by the system, it provides an estimate of the system

state and of the faults affecting its behavior. This approach assumes that the observations are

totally ordered. The difficulty of the task lies mainly in the fact that the system is partially

observable: in the model of Figure 7, the sequences (o1, f1, o1) and (o1, e1, o1) correspond to the

same observable trace (o1, o1).

The diagnoser approach is based on prior computation of the set of possible behavior paths.

This approach is limited by the size of the diagnoser. When the number of states of the diagnoser

is large, it is expensive in memory requirements or execution time. Although decentralized or

distributed solutions have been developed to overcome this difficulty [PCR02, GL03, LDM09],

another approach [Tri02, GCL05] consists in calculating only the paths compatible with obser-
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vations while the system is functioning. It is to determine if there are paths on the system

model, normal or faulty, that are compatible with the observations.

2.4.4 Temporal MBD

A dynamic system is one that evolves over time, and so that its future only depends on phe-

nomena of the past and the present. In other words, its state at a time depends on its past

states, it has a memory of its past states [CDPTM13]. In addition, its behavior is deterministic

: one single future state is possible at any time. This makes possible to predict (calculate)

its behavior over time. It is usual to distinguish between DES whose states change on the

occurrence of events, and continuous dynamic systems whose states continuously change over

time, usually modeled with differential equations or represented by discretizing the time and the

system states.

The MBD methods presented in the previous sections say nothing explicit about time rep-

resentation and how the diagnosis process can take into account the temporal dimension of

dynamic systems. In particular, [Str91] and [DK03] have shown that the logical theory of di-

agnosis proposed by Reiter [Rei87] is hard to apply for dynamic systems. Thus, some of the

temporal MBD approaches are temporal extensions of consistency-based atemporal diagnosis or

of the abductive atemporal diagnosis [BCTTD98]. When observations are not dated or are not

associated with any temporal information, only the precedence of the observations may be taken

into account. In the system model, time is considered qualitative through the occurrence order

of the observations. And the diagnosis algorithm considers the time in the same way, that is to

say, from a qualitative point of view. For example, a DES diagnoser (section 2.4.3.2) built from

a model that only considers the occurrence order of events, attempts to recognize a sequence of

observable events that may correspond to a fault. However, with the model of Figure 2.9 that

contains the observable events o1 and o2, the unobservable faulty event f1, and the unobservable

normal event e1, the behaviors (o1, f1, o2) and (o1, e1, o2) correspond to the same observable

trace (o1, o2) and the faulty behavior (the one including f1) will not be able to be distinguished

from the normal behavior.

Figure 2.9: A finite state machine modeling a DES

Although some studies, mentioned in [SSD97], have shown that, in some cases, it is possible

to make a diagnosis of dynamic systems ignoring the temporal problems, exploiting the temporal

aspect of the dynamic system can increase the discriminatory capacities of the diagnosis process.

Occurrence dates of the observations and temporal constraints between observations may be

essential to discriminate defects and thus to achieve the diagnosis task. In this case, time must

be explicitly taken into account in a quantitative manner. It involves adding a time dimension
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to the system model and using appropriate algorithms, depending on the chosen representation

of time. Taking the temporal dimension into account necessarily makes diagnosis significantly

more complex. At the same time, there is no common general principles that can be found within

the MBD methods that incorporate an explicit time management [BCTTD98, CDPTM13].

In the particular case of DES, the temporal aspect may be introduced into the model to

represent explicitly and quantitatively the temporal relationships linking occurrences of events.

For this, the diagnosis methods for DES rely on temporized models based on transition systems

: timed automata [AD94], time or timed Petri nets [Mer74, Ram74], chronicles [Dou94], etc.

And observations are commonly assumed to be a collection of timed observable events.

Timed automata, introduced by Alur and Dill in the 1990s [AD94], extend classical automata

with a set of clocks, that are represented by real-valued variables and that increase synchronously

with time, and with constraints associated with every transition, specifying when (i.e. for which

values of the clocks) the transition can be performed. With these clocks, it becomes possible

to express constraints between two transitions. For example, the timed automaton in Figure

2.10 models two kinds of behaviors of a DES. In faulty behaviors, o1 is followed by o2 within a

delay greater to 3 time units, while in normal behaviors, the delay between the occurrences of o1

and o2 must be less than or equal to 3 time units. Thus, a diagnoser observing the sequence of

events (o1, o2) and measuring their inter-arrival delay can decide whether a fault occurred or not.

[Tri02] proposes an extension of the diagnosis process for DES using a timed automaton to model

the system distinguishing between normal and abnormal states, such as the diagnosis algorithm

is able from this timed automaton, to estimate the system state following an occurrence of an

observable event and to trigger an alarm when a fault is detected. [DYHAA06] proposes a

diagnosis approach based on a diagnoser previously built from a timed automaton.

Figure 2.10: A timed automaton with one clock modeling a DES

In classical Petri nets, time is represented by the ordered sequence of events as transitions

firing. Classical Petri nets have been extended to take time into account explicitly. Time is

considered either as a delay (time Petri nets) or as intervals of dates (timed Petri nets). In both

cases, time annotation can be attached to places or to transitions. In the same way as diagnosis

based on timed automata, the diagnosis algorithm not only infers causalities between observed

events, but also calculates the possible dates of occurrence of each observed event. The diagnosis

process is based on the unfolding technique of Petri net.

A chronicle defines a partially ordered set of events constrained by temporal relationships. A

similar formalism is those of causal temporal signature defined in [TCG90]. Chronicles [Dou94]

are patterns of sequences of timed events, representing a possible abnormal situation, to be
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recognized by the diagnosis algorithm as the system is functioning. Here, the issue is one of

incremental diagnosis by temporal decomposition [GCL05]. The objective is to reason effec-

tively with incomplete knowledge about the system evolution. The method relies on calculating

temporal windows of the observations that are expected by the current chronicles. For example,

when the constraint of the chronicle indicates that the expected occurrences of two different

observed events must be spaced by 5 to 10 time units, the observation of the occurrence of

the first event at time t determines the occurrence of the second event between t+5 and t+10.

When all the events of the chronicle can be mapped to the timed observations, the chronicle is

recognized. The recognition of a chronicle is associated with the manifestation of a fault. Once

the set of chronicles is described by the expert, the diagnosis process receives a stream of dated

observations it seeks to match with the chronicles. Chronicles may be modeled by a time Petri

net or by a graph of temporal constraints. The chronicle formalism has been used for fault diag-

nosis in several applications [CD00, CLGR+07, GD04]. In [HP00], the authors uses patterns of

sequences of events, called templates, that characterize normal behaviors of the system instead

of faulty ones. A template which defines a triggering event e1 and a consequent event e2 with

a temporal window [t1, t2] indicates that if e1 is observed at time t then e2 is assumed to be

observed between t+ t1 and t+ t2, otherwise a fault is detected. Templates are set of constraints

on the occurrence times of events. The template approach may be seen as a diagnosis approach

that uses a timed automaton without clocks, but where time intervals are associated with states

[Tri02]. Finally, each pattern, whether a causal temporal signature, a chronicle or a template, is

derived from expert knowledge and may be built separately regardless of other patterns. Also,

it is necessary to check the consistency of the set of patterns to ensure the completeness and the

determinism of the recognition process.

2.5 Multi-modeling diagnosis

The diversity of the approaches that have been proposed for system diagnosis is the result of

various contexts associated to the nature and the characteristics of the target applications. The

specific implemented diagnosis strategies depend both on the type of information available about

the system, and on the type of defects to be detected. Of all the methods, MBD methods play

an important part. For these methods, the modeling step is the crucial step of the diagnosis

problem. Since the model is directly used as a reference for fault detection, diagnosis quality

depends on the quality of this model and the model should be selected based on its ability to

reveal faults.

The models that are used for diagnosis exploit three types of knowledge (cf. figure 2.11).

[CGTT93] distinguish them in functional, behavioral and structural models. The structural

model of the system describes the components that are needed to design the system, with their

interconnections. The behavioral model describes the behavior of the components, how the

components interact with each other through relationships involving physical quantities. The

third dimension is functional. It defines the role of the components for the diagnosis purpose.

For example, the function of the tank component of an hydraulic system is to store water, the

function of the pump is to convert electrical power into hydraulic power. The defects exhibit,

in the expert opinion, significant effects in terms of observations, while, from the point of vue
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of the user of the system, they reflect malfunctions on physical units that must be repaired

or replaced. The link between the expert’s perspective and the user’s one is defined by the

functional dimension. The function is a subjective interpretation of the expert knowledge, to

make it understandable by the user, that defines the relationship between the behavior and the

objectives assigned to the system by its designer. Structural and behavioral knowledge is of

fundamental knowledge, while functional knowledge is interpretative knowledge.

The aim of a multi-modeling approach is clearly to exploit all the fundamental and inter-

pretative knowledge available about the system, to achieve a complex reasoning task, namely

the diagnosis task. For some authors, the different types of knowledge can be mixed within the

same model. On the other hand, for [CGTT93], the structural, behavioral or functional models

are separated and need to be interconnected : links exist that can switch from one knowledge

type to another and these links must be precisely described.

Figure 2.11: The multi-modeling approach

The aim problem for the diagnosis of dynamic systems comes from the acquisition and the

representation of the underlying temporal knowledge. These tasks are difficult since temporal

knowledge is often mixed with other types of knowledge. This justifies multi model based

diagnosis that put emphasis on the separation of the different types of knowledge in different

models, in order to simplify both the knowledge representation and the reasoning on the different

models [ML07, LGM07, LGMC08].

2.6 Conclusion

Generally speaking, to diagnose a system consists in a reasoning aiming at explaining the avail-

able observations with a model of the system according to an adequate problem solving method.

Formal theories of diagnosis have been elaborated since the last 50 years in order to build

programs that facilitate this reasoning. The possibility for a computer to achieve such a diag-

nosis reasoning depends on the mannerobservations, models and problem solving methods are

formalized.

This chapter presents the basis of the three main categories of diagnosis approaches (DX,

FDI and DES for short), with the example of an hydraulic system described in [CPR00]. The
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aim is to elicit the common concepts and the specificities of each of these main approaches, and

to emphasis on the particular difficulties when diagnosing complex dynamic system where the

temporal aspects play a crucial role. In particular, this chapter presents the Multi-Modeling

Based Diagnosis (MMBD) as an attempt to deal with complex dynamic processes because such

processes are difficult to model. As Figure 2.11 aims to illustrate, the goal of the MMBD

approaches is to try to take into account the multiple aspects of the knowledge that is required to

diagnose such processes and then to take advantages of the huge scientific background developed

by the DX, the FDI and the DES research communities.

The next chapters of this document proposes an a new MMBD approach called TOM4D

for Timed Observation Modeling for Diagnosis and a solver algorithm called TOM4E (Timed

Observation Manager for Explanation) designed to diagnose networks of dynamic processes. The

TOM4D MMBD approach is new because it is the only diagnosis approach that is based on the

Timed Observation Theory (TOT) proposed by Le Goc in 2006 [LG06], where the timestamps of

the data play a central role. This mathematical theory combines and extends the Markov Chain

and the Poisson Process Theories [CL99], the Theory of Communication of Shannon [Sha84],

the Logical Theory of Diagnosis [Rei87] and the Method of Abstraction of Floridi [Flo08]. Up

to our knowledge, the TOT is the only mathematical theory that has been designed to propose

a unique framework to model networks of continuous time dynamic processes at different levels

of abstraction and granularity.

The mains applications of the TOT is the TOM4D Knowledge Engineering methodology

presented in this document, a Knowledge Discovery in Database process called TOM4L (Timed

Observation Mining for Learning, [LGBG05, BLG10, LGA12]) and an operational method of

abstraction called TOM4A (Timed Observation Method for Abstraction, [Pom12a, PMAP12]).

The main advantages of these applications is that, being based on the same mathematical theory,

TOM4D, TOML and TOM4A are compatible together so that their results can easily be merged

in order to build and to validate models from the available real-world timed data (cf. [PLG14]

for an illustration).

The next chapter of this document introduces the basic concepts of the TOT. The TOM4D

methodology version that is proposed in the following chapter generalizes the version provided in

PHD’s Pomponion document [Pom12a] and extends it to the modeling of networks of dynamic

processes. The next chapter is then dedicated to the description of an adequate diagnosis

problem solver for TOM4D, the TOM4E algorithm. Finally, the ability of the TOM4D MMBD

approach is shown with its application on a real world dynamic process, the Sapins french

hydraulic dam. This explains why the hydraulic example of [CPR00] has been used in this

chapter and will be used all along the next chapters in order to facilitate the reading of this

document.



CHAPTER 3

Introduction to the Timed Observation Theory

The Timed Observations Theory (TOT, [LG06]) provides a general mathematical framework for

modeling dynamic processes from timed data. This theory combines and extends the Markov

Chain Theory, the Poisson Process Theory, the Theory of Communication of Shannon [Sha84],

the Logical Theory of Diagnosis [Dag01] and the Method of Abstraction of Floridi [Flo08].

This chapter aims at introducing the concepts of the TOT that are required in order to model

a dynamic process and the diagnosis reasoning using it. To this aim, the chapter is made with to

sections: the first one introduces the mathematical objects of the TOT that will constitutes the

foundation of the conceptual modeling framework of our contributions. This later is described

in the second section.

The complete mathematical theory of timed observation can be found in [LG06]. Applica-

tions in divreses scientific domain can be found in the PhD of P. Bouche [Bou05] for the Discrete

Event System domain, the PHD of N. Benayadi [Ben10] for the Data Mining domain, the PHD

of A. Adhab [Ahb10] for the Bayesian Networks domain, and the PHD L. Pomponio [Pom12b]

for the Knowledge Engineering Domain. All over this section, the Reader will be invited to refer

to the main papers that provide details about the developments of the TOT.

3.1 Mathematical Framework of the TOT

The Timed Observations Theory defines a dynamic process as an arbitrarily constituted set X(t)

= {x1(t), ..., xn(t)} of timed functions xi(t) of continuous time t. The set X(t) of functions

implicitly defines a set X = {x1, x2, ..., xn} of n variable names xi.

According to the Timed Observation Theory (TOT), a dynamic process X(t) is said to

be observed by a program Θ when this latter aims at writing timed messages describing the

modifications over time of the functions xi(t) of X(t). Such timed messages can be alarms,

warnings, reporting events or simple communication messages (sms for examples) that are sent

to the environment of the program Θ. A timed message is a sequence of characters that can

be recorded in a memory (i.e. a database or a data log). For example, the timed message

“1999/04/09 08:33:00, The pipe outflow is low” can be an alarm. Such a timed message

can easily be recorded in a database (often called a data log)

The TOT considers that the structure of such a message is a simple pair (timeStamp, text)

where text is a constant denoted δi and timeStamp is the value of an index denoted tk. The

time stamp tk represents the time of the message that can be the emission time, the reception

time or any time stamp associated with the text of the message. Consequently, an extraction

of m timed messages from such a memory constitutes a set ∆ = {δi} of m∆ constants δi and a

33
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set Γ = {tk} of m time stamps tk. Generally speaking, there is less constants than time stamps

(i.e. m∆ ≤ m).

Θ is said to be :

• Parametrized with two sets, the set of constants ∆ = {δi} and the set of variable names

X = {xi}. A parametrized program is denoted Θ(X,∆).

• Applied on a set X(t) = {xi(t)} of timed functions. The choice of X(t) is out of the scope

of the program.

• An abstract observer if the way the program Θ has been implemented is not known. It

can be either a software component or a human. This situation has to be considered as

the usual situation.

In the suite of the document, the term program will be used to denote either the program Θ

or the parametrized program Θ(X,∆).

3.1.1 Timed Observation

The aim of the TOT is to model observed processes :

Definition 3.1 Observed Process

Let X(t) = {xi(t)}, i=1...n, be a finite set of time functions xi(t); let X = {xi}, i=1...n, be the

corresponding finite set of variable names xi; let ∆ = {δj}, j=1...m, be a finite set of constant

values δj; let Θ(X, ∆) be a program observing the evolution of the functions of X(t).

The couple (X(t), Θ(X, ∆)) is an observed process.

To this aim, the TOT defines a timed observation to provide a meaning to a timed message:

Definition 3.2 Timed Observation

Let X(t) = {xi(t)}i=1...n be a set of time functions describing the evolution of a process that

is observed by a program Θ; let Γ = {tk}tk∈ℜ be a set of arbitrary time instants in which Θ

observes the functions; let θ(xθ, δθ, tθ) be a predicate implicitly determined by Θ; and, let ∆ be

a set of constant values.

A timed observation (δ, tk) ∈ ∆ × Γ made on the time function xi(t) is the assignation of

values xi, δ and tk to the predicate θ(xθ, δθ, tθ) such that θ(xi, δ, tk).

Technically, (δ, tk) (or o(tk)) denotes a record of a database. The assigned predicate θ(xi, δ, tk)

represents the meaning, the interpretation of the record. But, by misuse of language, (δ, tk) (or

o(tk)) are usually called a timed observation.

As an illustration of this definition, let us consider a database containing records that are

similar to the message ”1999/04/09 08:33:00, The pipe outflow is low”. The records are

of the form ”yyyy/mm/dd hh mm ss, text” where:

• yyyy/mm/dd hh mm ss is a time stamp

• ”,” is a separator character,

• and text is a sequence of characters.
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Thus, the message ”1999/04/09 08:33:00, The pipe outflow is low” will be represented

with a timed observation (δi, tk) where δi = The pipe outflow is low and tk = 1999/04/09 08:33:00:

• (δi, tk) = (The pipe outflow is low, 1999/04/09 08:33:00).

One of the most fondamental point of the TOT is to understand that, without any knowledge

about the assigned predicate θ(xi, δ, tk), a timed observation (δ, tk) has no meaning. For example,

according to the TOT the text ”The pipe outflow is low” has no meaning: it is only a sequence

of characters. The next section illustrates this point.

3.1.2 Spatial Discretization Principle

Let us consider a particular program θi({xi}, {δi}) of an observed process (xi(t), θi({xi}, {δi}))

made of only one time function xi(t). Let us suppose that the specification of such a program

is based on the generic rule 3.1 which refers to a threshold value Ψj ∈ ℜ and two immediately

successive values xi(tk−1) ∈ ℜ and xi(tk) ∈ ℜ.

xi(tk−1) < Ψj ∧ xi(tk) ≥ Ψj ⇒ write((δi, tk)) (3.1)

In this rule:

• xi(tk−1) and xi(tk) are two immediately successive values of the continuous time function

xi(t),

• (δi, tk) is a timed message,

• xi(tk−1) < Ψj ∧ xi(tk) ≥ Ψj specifies a particular predicate denoted θi,

• write((δi, tk)) denote the action of recording a timed message in a memory.

In other words, a timed observation (δ, tk) is the execution trace of the program θi.

The use of such a rule is illustrated in figure 3.1 where two thresholds Ψ1 and Ψ2 and the

four rules are used:

Rule 1: xi(tk−1) < Ψ2 ∧ xi(tk) ≥ Ψ2 ⇒ write((high, tk)) (3.2)

Rule 2: xi(tk−1) ≥ Ψ2 ∧ xi(tk) < Ψ2 ⇒ write((normal, tk)) (3.3)

Rule 3: xi(tk−1) < Ψ1 ∧ xi(tk) ≥ Ψ1 ⇒ write((normal, tk)) (3.4)

Rule 4: xi(tk−1) ≥ Ψ1 ∧ xi(tk) < Ψ1 ⇒ write((low, tk)) (3.5)

Let us suppose that these four rules are implemented in 4 programs, respectively θ1({xi}, {high}),

θ2({xi}, {normal}), θ3({xi}, {normal}) and θ4({xi}, {low}). Let us suppose also that these pro-

grams have been combined in a unique program Θ({xi}, {high, normal, low}):
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Figure 3.1: Spatial Discretization of the time function xi(t) with two thresholds

Θ({xi}, {high, normal, low}) =

θ1({xi(t)}, {high}) ∪ θ2({xi(t)}, {normal}) ∪ θ3({xi(t)}, {normal}) ∪ θ4({xi(t)}, {low})
(3.6)

The observed process (xi(t),Θ({xi}, {high, normal, low}) allows the program Θ to produce

the following sequence ω of timed observation with the time function xi(t) of figure 3.1:

• ω = {(normal, tk), (low, tk+1), (normal, tk+2), (high, tk+3)}.

The sequence ω is the execution trace of the program Θ({xi}, {high, normal, low}) when it

observes the time function xi(t). According to the definition 3.2, such a sequence defines a set

Γ = {tk, tk+1, tk+2, tk+3} containing four time stamps. Because the time function is defined over

ℜ, the duration between two immediately following time stamps is random (i.e. (tk+1 − tk) 6=

(tk+3 − tk+2) for example). Γ is then a stochastic clock.

Because a predicate θi implemented in a program θi({xi}, {δi}) can have a very complex

meaning requiring a lot of computation, the general form of the spatial discretization principle

is based on the following rule:

θ(xi, δi, tk) ⇒ write(o(tk)) (3.7)

An important point at this stage is that the definition 3.2 of a timed observation shows that

the link between a time function xi(t), a variable name xi, the value of a constant δi and a timed

observation o(tk) is made by the program θi({xi}, {δi}) that implements an instantiation of the

general rule 3.7:
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• The relation between a time function xi(t) and a variable name xi is made through the

application of the program θi({xi}, {δi}) on xi(t).

• The variable name xi is defined for the predicate θi: the function xi(t), the variable name

xi and the constant δi are independent.

• The constant δi of a timed observation o(tk) ≡ (δi, tk) is not directly linked with the

predicate θ: δi is simply linked to θ by the code.

A constant δi is then clearly a sequence of characters that has no meaning in it-self: a pair

(δi, tk) is only a record in a database. To provide a meaning to this pair, the reader must have

an interpretation model.

3.1.3 Semantic of a Timed Observation

As an illustration of this important point, let us consider the equations 3.3 and 3.4. The same

constant ”normal” is used for two different predicates (i.e. two programs θ2({xi}, {normal})

and θ3({xi}, {normal})):

• θ2: xi(tk−1) ≥ Ψ2 ∧ xi(tk) < Ψ2

• θ3: xi(tk−1) < Ψ1 ∧ xi(tk) ≥ Ψ1

The constant ”normal” has then two meanings:

• θ2: normal means that the values of the time function xi(t) left the interval [Ψ2,+∞[ to

enter the interval ]−∞,Ψ2[.

• θ3: normal means that the values of the time function xi(t) left the interval ]−∞,Ψ1[ to

enter the interval [Ψ1,Ψ2].

If the two programs θ2({xi}, {normal}) and θ3({xi}, {normal}) have no error, a unique and

common meaning to the sequence of characters ”normal” can be provided: the values time

function xi(t) are in the range normal corresponding to the interval [Ψ1,Ψ2[. As a consequence,

the 4 rules 3.2 to 3.5 defines 3 ranges for the values of the time function xi(t):

• high range: [Ψ2,+∞[,

• normal range: [Ψ1,Ψ2[,

• low range: ]−∞,Ψ1[.

This example shows a fundamental point that is highlighted by the TOT: without some

knowledge about the program θi that write it, a timed message contained in a

database has no meaning in itself.

So, the timed message ”1999/04/09 08:33:00, The pipe outflow is low” has no mean-

ing because the program that has writen this message has not been described. In other words,

the sequence of characters The pipe outflow is low is a constant that can be rewritten δi without

changing anything.
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But if it is know that Figure 3.1 illustrates the water level in the pipe component of the di-

dactic system presented in the precedent section, then a particular meaning can be given to the

timed message ”1999/04/09 08:33:00, The pipe outflow is low” and so to the correspond-

ing timed observation o(tk) ≡ (δi, tk) = (The pipe outflow is low, 1999/04/09 08:33:00):

• The time function xi(t) represents the level of the outflow in the pipe.

• The sequence of characters low can be associated with the rule 3.5. and then with the

predicate θ4 (i.e. xi(tk−1) ≥ Ψ1 ∧ xi(tk) < Ψ1).

• The variable name xi denotes the values xi(t) takes at the time stamps tk, tk+1, tk+2 and

tk+3.

As a consequence, the sequence of characters The pipe outflow is low means that the pred-

icate θ4 has been satisfied at time tk+1 =”1999/04/09 08:33:00”. But when no knowledge is

available about the way a pair (δ, tk) has been recorded in a database, the definition 3.2 allows

to infer that:

Theorem 3.1 Interpretation

Given a timed observation o(k) ≡ (δ, tk), the following propositions are true:

1. o(k) has been written by an abstract program θ({x}, {δ}) that defines a ternary predicate

θ(xθ, δθ, tθ).

2. There exist a time function x(t) which has been observed by the abstract program θ({x}, {δ}).

3. At time t = tk, the time function x(t) satisfied the constraints of the predicate θ(xθ, δθ, tθ).

4. The meaning of o(k) ≡ (δ, tk) is the assignation θ(x, δ, tk).

When considering the Spatial Discretization Principle (cf. equation 3.1), the assignation

θ(x, δ, tk) can have one of the three following interpretations:

• EQUAL(x, δ, tk): ”At time tk, x is equal to δ”

• IS(x, δ, tk): ”At time tk, x is δ”

• BELONGS(x, δ, tk): ”At time tk, the values of x(t) belongs to a range denoted δ”

These three interpretations are clearly misuses of language because δ is a constant taken

from an arbitrary made set ∆ and the definition domain of the function x(t) is the set ℜ of

the real numbers. For example, according to the theorem 3.1, the timed observation (The pipe

outflow is low, 1999/04/09 08:33:00) can be interpreted as :

1. At time 08:33:00 the 1999/04/09, the outflow of the pipe is equal to low.

2. At time 08:33:00 the 1999/04/09, the outflow of the pipe is low.

3. At time 08:33:00 the 1999/04/09, the outflow of the pipe belongs to the low range.
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The first interpretation is the most usually used because it corresponds to the abuse of

language x(08:33:00 1999/04/09) = low which has the form of a classical formula:

x(tk) = δ (3.8)

Generally speaking, in practice, a predicate θ(xθ, δθ, tθ) is satisfied when the time function

x(t) matches against a behavior model [LG04] that can be as simple as the switch of an inter-

rupter or, requiring complex techniques, such as signal processing techniques for artificial vision.

The precise meaning of such a predicate can be very complex and very difficult to detail. This

explains why most every experts commonly use the abuse of language of the equation 3.8.

It is noteworthy that a program can have errors: (δ, tk) could be written in a database from

the assertion θ(x, δ, tk) although the time function x(t) not ”really matches” the semantic of this

predicate.

3.1.4 Observation Class

When considering a timed observations o(k) ≡ (δ, tk), the first interpretation (and the equation

3.8) explains the fact that an expert establishes immediately (and often unconsciously) a relation

between the constant δ and a variable name x.

This cognitive phenomena being so important and so natural, the TOT defines it with the

notion observation class:

Definition 3.3 Observation Class

Let X(t) = {xi(t)}i=1...n be a set of time functions that are observed by an abstract program

θ(X,∆) where ∆ = {δj}j=1...m is the set of all the constants the abstract program can use and

X = {xi}i=1...n is the set of variable names corresponding to X(t).

∀i ∈ [1, n], ∀j ∈ [1,m] and ∀k ∈ N, an observation class Ck = {..., (xi, δj), ...} is a subset of

X ×∆.

An observation class is then any set of pairs (xi, δj) associating a variable name xi with a

constant δj . Such a definition establishes an explicit link between a constant and a variable

name. Any association can be made, but the simplest way, and the most used, is to associate

a variable xi to each constant δj (i.e. establishing a mapping δj 7→ xi for each δi ∈ ∆) and to

define all the observation classes with singletons Ci = {(xiδj)}, that is to say where the pair

(xi, δj) is the unique element the set Ci. In that case, the following theorem can be applied:

Theorem 3.2 Class Occurrences

Let ∆ = {δj}j=1...m be a set of m constants δi; let X = {xi}i=1...n be a set of n variables names

xi so that n ≤ m; let C = {Cj}j=1...m be a set of m singletons Cj = {(xi, δj)}.

Any timed observation o(tk) ≡ (δj , tk) written by a program θ(X,∆) is an occurrence of an

observation class Cj = {(xi, δj)}.

This theorem and the theorem 3.1 leads to define a mapping from the set of constants ∆ to

the set of variable names X. This simplifies strongly the situation when the variable names are

unknown: it is always possible to map an abstract variable φj to each constant δj that appears

in a sequence ω of timed observation (i.e. in an extraction of a database). This is done with
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the construction of a set C = {Ci} of observation classes Ci = {(φi, δi)} where each Ci is a

singleton. In that case:

o(tk) ≡ (δi, tk) ≡ Ci(tk) (3.9)

In other words, when defining observation classes as singletons, a program Θ(X,∆) observing

a process X(t) writes occurrences Cj(tk) of observation classes Cj and the equation 3.7 can then

be written in its most abstract form:

θi(xi, δj , tk) ⇒ write(Cj(tk)) (3.10)

For example, the program Θ({xi}, {high, normal, low}) associated with the time function

xi(t) of figure 3.1 produces the sequence ω of timed observation ω = ((normal, tk), (low, tk+1),

(normal, tk+2), (high, tk+3)). This sequence allows to define the set C of observation classes

containing the followings classes:

• C1 = {(xi, low)}

• C2 = {(xi, normal)}

• C3 = {(xi, high)}

In that case, the preceding sequence can then be written:

• ω = {C2(tk), C1(tk+1), C2(tk+2), C3(tk+3)}.

This example shows the following important points of the TOT:

• The set C contains three classes when the program Θ({xi}, {high, normal, low}) is made

with four programs (cf. equation 3.6). This shows that a program Θ(X,∆) can be made

with an arbitrary number of concrete programs that can be as simple or as complex as

necessary.

• In the sequence ω, the observation class C2 has two occurrences: C2(tk) and C2(tk+2).

When considering the figure 3.1 and the equation 3.6, it is obvious that the two oc-

currences haven’t been written by the same program: θ2({xi}, {normal}) for C2(tk) and

θ3({xi}, {normal}) for C2(tk+2). But when interpreting these timed observation according

to the equation 3.8, the two programs can be confused in an abstract one θ23({xi}, {normal})

= θ2({xi}, {normal}) ∪ θ3({xi}, {normal}).

• The definition 3.3 allows to partition the sequence ω in three sequences, each of them

being associated with an observation class:

– ω1 = {C1(tk+1)}, ω2 = {C2(tk), C2(tk+2)}, ω3 = {C3(tk+3)}

– ω = ω1 ∪ ω2 ∪ ω3

– ω1 ∩ ω2 ∩ ω3 = Φ

• As a consequence, the set Γ = {tk, tk+1, tk+2, tk+3} is also decomposed in three disjoints

sets, each of them constituting a stochastic clock:
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– Γ1 = {tk+1}, Γ2 = {tk, tk+2}, Γ3 = {tk+3}

– Γ = Γ1 ∪ Γ2 ∪ Γ3

– Γ1 ∩ Γ2 ∩ Γ3 = Φ

This shows that the definition of a set C of observation classes decomposes a given sequence

ω of timed observations o(tk) in a superposition of sequences ωi, each of them being associated

with a particular observation classe Ci:

• C1 = {(xi, low} ⇒ θ1(C1), ω1,Γ1

• C2 = {(xi, normal} ⇒ θ23(C2), ω2,Γ2

• C3 = {(xi, high} ⇒ θ3(C3), ω3, Γ3

The notion of observation class facilitates then the interpretation and the filtering of a given

sequence ω whatever is the program Θ(X,∆). The next section shows that this notion provides

also a powerful tool to model an observed process (X(t),Θ(X,∆)).

3.1.5 Superposition Theorem

The program θ23({xi}, {normal}) of the latter example doesn’t really exists: it is only a point

of view, a way to read a sequence. This is why such a program is considered as an abstract

program and is called an abstract observer in [?].

The concept of abstract observer is the core of the TOT. It is linked with the following

Superposition Theorem:

Theorem 3.3 Superposition Theorem

If a program Θ(X,∆) is memoryless and the constants δi of ∆ are independent, then any par-

tition ∪i=1...n ∆i of ∆ so that ∀i 6= j, ∆i ∩ ∆j = {φ} decomposes the program Θ(X,∆) in a

superposition of n independent programs Θi(Xi,∆i) so that:

1. (∆ =
⋃

i=1...n
∆i) ⇒ X =

⋃

i=1...n
Xi

2. ((∆ =
⋃

i=1...n
∆i) ∧ (X =

⋃

i=1...n
Xi)) ⇒ Θ(X,∆) =

⋃

i=1...n
Θi(Xi,∆i)

3. (Θ(X,∆) =
⋃

i=1...n
Θi(Xi,∆i)}) ⇒ (X(t),Θ(X,∆)) =

⋃

i=1...n
(Xi(t), θi(Xi,∆i))

In other words, the partitioning of the set ∆ in n disjoint sets ∆i transforms a program

Θ(X,∆) in a superposition of n independent programs Θi(Xi,∆i). Such a partition is made

with the definition of a set C = {Ci}i=1...n so that:

Θ(X,∆) =
⋃

i=1...n

θi(Ci) (3.11)

It is important to note that the theorem 3.3 is only based on an adequate partition of the

set ∆ of constants and concerns only the program Θ: no hypothesis is made about the dynamic

of the process X(t).

The equation 3.11 and the theorem 3.3 means that, given an adequate set C = {Ci}i=1...n, any

observed process (X(t),Θ(X,∆)) can be seen as a network of observed processes
⋃

i
(Xi(t), θi(Ci)).



42 CHAPTER 3. TOT

The term network is used because the partitioning of ∆ does not entails the partition of the

process X(t): it does not matter that the subsets Xi are or aren’t disjoints. In other words,

the observed processes (Xi(t), θi(Ci)) can share some time function xi(t). We will see in the

next chapter that two observed process (Xi(t), θi(Ci)) and (Xj(t), θj(Cj)) are connected together

when Xi(t) ∩Xj(t) 6= Φ.

The application of these theorems is very simple. For example, considering collectively the

theorems 3.2 and 3.3, each observation class Ci can be defined as a singleton so that each δi is

associated with one and only one variable xi (a variable name can be associated with multiple

constants). In that case, a program Θ(X,∆) where ∆ contains n constants δi can be considered

as a superposition of n independent memoryless programs θi(Ci) (cf. equation 3.11. This way

of defining the set C is very current in practice. And when the variable xi is not known, an

abstract variable φi can be used.

More generally, the importance of the Superposition Theorem comes from the fact it allows

to describe recursively any complex observed process (X(t),Θ(X,∆)) as a network of observed

processes
⋃

i
(Xi, θi(Xi,∆i)). This property is very important to diagnose a complex observed

process (X(t),Θ(X,∆)).

3.1.6 Temporal Binary Relation

The Induction Theorem is another important consequence of the Superposition Theorem [?]:

Theorem 3.4 Relation

Let X(t) = {xi(t)}i=1...m be a dynamic process where the values of two time functions xi(t) and

xj(t) of X(t) are linked together; let Θ(X,∆) =
⋃

i=1...n
θi(Ci), n ≥ m, be a program satisfying

the Superposition Theorem 3.3 where C = {Ci}i=1...n is the corresponding set of n observation

classes satisfying the Observation Class theorem 3.2; let Ci = {xi, δi} and Cj = {xj , δj} two

observation classes of C; let Γi and Γj be the stochastic clocks associated to the observation

classes Ci and Cj.

If Θ(X,∆) contains two programs θi(Ci) and θj(Cj) so that the relation between the functions

xi(t) and xj(t) implies a relation between the stochastic clocks Γi and Γj, then there exists a

relation between the observation classes Ci and Cj.

This theorem looks like a tautology but it is very important: it means that if two time

functions xi(t) and xj(t) are linked together, two programs θi(Ci) and θj(Cj) can be designed

to reveal the existence of this relation. The condition is that the stochastic clocks Γi and Γj

containing thetime stamps of the occurrences Ci(tki) and Cj(tkj ) are be linked together by a

temporal binary relation:

Definition 3.4 Temporal Binary Relation

A temporal binary relation r(Ci, Cj , [τ
−
ij , τ

+
ij ]), τ

−
ij ∈ ℜ, τ+ij ∈ ℜ, is an oriented (sequential)

relation between two observation classes Ci and Cj that is timed constrained with the [τ−ij , τ
+
ij ]

interval.

The temporal constraint [τ−ij , τ
+
ij ] of a temporal binary relation r(Ci, Cj , [τ

−, τ+]) is the

time interval for observing an occurrence Cj(tkj ) of the “output” observation class Cj after the

observation of an occurrence Ci(tki) of the “input” observation class Ci:
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Definition 3.5 Observed Relation

Let the couple (X(t),Θ(X,∆)) be an observed process defining a particular set C = {Ci} of m

observation classes containing two classes Ci and Cj; let ω = {..., Cl(tk), ...}, tk ∈ Γ ⊆ ℜ, k =

0...n−1, l = 0...m−1, be a sequence of n timed observations Cl(tk) provided by (X(t),Θ(X,∆)).

A temporal binary relation r(Ci, Cj , [τ
−
ij , τ

+
ij ]) between two classes Ci and Cj is said to be

observed in ω if there is at least two timed observations Ci(tki) and Cj(tkj ) so that tkj − tki
satisfies the timed constraint [τ−ij , τ

+
ij ] of r(Ci, Cj , [τ

−
ij , τ

+
ij ]).

Formally, the relation r(Ci, Cj , [τ
−
ij , τ

+
ij ]) is observed if and only if:

r(Ci, Cj , [τ
−
ij , τ

+
ij ]) ⇔ ∃Ci(tki) ∈ ω, ∃Cj(tkj ) ∈ ω, tkj − tki ∈ [τ−ij , τ

+
ij ] (3.12)

A temporal binary relation of the form r(Ci, Cj , ]0,+∞[) is a purely sequential binary rela-

tion: to be observed, the occurrence Cj(tkj ) must succeed the occurrence Ci(tki) (i.e. tkj > tki).

For simplicity reasons, such a sequential binary relation is denoted r(Ci, Cj):

r(Ci, Cj , ]0,+∞[) ≡ r(Ci, Cj) (3.13)

Now, all the elements are in place to provide a formulation of the fundamental Theorem of

Induction of the TOT:

Theorem 3.5 Induction

Let X(t) be a dynamic process containing two time functions xi(t) and xj(t); let Θ(X,∆)) be a

program associating two variable names xi and xj to the time functions xi(t) and xj(t) respec-

tively; let C be a set of m observation classes build on X×Delta; let Ci and Cj two observation

classes of C that are respectively concerned with one and only one variable name xi and xj;

let ω be a sequence of timed observations provided by the observed process (X(t),Θ(X,∆)); let

ωi = {Ci(tki)}, ki = 0...ni− 1, and ωj = {Cj(tkj )}, kj = 0...nj − 1, be respectively two sequences

of ni and nj timed observations of the classes Ci and Cj so that: ωi ⊂ ω, ωj ⊂ ω and ωi∩ωj = Φ;

let Γi and Γj be the two stochastic clocks defined by ωi and ωj.

1. The existence of a binary relation between two stochastic clocks Γi and Γj induces the

existence of a binary temporal relations of the form r(Ci, Cj , [τ
−
ij , τ

+
ij ]).

2. A binary temporal relations of the form r(Ci, Cj , [τ
−
ij , τ

+
ij ]) subsumes the existence of a

relation between two time functions xi(t) and xj(t) respectively.

The Induction Theorem means that when two stochastic clocks are linked together, given

that the corresponding observation classes are adequate according to the theorem 3.3, it is then

justifiable to make the hypothesis of the existence of a relation between both functions that are

at the origin of the clocks.

Obviously, the confidence in the existence of an induced relation between two time functions

xi(t) and xj(t) depends on the representativity of the binary temporal relations r(Ci, Cj , [τ
−
ij , τ

+
ij ]),

and this latter is linked with the ratio of the number of observed relation in ω with the total

number of pairs (Ci(tki), Cj(tkj )), tki ≤ tkj , ω allows to build. This explains the introduction of

the notion of probabilities in the TOT mathematical framework.
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This theorem is the fundamental basis of the a new Knowledge Discovery in Database process

called TOM4L (Timed Observation Mining for Learning) the presentation of which is out of

the scope of this chapter. The interested Reader is invited to refer to [?, ?, ALG10, ?] for a

description of TOM4L.

But this theorem is also fundamental to model an observed process (X(t),Θ(X,∆)) because

it imposes a coherence constraint on the model. The contraposee of this theorem says that if

there is a link between the values of two timed function xi(t) and xj(t), then there must be:

1. a relation between the values of the corresponding variable name xi and xj ,

2. a relation r(Ci, Cj , [τ
−
ij , τ

+
ij ]) between two adequate observation classes Ci and Ci, and

3. a relation between the stochastic clocks Γi and Γj .

Obviously, the abstract observers θi(Ci) and θj(Cj)must be adequate according to the Su-

perposition Theorem 3.3.

3.1.7 Abstract Chronicle Model

Nevertheless, the definition of a temporal binary relation r(Ci, Cj , [τ
−
ij , τ

+
ij ]) (cf. definition 3.4)

is the basis of the notion of Abstract Chronicle Model :

Definition 3.6 Abstract Chronicle Model

Any arbitrarily made setM = {rk(Ci, Cj , [τ
−
ij , τ

+
ij ])}k=1...n of n temporal binary relations rk(Ci, Cj , [τ

−
ij , τ

+
ij ])

is an abstract chronicle model.

The abstract chronicle models of the TOT framework are represented with a graphical knowl-

edge representation language called ”ELP” for ”Event Language for Process behavior modeling”

[?].

A particular sequence ωi = {o(tk}k=0...n−1 of n timed observations that is consistent with the

logical and the timed constraints of a given abstract chronicle modelM is called an instance ofM .

For example, let us consider the following abstract chronicle model M123 = { r12(C1, C2, [0, 5]),

r23(C2, C3, [3, 8])}. The sequence ωi = {C1(1), C4(3), C2(4), C1(8), C3(10)} contains the occur-

rences C1(1), C2(4) and C3(10) satisfying the logical and the timed constraints of M123:

• C1(1) and C2(4) satisfy the logical condition of the relation r12(C1, C2, [0, 5]) (i.e. the

observation class of C1(1) is C1 (resp. C2 for C2(4)).

• C1(1) and C2(4) satisfy the temporal condition of the relation r12(C1, C2, [0, 5]) (i.e. 4−1 =

3, 3 ∈ [0, 5]).

• C2(4) and C3(10) satisfy the logical condition of the relation r23(C2, C3, [3, 8]) (i.e. the

observation class of C2(4) is C2 (resp. C3 for C3(10)).

• C2(4) and C3(10) satisfy the temporal condition of the relation r23(C2, C3, [3, 8]) (i.e. 10−

4 = 6, 6 ∈ [3, 8]).

The abstract chronicle model and instance of model notions are of the most interest for

the diagnosis of an observed process (X(t),Θ(X,∆)). Specifically, a particular type of abstract

chronicle models, called a path, play an important role:
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Definition 3.7 Path

An abstract chronicle model made with a suite of n−1 timed binary relations {r1(Ci, Ci+1, [τ
−
1 , τ

+
1 ]), r2(Ci+1, Ci+

1, [τ−2 , τ
+
2 ]), ..., rn(Cn−1, Cn, [τ

−
n , τ

+
n ])} is a path.

The M123 abstract chronicle model, for example, is a path.

More generally, a set P = {..., pi, ... of nP pathes pi = {..., rini(Ck−1, Ck, [τ
−
k , τ

+
k ])) where

the last relation rini(Ck−1, Ck, [τ
−
k , τ

+
k ])) of each path pi, except one, is a relation contained in

another path pj of P is also called a path because in that case, P constitutes a kind of path of

paths. Graphically represented, P is chained list of classes (cf. figure ?? for example, where the

classes are the ellipses denoted with a number).

Figure 3.2: Example of a path made with 3 paths

A particular (set of ) path P constitutes a specific structure that allows the ”reading” of

a given a sequence ωi of timed observation o(tki): if ωi satisfies the logical and the temporal

constraints of the suite of relations rj(Cj−1, Cj , [τ
−
j , τ

+
j ]), ∀j, of a given path Pi, then ωi is an

instance of the path Pi. In that case, the path Pi constitutes an interpretation structure of the

sequence ωi. This interpretation structure is like a synopsis of the narative structure that is the

sequence ωi. Inversely, ωi is like a scenario (or the story) that must satify the logical and the

temporal constraints of the path Pi.

3.2 Modeling with the TOT

Technically, the timed observations o(tki) of a sequence ωi constitute an information flow. A

path Pi is a representation of the knowledge that is necessary to interpret the timed observations

o(tki) of ωi.

Generally speaking, knowledge results of the interaction between an information flow and an

arbitrary purpose. This interaction is assumed by humans which defines their purpose according

to their own expectations [Non94], [Non91] and [AL01]. Information comes from all the possible

sources: believes, observations, experimentation, scientific axioms, sensors, etc [Pol66], [NK98]

and [SBF98]. The interaction is basically an interpretation of the information flow that traverses

a thinking human [Dam05] and [Dam99].

To define the modeling principles of the TOT, the following operational definition of knowl-

edge will be used:

Definition 3.8 Operational Notion of Knowledge

Knowledge results from an intentional interpretation of a flow of information.

This definition establishes a relation between knowledge, information and a purpose (an

intention). The purpose is always defined by humans: in the framework of the TOT, the purpose
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is implemented in an observer program Θ(X,∆) which can be either executed by a human or

a computer. Considering the diagnosis task of a dynamic process, the purpose is typically the

assessment of a fault linked with the occurrence of an undesired behavior.

3.2.1 Model according to the TOT

The fundamental role of a model is the sharing of knowledge between humans. This sharing is

facilitated through the mediation of signs belonging to a particular set (often called alphabet).

These signs have no meaning in themselves but are necessary to represent knowledge in order

to share a common understanding of an observed set of phenomenon.

As a consequence, a model is made with a particular arrangement of signs: the meaning

results precisely of the specific arrangement the modeler choose to share its knowledge. The

representation of a knowledge corpus requires then a set of rules that defines the authorized

arrangements (i.e. a grammar).

This leads to define the notion of model according to the TOT:

Definition 3.9 Model according to the TOT

A model is an organized set of knowledge representations.

It is clear that the organization of the knowledge representations within a model is of the

main importance. The Timed Observations Theory being concerned with the evolutions of

a process over time, the knowledge under consideration is linked with the relations between

functions of time xi(t), the constants δi and the stochastic clocks Γi={tki}, tki , ki ∈ N . The

TOT organizes these relations around the notion of variable xi (cf. figure 3.3).

Figure 3.3: Relations between the Basic Objects of the TOT

A piece of knowledge belongs then to three fundamental categories:

1. Relations between the functions xi(t) of a process X(t). This category of knowledge is

called the ”structural knowledge” because, in the framework of the TOT, the functions

xi(t) are the constituents (i.e. the components) of a process X(t).

2. Relations between the constants δi of the set ∆ used by a program Θ to describe the evolu-

tions of the functions xi(t). This category is called the ”functional knowledge” because the

relations between the constants δi can be represented with logical rules linking together

subsets ∆i of constants of ∆ and so, specifies abstract mathematical functions under the

form of ”tables of values”.
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3. Relations between the stochastic clocks Γi. This category is called the ”behavioral knowl-

edge” because these relations describes the links between the evolutions of the func-

tions xi(t) of a process X(t). This type of knowledge is directly linked with the set

C = {Ci}i=1..nc of observation classes that will be define to the modeling.

As figure 3.3 aims at showing, these three categories of relations are linked together: a

specific set ∆ of constant δi will lead an observer program Θ to describe the evolution of a

process X(t) with a particular set Γ of time stamps. The role of the concept of ”variable” in

the Timed Observations Theory framework is to provide the mean to analyze the consistency of

these three categories of knowledge about a process X(t).

So, the concept of variable defines a supplementary category of knowledge, which is a kind

on ”meta-knowledge”, that fundamentally defines the way a dynamic processX(t) is perceived

by humans (i.e. the modeling point of view). In practice, this leads to the following definition

of the aim of the modeling activity:

Definition 3.10 Modeling activity according to the TOT

The modeling activity of a dynamic process X(t) aims at representing the elicited knowledge

according to a formalism and at distributing the knowledge representations over three models,

the structural, the functional and the behavioral model, according to a definition of a particular

set of variables X.

By construction, a particular set of variables X is a subset of all the variables that can be

defined about a dynamic process. The only rational way to specify X is precisely the modeling

purpose: are only required the variables that play a role in the modeling purpose (i.e. the

diagnosis task in this case). The other variables can be forgotten (at least in a first step). This

set of variables X defines then the process according to modeling purpose, and so fixes the

abstraction level of the model.

Finally, a modeling methodology must defines the organization laws and the representa-

tion rules of knowledge (i.e. the representation formalism). Within the TOT framework, the

formalism must allow the expression of relations between the main concept of the TOT.

3.2.2 Abstraction Level

The aim of a modeling framework is to provide the tools allowing the building of a model that:

1. resides at any level of abstraction,

2. is logically coherent (i.e. contains no contradiction), and

3. is as complete as possible.

These goals are given in the order of their importance: clearly, providing a coherent model at

the right abstraction level is the main modeling law of TOM4D, its completeness being desired

but does not constitute a primary condition.

The experts’ knowledge can be view as a set of propositions that the experts formulate

according to this model. In other words, any proposition formulated by an expert is, by hypoth-

esis, an assertion about a property of the process. These propositions are concerned with the

structure, the functions, the behavior or the role the process play in a exploitation purpose.
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Within the mathematical framework of the TOT, the abstraction level is defined by the

observed process (X(t),Θ(X,∆) it self: no constraint is made about the way the sets X(t)

and ∆ are made (The TOT imposes only two constraints on the program Θ). Consequently,

to use the mathematical framework of the TOT, an analysis of the available knowledge must

be made in order to define the sets X(t) and ∆. We will see in the next chapter that the

TOM4D methodology resorts on the combinaison of the knowledge interpretation framework of

the CommonKADS methodology (cf. [SAA+00] and [BdV94]) with the Tetrahedron of States

(ToS) [RK83] to interpret the available knowledge and to analyze its soundness.

But, whatever is the interpretation framework, the definition of a particular setX of variables

constitutes the core of the modeling process. So, to assess the coherence of the model, the six

types of binary relations of figure 3.3 must be examined. This leads to distribute the knowledge

representations over the three basic models of the TOT: the structural, the functional and the

behavioral models. This allows to use Reiter’s Logical Theory of Diagnosis [Rei87, ?] (cf. [?],

[?] and [?] for an example), that is to say the Formal Logic (i.e. in particular the predicate

calculus) to analyse the internal coherence of a model.

The completeness of a model of a dynamic process corresponds to the property of such a

model to allow to provide any proposition an expert can formulate about the corresponding

process. So to assess the completeness of a model, it necessary but sufficient to check first

the completeness of the variable set X and next, to verify that all the possible binary relation

between two variables xi and xj of X has been examined according to the three fundamental

dimensions of knowledge that are the structural, the functional and the behavioral dimensions.

As a consequence, the TOT mathematical framework invites to combine a syntactic and a

semantic approach of a modeling process and provides tools to control the knowledge acquisition

process and identify the main modeling concepts of the dynamic process (variables, constants,

values, thresholds, components, states, etc).

3.2.3 Modeling Principles

Clearly, the notion of variable according to the TOT provides five fundamental modeling prin-

ciples:

1. Variable localization.

A time function xi(t) is a signal provided by a sensor located at a particular place defined

as a component. So, a function xi(t) specifies a variable xi(t), a component ci and a binary

relation that associate xi(t) to ci. As a consequence, a variable xi(t) is always associated

with a sensor that is physically located on a component ci. In other words, any variable

xi(t) of X must be associated with one and only one component ci.

2. Multi-value variable.

A variable xi(t) is necessarily defined over a set ∆xi
of possible values containing at least

two elements. This means that when the experts’ knowledge defines only one value δi for

a variable xi(t) , the knowledge engineer must introduce in ∆xi
another constant, denoted

δj for example, meaning ”not δi” (i.e. ∆xi
= {δi, δj} and δj ≡ ¬ δi). This principle is

a direct consequence of the spatial segmentation of the Timed Observation Theory (cf.

Figure 3.3).
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3. Discernible state.

According to the interpretation 3.8, an occurence Ci(tk) of an observation class Ci cor-

responds to the assignment of a value δi to a variable xi. Such an assignation results

necessarily of an observable modification in the dynamic process X(t). So two occur-

rences Ci(tk) and Cj(tk+1) marks a observable state transition in an observed process

(X(t),Θ(X,∆). This means that a temporal binary relation r(Ci, Cj , [τ
−
ij , τ

+
ij ]) defines a

particular discernible state.

4. Knowledge of different nature separation.

Since the TOT defines four categories of knowledge (structural, functional, behavioral and

perception), four models will contains a specific category of knowledge representations: a

Structural Model SM will contain all the structural knowledge, a Functional Model FM

will contain all the functional knowledge, a Behavioral Model BM will contain all the

behavioral knowledge, and a Perception Model PM will contain the perception knowledge.

This constitutes the multi-modeling framework of the TOT [?], [CR99] and [ZGF06].

5. Symbol driven modeling.

The knowledge interpretation aims at identifying the minimal set of symbols denoting a

time function xi(t), a variable xi or a constant δi and the minimal set of relations between

them (cf. figure 3.3). The logical properties coming from these minimal sets are necessary

and sufficient to complete the model. Among other meaning, this principle means that the

introduction of a symbol that is not associated with an element of the domain knowledge

is prohibited.

The Discernible state principle is particularly important according to the notion of Behavioral

Model BM. A discernible state is a property of the model of an observed process(X(t),Θ(X,∆)):

Definition 3.11 Discernible State

An arbitrary made set {rk(Cik , Cjk)}k=1...nk
, ∀k, ik 6= k, of n sequential binary relations rk(Cik , Cjk)

is a discernible state.

This notion is then conceptually different of the classical state notion of the Discrete Event

System (DES) domain where a state represents a property of the process X(t) itself.

3.3 Conclusion

Generally speaking, fault assessment is a knowledge intensive task that requires a model of the

process under consideration.

According to the Timed Observations Theory, the notion of fault is concerned with particular

behaviors of a dynamic process: a fault is linked with the occurrence of an undesired behavior of

an observed process (X(t), Θ(X,∆)). This means that the required knowledge to assess a fault

about a dynamic process is the one required by the tasks of monitoring, diagnosis and prognosis:

• the monitoring task requires the knowledge to infer the current behavior and to categorize

it as desirable or undesirable behavior,

• the diagnosis task requires the knowledge to infer the causes of the undesirable behaviors,
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• and the prognosis tasks requires the knowledge to infer the potential future undesirable

behaviors that can result from the current situation described by the monitoring and the

diagnosis tasks.

The quality of the knowledge corpus required by these tasks is directly linked with the

pertinence of the fault assessment task. If this point is quite trivial, the knowledge engineering

method used to acquire and represent this knowledge corpus must provide the tools to guarantee

an adequate level of quality.

This chapter introduces the mathematical tools of the Timed Observation Theory that are

required to define a multi-model framework and the laws to distributes the knowledge represen-

tation on the right model. Five modeling principles have been derived from these mathematical

tools. These five principles constitutes a strong logical basis for the modeling work of the knowl-

edge engineer: from the identification of the variables, the knowledge engineer will identify

the possible values a variable can take over time, its corresponding function and observation

classes and so, it defines the discernible state space of an observed dynamic process. Next, the

knowledge analysis examines all the possible and the impossible relations between two elements

(variable, constant, component and observation classes), conducted through their semantic prop-

erties. The organization of the resulting knowledge representations in the four models leads to

an operational model of the dynamic system.

The next chapter presents the TOM4D methodology (Timed Observation Methodology for

Diagnosis) that implements the TOT modeling framework.



CHAPTER 4

The Timed Observation Modeling for Diagnosis

Methodology

TOM4D (Timed Observations Modeling for Diagnosis) is a knowledge engineering modeling

approach for dynamic systems focused on timed observations. The aim of TOM4D is to produce

a model of an observed process (X(t),Θ(X,∆) that is suitable for knowledge intensive tasks

about dynamic process as for example supervision, diagnosis, prognostic and control tasks.

One the main specificities of the TOM4D methodology is to be a timed observation-centered

modeling approach designed to be applied to model dynamic processes. The inputs of a TOM4D

modeling process are both timed observations provided by a database and experts’ a priori

knowledge.

A TOM4D model presents the following major properties:

1. It can be faced with real world timed data (i.e. sequences of timed data making scenarios).

2. Any experts’ assertion about the dynamic process can be faced to with TOM4D model.

These two major properties are fundamental when reasoning about a dynamic process: the

first one allows to assess the adequateness of a model with real world data and the second allows

the check the experts’ knowledge with an already validated model. Furthermore, the second

property constitutes a way to analyze the completeness and the coherence of a model under

construction. These two properties directly comes from the modeling principles of the TOT

described in the precedent chapter.

After a brief introduction presenting the aim of TOM4, this chapter presents the formalisms

defined to represent the TOM4D’s models and next, describes the tools that are used to control

the introduction of the semantic in the global modeling process. These elements are then applied

on the didactic example of [CPR00] that is used to illustrate the presentation of the TOM4D

methodology.

4.1 Introduction to the TOM4D Methodology

The conceptual modeling framework of TOM4D distributes the available knowledge representa-

tions about an observed dynamic process (X(t),Θ(X,∆)) over four models [Zan04, LGMC08,

LGM07]):

• a Structural Model SM describing the relations between the time function xi(t) of a process

X(t),

51
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• a Functional Model FM providing the relations between the values δi of the variables xi,

• a Behaviour Model BM defining the observation classes Ci triggering the discernible state

transitions within the observed dynamic process (X(t),Θ(X,∆), and

• a Perception Model PM defining the way the observed dynamic process (X(t),Θ(X,∆) is

seen by the model.

Structural Model Behavior Model

Functional Model

Perception Model

(component, variable) (variable, observation)

(component, observation)

consistency

Figure 4.1: Relations between the TOM4D models

Figure 4.1 illustrates the modeling framework of an observed process (X(t),Θ(X,∆) accord-

ing to the the TOT. This conceptual framework is centered on the TOT notion of variable: the

structural model SM associates any variables used in a function of the functional model FM

with a component (or a component aggregate) and a timed observation class of the behavioral

model BM associates a variable to a constant. So, a timed observation being an occurrence of

an observation class, it corresponds to the assignment of a constant to a variable that play a

role in at least one function of the functional model FM and is located with one of the com-

ponents of the structural model SM . The perception model PM defines the minimal set of

variables and the corresponding minimal set of constants that are required to define the goals of

a dynamic process. Doing so, the perception model specifies a minimal set of constraints that

the functional, structural and behavioral models must respects. This means that any relation

defined in these models must be consistent with the constraints of the perception model PM .

The aim of the TOM4D methodology is to allow the building of a model that resides at

the same abstraction level as the experts’ knowledge. To assess the abstraction level of the

model, TOM4D resorts to a knowledge interpretation framework in order to introduce, in the

modeling process, the semantic content provided by experts in a gradual and controlled way. This

knowledge interpretation framework is based on the conceptual models of the CommonKADS

[SAA+00, BdV94] methodology to interpret the available experts’ knowledge, and uses the

Tetrahedron of States (ToS) [RK83] to analyze its soundness. This interpretation of the available

knowledge leads to define a particular set X of variables constituting the core of the process

model so that the six types of binary relations of figure 4.1 can, and must, be examined.

To assess the coherence of the model, the knowledge representations are distributed over

the three basic models of the TOT, the structural, the functional and the behavioral models,

according to the meaning of the corresponding knowledge. TOM4D has then been design as a

primarily syntax-driven approach [PL10, LGMC08, LGM07] so that Reiter’s Logical Theory of

Diagnosis [Rei87] can be used to assess the coherence of the model, and in return, to supply tools
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to assess the experts’ knowledge [Dag01]. To this aim, the knowledge representation formalism

is based on the Formal Logic (i.e. the predicate calculus).

Keeping in mind that a TOM4Dmodel aims at being the experts’ model of a dynamic process,

the experts’ knowledge can be view as a set of propositions that the experts formulate according

to this model. In other words, any proposition formulated by an expert is, by hypothesis, an

assertion about a property of the process. These propositions are concerned with the structure,

the functions, the behavior or the role the process play in a exploitation purpose. This means

that the completeness of a TOM4D model corresponds to the property of such a model to allow

to provide any proposition an expert can formulate about the corresponding process. So to assess

the completeness of a TOM4D model, it necessary but sufficient to check first the completeness of

the variable set X and next, to verify that all the possible binary relation between two variables

xi and xj of X has been examined according to the three fundamental dimensions of knowledge

that are the structural, the functional and the behavioral dimensions. Again, the syntactic based

modeling approach of TOM4D facilitates the analysis of the completeness of a model.

As a consequence, the combination of a syntactic and a semantic approach in the TOM4D

modeling principles allows to provide tools for the knowledge engineers to control the knowledge

acquisition process and identify the main modeling concepts of the dynamic process (variables,

constants, values, thresholds, components, states, etc).

Before providing the details about the tools allowing a control over the semantic, let us

examine the formalism of the four TOM4D models.

4.2 TOM4D Model Formalism

This section provides the TOM4D fomalisms that are defined to represents the differents models

of a dynamic process, that is to say the Perception Model, the Structural Model, the Functional

Model, the Behavioral Model and finally, the Network Model of a set of connected dynamic

processes.

Each of them have a textual and a graphical representation, except the Perception Model

that is only textual. So the textual definition of each model will be illustrated with a graphical

representation that comes from the models of the didactic example of [CPR00]. Of course, the

model of this example will be provides both textually and graphically.

In this section, let us consider a dynamic process X(t) = {xi(t)}i=1...n of n time functions

xi(t). To each time function xi is associated a set X = {xi}i=1...n of n variable names xi. To

each variable xi of X is associated a definition domain ∆xi
= {δxi

j where ∆xi
is a set of constants

δxi

j denoting the possible values a variable xi can take.

4.2.1 Perception Model Formalism

The Perception Model PM(X(t)) defines the contraints of a process X(t) in terms of its physical

and informational borders and its operating modes:

Definition 4.1 Perception Model Formalism

A Perception Model PM(X(t)) of a dynamic process X(t) is a structure < X,Ψ, Rq > where:

• X is the set of variable names xi associated with the time function xi(t) of the process

X(t),
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• Ψ is a finite set of constant values ψi ∈ ℜ corresponding to thresholds.

• Rq = Rgoal ∪ Rn ∪ Rab is a set of predicates defining ranges of values with the elements

of Ψ in order to determine the subset Rgoal of the operating goals, the subset Rn of the

normal operating modes and the subset Rab of the abnormal operating modes as constraints

on the values of the time functions xi(t) of X(t).

For example, the Perception Model PM(X(t)) of the hydraulic process X(t) = {x1(t), x2(t),

x5(t), x6(t), x7(t)} is the structure < X,Ψ, Rq > where:

• X = {x1, x2, x5, x6, x7},

• Ψ = {Ψ51,Ψ52,Ψ60,Ψ71,Ψ72}

• Rq = Rgoal ∪Rn ∪Rab.

– Rgoal = {∃t0, ∃ti, ti ≥ t0, ∀t ≥ ti, x7(t) ≥ Ψ72}

– Rn = {∀t ≥ ti, x7(t) ≥ Ψ72 ∧ ∀t ≥ t0, x6(t) ≤ Ψ60}

– Rab = {∀t ≥ ti, x7(t) < Ψ72 ∨ ∀t ≥ t0, x6(t) > Ψ60}

4.2.2 Structural Model Formalism

A TOM4D structural model SM(X(t)) specifies the components, denoted ci, of a dynamic

process X(t), the interconnections between them and the link of each system variable xi to a

component ci. Two components ci and cj can be related each other by the mean of input and

output ports, respectively denoted in(ci) and out(ci). According to the modeling priciples of

the TOT, all the variables xi of X must be associated to one port of a component ci.

Definition 4.2 Structural Model Formalism

A structural model SM(X(t)) of a dynamic process X(t) is a structure < COMPS,Rp, Rx >

where,

• COMPS = cii=1...nc
is a finite set of constants ci denoting the process components,

• Rp is a set of equality predicates of the form out(ci) = in(cj) defining the interconnections

between two components ci and cj of COMPS,

• Rx is a set of equality predicates of the form out(ci) = xj linking a variable xj of X to one

and only one output port of a component ci.

The figure 4.2 presents a structural model made with 6 components. The definition 4.2 has

been made so that a TOM4D structural model specifies as ”structural model” in Reiter’s logical

theory of Diagnosis.
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Figure 4.2: Graphical Representation of a Structural Model SM

f1 : ∆x2
→ ∆x5

x2 f1(x2) Interpretation: x5 = f1(x2)

δ20 δ50 x2 = δ20 ⇒ x5 = δ50
δ21 δ51 x2 = δ21 ⇒ x5 = δ51
δ22 δ52 x2 = δ22 ⇒ x5 = δ52

Table 4.1: Example of the Algebraic Representation of a function x5 = f1(x2)

4.2.3 Functional Model Formalism

A Functional Model FM(X(t)) aims at providing the complete set of logical relations between

the values δxi

j of the variables xi of X(t). The logical relations are provided using the rule

formalism of the formal logic (i.e. implication logical connector ”⇒”). They are described with

tables of values (cf. table 4.1) corresponding to the algebraic representation of mathematical

functions denoted fi().

Definition 4.3 Functional Model Formalism

A Functional Model FM(X(t)) of a dynamic process X(t) is a structure < ∆, F,Rf > where,

• ∆ = ∪
xi∈X

∆xi
is the union of all the sets of constant ∆xi

defined for the variables xi of X.

• F = {fi : ∆
x1 × ...×∆xk} is a set of functions fi(x1, x2, ..., xk) defined on ∆x1 × ...×∆xk

providing a particular constant δxk

i for each combinaison δx1

j × ...×∆
xk−1

l .

• Rf = {xr = fi(x1, ..., xk)} is a set of equality predicates xr = fi(x1, ..., xk) linking the

values ∆xr of a variable xr with a function fi of F .

The figure 4.3 graphically represents a functional model FM made with four functions x3 =

f1(x2), x7 = f2(x3), x6 = f3(x3, φ8) and x1 = f4(φ8) linking together the values of the six

variables x1,x2, x3, x5, x6, x7 and φ8.
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Figure 4.3: Graphical Representation of a Functional Model FM

A TOM4D functional model is then made with a set of algebraic representations of logical

functions. Each functions specifies then a knowledge base containing a set of production rule of

a particular form (cf. the CommonKADS notion of model of rules). Each rule corresponds to

a particular If... Then... formula that an expert can verbalize about the logical consequence of

the fact that a subset of variables takes some particular values on the value of another variable

(cf. equation 4.1).

x1 = x1i ∧ x2 = x2j ∧ ... ∧ xn = xnk ⇒ y = yi (4.1)

The production rule form is adequate to be used with the Modus Ponens deduction rule that

logicaly represents If... Then... propositions (cf. equation 4.2).

⊢ x1 = x1i, x2 = x2j , ..., xn = xnk,

⊢ x1 = x1i ∧ x2 = x2j ∧ ... ∧ xn = xnk ⇒ y = yi

⊢ y = yi

(4.2)

The aim of this representation is that a TOM4D functional model plays the same role as

the ”generic component model behavior” in Reiter’s logical theory of Diagnosis. Technically,

TOM4D simply uses the algebraic formalism (i.e. table of values) to represent sets of rules

respecting the same model. Besides being compatible with Reiter’s logical theory of diagnosis,

the main advantages is the compactness of this representation and the fact that it is much more

natural and usual to experts than production rules. These advantages are fundamentals to the

validation of a model.

4.2.4 Behavioral Model Formalism

A TOM4D behavioral model BM(X(t)) aims at describing the possible sequences of observation

classes that can occur; and therefore, the discernible states between them.

Definition 4.4 Behavioral Model Formalism

A behavioral model BM(X(t)) of a dynamic process X(t) is a structure < S,C,Rs > where:

• S = {sk = {r(Ci, Cj , [τ
−
ij , τ

+
ij ])i 6=j}}k=1...ns

is a set of ns predicate equal linking a dis-

cernible state sk with an arbitrary made set {r(Ci, Cj , [τ
−
ij , τ

+
ij ])}i 6=j of timed binary rela-

tions r(Ci, Cj , [τ
−
ij , τ

+
ij ]) between an observation classe Ci of C to another Cj where i 6= j.

• C = {Ci}i=1...nc is a set of nc observation classes Ci = {(xi, δ
xi

j )}j=1...nci
where each class

Ci is made with one and only one variable xi.
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• Rs = {sj = γ(si, Ck)}i 6=j}k=1...nRs is an arbitrary made set of nRs predicates equal linking

a discernible state sj of S to the output of the γ modeling function defined on S×C which

satisfies the two following constraints:

1. ∃Cφ ∈ C, r(Cφ, Ck[φ
−
ij , φ

+
ij ]) ∈ si.

2. ∃Cφ ∈ C, r(Ck, Cφ, [φ
−
ij , φ

+
ij ]) ∈ sj.

The set S provides then the semantic of the discernible states si of the process. Technically,

according to this definition, a discernible state sk being nothing more than a set of timed binary

relations r(Ci, Cj , [τ
−
ij , τ

+
ij ]), the semantic of a discernible states si is then defined by its set

{r(Ci, Cj , [τ
−
ij , τ

+
ij ])i 6=j} of timed binary relations. When the time constraints is unknown, a

timed binary relations r(Ci, Cj , [φ
−
ij , φ

+
ij ]) is simply written under the form of a sequential binary

relation rij(Ci, Cj). Such a sequential binary relations must be read Ci → Cj .

The set Rs defines the relations between two discernible states si and sj of S through

a particular observation class Ci. The modeling function γ defines the relation between two

discernible states: si and sj are linked together by γ if and only if ∀i 6= j, sj = γ(si, Ck)}. γ is a

modeling function because it specifies the possible paths (cf. definition 3.7) within a behavioral

model. These possible paths will play a basic role in a diagnosis reasoning. According to the

DES, the set Rs, that is to say the modeling function γ, specifies the state transitions within

an automata. The only specificity of a TOM4D behavioral model is then that a discernible

state transition between two discernible states si and sj is conditioned with the occurrence of a

particular observation class Cmi
.

Figure 4.4: Graphical Representation of a Behavioral Model BM

To facilitate the reading of a behavioral model, it is usual to label the discernible states

sk with a vector, typically called the discernible state vector and denoted X, of n dimensions

corresponding to the number of variables xi of the set X so that X is defined over the discernible

state space ∆x1
× ... × ∆xi

... × ∆xn . As a consequence, a particular value Xk of the vector

X corresponds to the assignation of a particular value δij to each coordinated i of X (i.e.

∀i, xi = δij). This leads then to the bijective correspondence: sk ↔ Xk. When there is no

confusion with the set X of variable names, the vector X (and its values Xk) is simply denoted

X (resp. Xk). The figure 4.4 provide a graphical representation of a behavioral model BM in
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which this type of label has been used. In this figure, the boxes represent the discernible states

that have been labeled with the values X7i, i = 0...8, of a two dimensions vector corresponding

to two variables x5 and x6, so that each label X7i corresponds to a particular state s7i.

4.2.5 Relation between Functional and Behavioral Models

The algebraic representation of a function cannot directly represent a function y(t) = f(x(t))

containing an integral operator as in the equation 4.3.

y(t) =

∫

x(t)dt (4.3)

Such functions require an adequate transformation in order to have an algebraic representa-

tion of such an equation. A usual transformation is the Laplace transformation in the Hilbert’s

mathematical space (i.e. the vectorial continuous space defined on ℜ where the exponential func-

tions are the basis vectors). When the space is discrete, that is to say defined on N , the classical

representation of such a function is the Finite State Machine (FSM) representation where the

output variable y(t) ∈ N is a function of the internal state q of the FSM (q ∈ {qi}i=0...nq ∈ N)

and the input variable x(t) ∈ N (equation 4.4).

y(t) = f(x(t), q) (4.4)

Technically, a function x(t) = f(x(t), q) is made with two sub-functions defined with the

equations 4.5. In these equations, q(tk) denotes the current value of q at time t = tk and q(tk−1)

its next value at time tk−1 if and only iff the condition made on the values of x are satisfied.

q(tk) = fx→q(x(tk), q(tk−1))

y(tk) = fq→y(x(tk), q(tk))
(4.5)

The equations 4.5 shows that the internal variable q play the role of a memory: the variable

q stores the last value qi that has been entailed by the input value of x(t). The following points

have to be noticed about these equations:

• The functions x(t) and y(t) are piecewise constant functions of the continuous time t ∈ ℜ.

• The FSM equations 4.5 manage the state transitions at some particular time stamps tk:

tk − tk−1 ∈ ℜ can be as small as possible.

• In practice, such a FSM is implemented with a sequential machine, like a Turing’s machine

(i.e. a computer) for example. In that case, the time is discrete and then tk − tk−1 ∈ N is

a function of the internal clock of the sequential machine.

• The values qi have no meaning in them-self: it is only through the function fq→y that a

particular meaning can be attributed to the values qi.

The differents internal states qi, i = 0...nq of a FSM can be represented with a discrete

variable, let us say φ, defined on a set ∆φ of values {δφi
}i=0...nq . The values δφi

of ∆φ enters in

the value table describing the function y(t) = f(x(t)) of the equation 4.3 as conditions linking

particular values xi of xi(t) with particular values yi of y (cf. equation 4.6).
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φ = φi ∧ x = xi ⇒ y = yi (4.6)

It is to note that the algebraic representation of function containing at least one integrator

(cf. equation 4.3) is always possible: such a transformation is a classical result of the Automata

Theory and is some times called the time to space transformation. For example, the table

4.2 provides the algebraic representation the function f3(x5, φ8) of figure 4.3 containing one

integrator. In this function, the variable φ3 is internal : its role is to represents the effects of the

different states in which f3(x5, φ8) can be.

f3 : ∆x5
×∆φ8

→ ∆x6

φ3 x5 φ8 f3(x5, φ8)

δ30 - δ81 δ61
δ30 δ50 - δ61
δ30 δ51 δ80 δ60
δ30 δ52 δ80 δ60
δ31 - - δ60

Table 4.2: Table of values of the Function f3(x5, φ8)

A set of such rules specifies a deterministic finite automaton that is better represented with

a transition table (cf. [?] for a presentation of the relation between the TOT and the Automata

Theory). Within the TOM4 modeling framework, such an automaton is defined in a TOM4D

behavioral model.

The TOM4D methodology recommends the building of tables as Table 4.2 before modeling

the behavior of a dynamic process with the TOM4D behavioral model formalism in order to

explicits some logical constraints about this behavior. As a consequence, functions containing

at least one integrator will be represented in the functional model and the behavioral model:

this means simply that such a function will be implemented with an automata that is specified

in a behavioral model.

In a symmetrical way, an algebraic representation of a function x2 = f(x1) defined on

∆1 ×∆2, ∆1 = {δ1i}i=1...ni
, ∆2 = {δ2j}j=1...nj

, can be represented with a TOM4D behavioral

model. This corresponds to the classical space to time transformation of the Automata Theory.

Within the framework of the TOT, this transformation is based on the transformation of a

production rule into a sequential binary relation:

• x1 = δ1i ⇒ x2 = δ2j −→ r(C1i, C2j)

This transformation is based on a theorem demonstrated in [LG06] that can be intuitively

understood with the Modus Ponens in mind (cf. equation 4.2) and the interpretation equation

3.8 of a timed observation. As an occurrence of the class Ci = {(xi, δ1i)}, a timed observation

C1i(t1) corresponds to the assignation x1 = δ1i at time t1. Similarly, a timed observation

C2j(t2) corresponds to the assignation x2 = δ2i at time t2. As a consequence, if t2 > t1, the two

timed observations C1i(t1) and C2j(t2) satisfies the constraints of a binary sequential relation

r(C1i, C2j). According to the definition 3.5, the relation r(C1i, C2j) is then observed at time t2.

By construction, this observed relation corresponds to assignation x1(t1) = δ1i and x2(t2) = δ2j :

in other words, to each observation of the relation r(C1i, C2j) corresponds the application of the
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Modus Ponens with a rule x1 = δ1i ⇒ x2 = δ2j with the assignation x1 = δ1i made at time t1 and

the assignation x2 = δ2j made at time t2. The temporal aspect of this correspondence increases

drastically the complexity of the complete demonstration that would bring nothing here (the

interested Reader is invited to refer to [LG06] which is dedicated to this demonstration and its

consequences).

For example, let us consider again the function x5 = f1(x2) described by the table 4.3.

f1 : ∆x2
→ ∆x5

x2 f1(x2) Interpretation: x5 = f1(x2)

δ20 δ50 x2 = δ20 ⇒ x5 = δ50
δ21 δ51 x2 = δ21 ⇒ x5 = δ51
δ22 δ52 x2 = δ22 ⇒ x5 = δ52

Table 4.3: Example of the function x5 = f1(x2)

Such a function can be represented with the following behavioral model BM(X8(t)) of a

dynamic process, X8(t) = { x2(t), x5(t)} for example, which is the structure < S8, C8, R
s8 >

where:

• The set S8 = { s80 = {r(C20, C50)}, s81 = {r(C21, C51)}, s82 = {r(C22, C52)} } is made of

3 sequential binary relations defining 3 discernible states.

• The set C8 = {

C20 = {(x2, δ20)}, C21 = {(x2, δ21)}, C22 = {(x2, δ22)},

C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)}

} made of 6 observations classes.

• The empty set Rs8 = {φ} containing no predicate because the discernible states of S8 are

not interconnected.

Generally speaking, this algebraic to automaton transformation of a TOM4D function model

is usually required when modeling and diagnosing a dynamic process. That why the TOT

methodology recommends to always provide the both representation of a same set of functions.

4.2.6 Dynamic Process Model Formalism

As a consequence, a TOM4D model of a process X(t) is a structure made of a perception model

PM(X(t)), a structural model SM(X(t)), a functional model FM(X(t)) and a behavioral model

BM(X(t)):

Definition 4.5 Dynamic Process Model Formalism

A TOM4D model M(X(t)) of a dynamic process X(t) is a structure < PM(X(t)), SM(X(t)),

FM(X(t)), BM(X(t)) >.

In practice, most real-world dynamic processes are usually too complex to allow the building

of a behavior model: it is often intractable and when it possible, the resulting behavioral model

is generally so huge to be used efficiently. Such cases are current and frequent.

To face this complexity, Experts usually describes complex processes with a set of inter-

connected components, that is to as a network of dynamic processes. The advantage of the
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description of a complex dynamic process under the form of a network of interconnected com-

ponents is the behavior hiding : each component of a network has its own role in the network

(i.e. its goal), it own structure, function and behavior. Each component is a whole entity, and

the global behavior of a network results of the way the components are connected together and

the local behavior of each component. It is then possible to analyze the global behavior of a

network on two points of view:

1. The network point of view. Only the connexion relations between components are consid-

ered.

2. The component point of view. Each component is considered as an autonomous system

and so, can be studied as a whole entity.

The advantage the behavior hiding is the locality property that entails a monotonic reasoning

in the analysis of the behavior of a network of interconnected components. Such a monotonic

reasoning is particularly efficient when analyzing a fault:

• If it has been demonstrated that a component ci is not faulty, then it can be removed from

the set of the possibly faulty components explaining the abnormal behavior of a network.

The Superposition Theorem of the TOT allows, given an adequate set C = {Ci}i=1...n of

observation classes, to describe any observed process (X(t),Θ(X,∆)) as a network of observed

processes
⋃

i
(Xi(t), θi(Ci)).

The important point for a modeling point of vue is that a network results of the simple

partitioning of the set ∆ in n disjoint sets ∆i: no condition is imposed on the dynamic process

X(t). In other words, the description of a given dynamic process X(t) under the form of a

network
⋃

i
Xi(t) of dynamic processes Xi(t) only results of a modeling decision.

Such a modeling decision has no impact on the modeling process of the TOM4D methodology

but leads to modify the notion of component of the structural model in order to introduce some

properties of recursion: a component ci becomes a model of a dynamic process Xi(t).

As a consequence, the TOM4D notion of component ci is to be understand as a model

ci ≡ M(Xi(t)) according to the TOM4D methodology. So, a set of n components COMPS =
⋃

i=1...n
COMPSi(t) defines n subsets of the set X(t) of time function so that:

• X(t) =
⋃

i=1...n
Xi(t) ≡ X =

⋃

i=1...n
Xi.

In other words, a component ci is a complete model M(Xi(t)) = < PM(Xi(t)), SM(Xi(t)),

FM(Xi(t)), BM(Xi(t)) > or, to end the recursion, a simple abstract entity denoted ci ≡M(Φ).

Similarly, a TOM4D model of a network of dynamic process is the structure resulting

of the union of all the models of components: M(
⋃

i
Xi(t)) = < PM(

⋃

i
Xi(t)), SM(

⋃

i
Xi(t)),

FM(
⋃

i
Xi(t)), BM(

⋃

i
Xi(t)) >.

4.3 Controlling the Semantic

One of the main difficulty with the application of Knowledge Engineering is the analysis of the

semantics contained in a knowledge corpus provided by an expert.
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By definition, the knowledge engineer is a ”novice” compared with the experts of the domain

and consequently, the knowledge engineer has not the necessary distance to analyze the coherence

and the scope of a new piece of knowledge. This difficulty increases drastically when working

with a dynamic process: it is very easy for a novice to admit propositions that seems physically

reasonable but are not coherent with the current version of the knowledge model. Intuitively, it

is easy with the formalism of the TOM4D models to introduces erroneous elements some where

on a model. Such a error can have strong and heavy consequences on the development of the

models development that can lead to expensive efforts in order to correct such errors.

Fortunately, researches in the Knowledge Engineering domain provided tools to facilitate the

semantic analysis. The next section briefly describes the tools the TOM4D methodology resorts

on, that is to say the CommonKADS template, the Tetrahedron of States and the Predicate

Calculus. This latter being well known, it will not be described.

4.3.1 CommonKADS Template

CommonKADS is a Knowledge Base System (KBS) engineering methodology which offers a

structured approach in the management of the development of KBSs.

CommonKADS is well known for the fundamental role that this methodology attributes

to the ”Conceptual Model of Expertise” (CME) in the development process of a KBS. This

model describes the types and structures of the knowledge required to accomplish a particular

cognitive task and thus, it acts as a tool that helps to clarify the structure of a knowledge-

intensive information-processing task. This model is developed, in a way that is understandable

by humans, as part of the analysis process and therefore, it does not contain any implementation-

specific term. Thus, this one is an important vehicle for communication with experts and users

about the problem-solving aspects of a KBS.

According to CommonKADS, a CME is a three layer model:

1. The lower level is called the Domain Layer. It contains all the concepts and the logical

relations between them.

2. The middle level is called the Inference Layer because it contains inference steps using the

domain rules, attributes the semantic roles the domain concept must play in an inference

step and organizes inferences and roles in inference structures.

3. The upper layer, the Task Layer, defines the methods (i.e. the prototypical algorithms)

that can be used to achieved some problem solving goals with the use of the corresponding

inference structure.

A CommonKADS Conceptual Model of Expertise (CME) describes the cognitive process an

expert uses to solve a given problem with the corresponding domain knowledge. One fundamen-

tal property of a CommonKADS CME is that the internal structures of a CME is independent

of the expertise domain because it is directly linked with a cognitive task (Diagnosis for ex-

ample). So CommonKADS provide a set of expertise templates defining a domain schema, an

inference structure and the corresponding method for the main cognitive tasks. Such templates

being generic (i.e. independent of the domain knowledge), they can be used to accelerate the

acquisition and the modeling of the experts’ knowledge given a cognitive task.
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Aiming at producing a generic model of an observed process, the TOM4D methodology is

designed to resort on the CommonKADS CME:

• When the goal of CommonKADS CME is to describe the expert’s reasoning when using

the domain knowledge about a process to make a cognitive tasks like diagnosis for example,

the goal of a TOM4D model is to describe the process model the experts have in mind

when doing such a cognitive task.

• The use of a CommonKADS CME will accelerate the construction of a TOM4D model of

the corresponding process.

• A TOM4D model can be used to validate the domain knowledge of a CommonKADS

Conceptual Model of Expertise or to help its construction.

In particular, the CommonKADS templates are of the main importance to provide an inter-

pretation of the available knowledge about a dynamic process. CommonKADS being centered

on the expert’s reasoning, the CommonKADS models are necessary but not sufficient to provide

a physical interpretation to a set of variables.

For example, considering the didactic example of the hydraulic system, Sachem general tem-

plate of Figure 4.5) [LG06, LG04] can be used to analysis the available knowledge described

in the preceding section (this template is detailed in [LG04]). This template establishes a link

between sensors and abstract Process Phenomena: the occurrence of a process phenomena can

be observed on particular sensors signals. Such an occurrence is associated with a physical trans-

formation of material that is working inside a process. But the concept of Process Phenomena

being abstract, only its effects can be physically observed. So to observe the occurrence of a

process phenomena, the reasoning elaborates signals on which particular combination Signal

Events are looked for. When such a combination matches with a model, an occurrence of Signal

Phenomena is created. Again, when a specific combination of signal phenomena occurrences

are observed on different sensor signals, an occurrence of Process Phenomena is created. It is to

note that the combination of occurrences of signal events or signal phenomenon can be described

with abstract chronicle model of the TOT (cf. [LG04] for examples). This template will be used

in the suite of this chapter to analyze the available knowledge about the behavior of the didactic

example of the hydraulic process.

Such a template describes the expert’s reasoning about physical phenomenon working inside

a dynamic process. But it says nothing about the physical nature of these phenomena: these

elements are provided in the domain layer of a CME. And the CommonKADS provides no tools

to help the knowledge engineer to analyse this kind of knowledge.

4.3.2 Tetrahedron of States

This explains why the TOM4D methodology resorts also to the Tetrahedron of States (ToS,

figure 4.6) of Rosenberg and Karnopp [RK83] to provide a physical interpretation of the expert’s

propositions. The ToS describes the fundamental structure of the classical Newtonian physics

with a set of four generalized continuous variables:

• e for effort,
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Figure 4.5: Inference structure for diagnosis [LG04]

generalized 
effort

generalized 
displacement

generalized 
impulse

generalized flow

g. Capacity

g. Resistance

g. Inductance

q e

f p

q = C . e

e =  R . f

p = I . f

e=
dp

dt

dq

dt
=f

Figure 4.6: Tetrahedron of States (ToS) [RK83]

• f for flow,

• p for impulse, and

• q for displacement.

The ToS defines also three type of constant (figure 4.6):

• C for Capacity,

• R for Resistance, and

• I for Inductance.

These elements are linked together with a set of five binary relations. Three of them are

algebraic:

q = C.e (4.7)
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e = R.f (4.8)

p = I.f (4.9)

The two others are the usual differential relations:

f =
dq

dt
(4.10)

e =
dp

dt
(4.11)

This set of binary relations defines three type of generic components: a Generalized Capacity,

a Generalized Resistance and a Generalized Inductance.

To use it, the ToS must be instantiated to a physical domains like electromagnetism, fluid

dynamics, thermodynamics, etc. For example, in the hydraulic dam domain that concerns this

works (cf. figure 4.7, the ”Hydraulic ToS” maps a water flow to the generalized flow f , the

water volume to the generalized displacement q, the water pressure to the generalized effort ”e”

and the hydraulic momentum to the generalized impulse p.

Pressure
[N.m-2] [m-1.kg. s-2]

V(t)
V(t) = 

C(t) * Pr(t) Pr(t)

Pr(t) = 

dPp(t)/dt
Qv(t) = 
dV(t)/dt

Pr(t)=
R(t) * Qv(t)

V(t)[m3] volume 
of water

Type 4:
Differential

Type 1: water stored 
on Pr(t) [kg.m-4. s-2]

Pp(t)Qv(t)
Pp(t) = 

Qv(t) * L(t)

dPp(t)/dtdV(t)/dt R(t) * Qv(t)

Moment of pressure
[N.m-2.s] [m-1.kg. s-1]

Qv(t)[m3.s-1] flow 
of water

Type 1: accumulator
[m-4.kg]

Type 2: Resistivity
[kg.m-4. s-1]

Figure 4.7: Instantiation of the ToS in the Hydraulic Domain

According to the Hydraulic ToS, any time function xi(t) of a process X(t), and then any

variable xi of the corresponding set X, will receive a physical dimension and any proposition

about the relations between two hydraulic variables can be analyzed according to the Hydraulic

ToS. As a consequence, a proposition that don’t satisfy one of the five relations of the Hydraulic

ToS must be rejected by the knowledge engineer. An instantiated ToS constitutes then a powerful

tool to interpret and provide a meaning to the expert knowledge, that is to say to control the

introduction of the semantics within the TOM4D modeling process.

In complementary with the ToS, the Formal Logic framework, and more precisely the first

order predicate calculus in particular, is also used by the TOM4D methodology as a resource to
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Domain e→ Pr f → Q q → V p→ Pp

Hydraulic Pressure (Pa) flow (m3.s−1) volume (m3) N.m−2.s

Table 4.4: Physical Dimension of the Variables of the Hydraulic ToS

provide a way to analyze the logical consequences of a ToS validated proposition: a new propo-

sition can satisfy the semantic constrains of the ToS but can be contradictory with the current

version of the model. In this latter case, the knowledge engineer must solve the contradiction

either with the rejection of the new proposition or with an adequate update of the current ver-

sion of the model that contains the new proposition. It is to note that using the Formal Logic

framework allows the utilization of Reiter’s Theory of Diagnosis [Rei87] to facilitate the analysis

of the model coherence.

Finally, the combination of the CommonKADS templates, the ToS and the first order pred-

icate calculus constitute a powerful interpretation framework to control the introduction of

semantic elements during the modeling process of the TOM4D methodology.

4.4 TOM4D Modeling Process

The aim of the TOM4D modeling process is to produce a generic model of an observed process

(X(t),Θ(X,∆) from the available knowledge and data.

The available knowledge contains, by definition, a description of the modeling goal: the

assessment of failure linked with the dynamic process exploitation. The TOM4D modeling

process is made with three main phases:

• Knowledge Interpretation,

• Process Definition, and

• Generic Modeling.

The figure 4.8 present the global TOM4Dmodeling process under the form of a CommonKADS-

like inference structure (i.e. a precedence graph): ovals represents inference steps and rectangles

defines the concepts’ roles. In other words, the figure shows the logical dependencies of these

three phases. Therefore, the exploitation method of such an inference structure must be defined

according to the modeling problem: how the control flow of the modeling process is carried out

is not part of this structure. This explains why TOM4D is not a method but a methodology.

For example, a spiral model is particularly appropriate because it is a risk-driven process model

that allows an incremental construction of the model. Such a development model being cyclical,

each modeling step can require to return back to previous step with the objective of revising the

expert’s knowledge or modeling decisions.

4.4.1 Knowledge Interpretation

The objective of the Knowledge Interpretation step is to define a scenario modelM(Ω) given the

available knowledge, a set Ω of sequences ωi of variable values over time and a CommonKADS

template of the cognitive task (the Sachem template of figure 4.5 for example). The TOM4D

methodology being firstly concerned with dynamic process, the temporal behavior of the process
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Figure 4.8: General structure of the TOM4D modeling process.

is of the main importance in the analysis. Because this behavior is, generally speaking, poorly

described by the available knowledge, the scenario Ω is a fundamental input to the modeling

process. Each sequence ωi of Ω is an ordered set of measure of the values some process variables

takes over time. These suites of timed measures describes a particular evolution of the process.

As a consequence, Ω constitutes a partial description of the observed process and so, defines

a primary set of functions, variables, constants and stochastic clocks. The identification of these

elements is made through the available knowledge that is interpreted with a CommonKADS

template. This template describes the usual cognitive task the experts do when analyzing the

behavior of the dynamic process. The analysis of the relations between the primary elements

leads to a set of primary knowledge representations that are organized in a primary model called

the scenario model M(Ω) = < SM(Ω), FM(Ω), BM(Ω) > linking together a structural model

SM(Ω), a functional model FM(Ω) and a behavioral one BM(Ω) of the process according to the

scenario Ω. Again, by construction,M(Ω) can not be complete: it is restricted to what appears

in the sequences ωi of Ω. But, if Ω is representative enough of the behavior of the observed

process, such a model is sufficient to provide a first vision of the process to be modeled. Generally

speaking, the representativeness of Ω is easy to assess. Ω being an extraction of a database (or

a data log), it is necessary and sufficient to verify that the extracted sequences contain the most

typical evolutions of the process X(t) that the program Θ(X,∆) aims at describing with timed

observations.
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4.4.2 Process Definition

The second main step of the TOM4D modeling process is called the Process Definition since it

aims at providing the boundary of the process X(t) in terms of a set of time functions xi(t), the

goals of the process operations and its normal and abnormal operating modes.

The actual process is then restricted to a particular set X(t) = {xi(t)} of time function xi(t)

and its operational goals are provided with a set of conjunctions of propositions of the following

forms where the symbol ¬ denote the logical ”not”:

• Positive Goal: ∀t, xi(t) ≥ Φi

• Negative Goal: ∀t,¬xi(t) ≥ Φi

Clearly, a negative goal is typically a direct formulation of an abnormal behavior linked with

the exploitation of the process P (t). The operating modes are also represented with a set of

conjunctions of the same form. The set of conjunctions is partitioned in two sets: the set of the

desired and the set of the undesired modes, respectively called the normal behavior set and the

abnormal behavior set according to Reiter’s theory of Diagnosis [Rei87].

The input knowledge of the Process Definition step are the scenario model M(Ω) resulting

of the Knowledge Interpretation step and the conceptual frameworks of the Formal Logic and

the Tetrahedron of States (ToS) [RK83]. These two frameworks constitutes the only semantic

contexts allowing the logical and the physical interpretation of the modeling symbols used to

denote the variables and the constants defined in the scenario model M(Ω). The role of these

frameworks is to provide the set of laws allowing the knowledge engineer to control the represen-

tation of the semantic in the model and consequently the interpretation of the binary relations

of the model. This step being an important and delicate point in the TOM4D methodology, it

will be discussed with more details when the TOM4D modeling process will be applied on the

didactic example.

The output of the Process Definition step is the Perception Model PM(X(t)) of the dynamic

process since it defines the way the process is perceived by the experts: nothing but what can

be derived from this model can be taken into account the structural, the functional and the

behavioral model of the process.

In other words, PM(X(t)) defines the level of abstraction the expert use to reason about

the process X(t).

4.4.3 Generic Modeling

The last step, the Generic Modeling, defines the set X={xi} of the variables with their defini-

tion domain ∆xi
={deltaxi

i }, identifies the corresponding sets of components, observation classes

and logical relations between the constants of the definition domain of the variable, and dis-

tributes the representation of the pertinent binary relations over the three models, that is to say

the structural model SM(Pr(t)), the functional model FM(Pr(t)) and the behavioral model

BM(Pr(t)).

The objective is then to define a model M(X(t)) = < PM(X(t)), SM(X(t)), FM(X(t)),

BM(X(t)) > a type of process that is coherent with the scenario model M(Ω), but that gener-
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alizes it: this is the meaning of the usage of the generic attribute to qualify the generality and

the abstraction levels of the resulting model M(X(t)).

The Generic Modeling step is accomplished using the Perception Model PM(X(t)) and the

available knowledge, according to the representation and the interpretation laws of the Formal

Logic and the ToS frameworks. These frameworks allow the systematic exploration of the whole

semantic and syntactic spaces that constitutes the global modeling space:

• the semantic space is defined with the physical dimension of the variables xi (typically

according to the International System of Units), and

• the syntactic space is defined as the matrix of all the pairs (a, b) that can be made with

the alphabet of the symbols used to represents the knowledge.

The next section presents the application of the TOM4D methodology on the didactic ex-

ample presented in the precedent chapter, the hydraulic system of [CPR00]. This example aims

to illustrate the different points discussed during the presentation of the TOM4D methodology.

4.5 Application on a Didactic Example

The TOM4D methodology is illustrated with the didactic example of a hydraulic system de-

scribed in [CPR00].

Figure 4.9: The hydraulic system of [CPR00]

Figure 4.9 provides a schematic representation of the hydraulic system. Let us consider that

the available knowledge is the following text extracted from [CPR00], only the text format has

been changed:

1. The system is formed by a pump P which delivers water to a tank TA via a pipe PI;

another tank CO is used as a collector for water that may leak from the pipe.

2. For the sake of simplicity we assume that the pump is always on and supplied of water.

3. The pump P has three modes of behavior:

• ok (the pump produces a normal output flow),

• leaking (it produces a low output flow) and

• blocked (no output flow).

4. The pipe PI can be:
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• ok (delivering to the tank the water it receives from the pump) or

• leaking (in this case we assume that it delivers to the tank a low output when receiving

a normal or low input, and no output when receiving no input).

5. The tanks TA and CO are always in mode ok, i.e., they simply receive water.

6. We assume that three sensors are available (see the eyes in Figure 4.9):

• flowp measures the flow from the pump, which can be normal (nrmp), low (lowp),

or zero (zrop);

• levelTA measures the level of the water in TA, which can be normal (nrmta), low

(lowta), or zero (zrota );

• levelco records the presence of water in CO, either present (preco) or absent (absco)

Let us supposes that this textual description of the hydraulic system and the figure 4.9

constitutes the complete available knowledge about the hydraulic system to model. Let us

supposes also that these elements are given with the aim of implementing a diagnosis taks. To

this aim, let us suppose that this description is provided with the purpose of a diagnosis cognitive

task. The next chapter proposes the algorithms designed to use the TOM4D models that will

be made all over the the next sections of this chapter.

According to the modeling process of figure 4.8, the application of the TOM4D methodology

requires the definition of a method that organizes the three main steps that are:

1. Knowledge Interpretation. This step aims at defining a first model that corresponds to

the available knowledge. This step defines the structure of the process to model and the

scientific domain that is concerned under the form of a scenario model M(Ω).

2. Process Definition. This important step defines the way the process is perceived by the

experts under the form of a set of time functions X(t) and the operating goals of the

process. Given the scenario model M(Ω), this step produces the Perception Model that

defines the variable set X and a formal expression of the operating goals. This step uses

the interpretation models that are the adequate ToS to introduce a physical interpretation

of the variables and the goals, and the Predicate Calculus as a formalism to analyze the

consistency of the experts propositions.

3. Generic Modeling. This last step aims at modeling the process under the form of the

structure M(X(t)) = < PM(X(t)), SM(X(t)), FM(X(t)), BM(X(t)) > that has been

define in the section 4.2.

This didactic example is simple enough to apply this process sequentially, so nothing special

has to be defined.

4.5.1 Step 1: Knowledge Interpretation

The interpretation of the figure 4.9 and the 6 points of the text is made according to the

CommonKADS template of figure 4.5.



4.5. APPLICATION ON A DIDACTIC EXAMPLE 71

This template establishes a logical link between Sensors and Process Phenomena. The point

6 of the text defines three sensors providing Timed Measures under the form of abstract values.

These sensors are associated with the four elements that are explicitly defined as components in

the point 1, the points 2, 3, 4 and 5 defining their mode of behavior :

• Component c1: The name of c1 is PI, its nature is to be a pipe. c1 has two modes of

behavior: ok and leaking. There is no senor associated with it.

• Component c2: The name of this component is P, its nature is to be a pump that has three

modes of behavior: ok, leaking and blocked. c2 is associated with the sensor flowp that

measures over time the water flow of P and provides three possible values: nrmp denoting

the normal value of the water flow, lowp denoting the low value and zrop denoting the

zero value.

• Component c3: The name of c3 is TA, its nature is to be a tank that has only one mode

denoted ok. c3 is associated with the sensor levelTA that measures over time the water

level contained in c3. levelTA provides three possible values: nrmTA denoting the normal

value of the water level, lowTA denoting the low value and zroTA denoting the zero value.

• Component c4: The name of c4 is CO, its nature is to be a tank with only one mode of

behavior ok. c4 is associated with the sensor levelCO that measures over time the presence

of water in c4. levelCO provides two possible values: preCO denoting that water is present

in c4 and absCO denoting the absence of water.

The CommonKADS template of figure 4.5 allows to consider that a sensor is a type of

component. So three more components can be identified:

• Component c5: The name of c5 is flowp, its nature is to be a sensor. c5 provides three

values nrmp (normal), lowp (low) and zrop (zero).

• Component c6: The name of c6 is levelCO, its nature is to be a sensor that provides two

values: preCO (presence) and absCO.

• Component c7: The name of this component is levelTA, its nature is to be a sensor that

provides three values: nrmTA (normal), lowTA (low) and zroTA (zero).

The CommonKADS template of figure 4.5 provides no means to interpret the term mode

of behavior. Nevertheless, it can noticed that only c1 and c2, the pipe and the pump, have at

least two possible values of mode of behavior. A tank (i.e. c3 and c4) has only one value, and

nothing is said about the sensors. Recalling that the multi-value variable principle of the TOT

imposes at least two values for a variable, it is then simple, at this step of modeling, to associate

a variable to the mode of behavior of c1 and c2, even if this notion is still undefined.

But a modeling choice must be made about the other components that have either one value,

ok (the tanks), or no value at all (the sensors). It is usual to take the decision that simplifies

the model: if such a decision leads to some problems, it is always possible to come back to take

another modeling decision. So no variable will be associated with the mode of behavior of all

the components except c1 and c2. Such a modeling decision means that the components never

change of mode of behavior.
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Variable Possible Values Nature

modePI ok, leaking modes of behavior of a Pipe

modeP ok, leaking, blocked modes of behavior of a Pump

flowp zrop, lowp, nrmp Values of a Sensor

levelCO absCO, preCO Values of a Sensor

levelTA zroTA, lowTA, nrmTA Values of a Sensor

Table 4.5: Definition of the Concrete Variables

As a consequence, five variables can be a priori identified (cf. Table 4.5).

An important point of the TOM4D methodology is the Symbol Driven Modeling principle.

The role of this principle is to avoid the uncontrolled introduction of semantic elements in the

model by the use of anonymous variables and values. This application of this principle leads to

the construction of the Table 4.6 where abstract denominations are used to define the variables

and their possible values.

Comp. Variable Definition Domain Respective Value Name

c1 x1 ∆x1
= {δ10, δ11} leaking, ok

c2 x2 ∆x2
= {δ20, δ21, δ22} blocked, leaking, ok

c5 x5 ∆x5
= {δ50, δ51, δ52} zrop, lowp, nrmp

c6 x6 ∆x6
= {δ60, δ61} preCO, absCO

c7 x7 ∆x7
= {δ70, δ71, δ72} zroTA, lowTA, nrmTA

Table 4.6: Definition of The Abstract Variables

According to the Spatial Discretization Principle, the definition domains of the sensor’s

variables x5, x6 and x7 allows to identify five abstract thresholds (cf. Table 4.7. The values of

the variables x1 and x2 denoting modes of behavior, no thresholds are defined.

Variable Definition Domain Respective Abstract Ranges

x5 ∆x5
= {δ50, δ51, δ52} ]−∞,Ψ51[, [Ψ51,Ψ52[ , [Ψ52,+∞[

x6 ∆x6
= {δ60, δ61} ]−∞,Ψ61[, [Ψ61,+∞[

x7 ∆x7
= {δ70, δ71, δ72} ]−∞,Ψ71[, [Ψ71,Ψ72[ , [Ψ72,+∞[

Table 4.7: Definition of The Abstract Thresholds

The interpretation of the text is sufficient to define a first structural model SM(Ω), before

providing the Ω sequence (cf. figure 4.10).

Formally, according to the definition 4.2 TOM4D methodology, the structural model SM(Ω)

is a structure < COMPS,Rp, Rx > where:

• COMPS = {c1, c2, c3, c4, c5, c6, c7}

• Rp = {out1(c2) = in1(c1), out2(c2) = in(c5), out1(c1) = in(c3), out2(c1) = in(c4), out(c3) =

in(c7), out(c4) = in(c6), }

• Rx = {x1 = in2(c1), x2 = in(c2), x5 = out(c5), x6 = out(c6), x7 = out(c7)}

A first structural model being made, it is then possible to analyze the relations between

the values of the variables. The structural model of figure 4.10 allows the identification of the

following functions (cf. figure 4.11):
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Figure 4.10: Structural Model SM(Ω)

• x5 = f1(x2): there is a relation between the values of x5 and those of x2.

• x7 = f2(x5): there is a relation between the values of x7 and those of x5.

• x6 = f3(x5, x1): there is a relation between the values of x6 and those of x5 and x1.

Figure 4.11: Functional Model FM(Ω)

Formally, according to the definition 4.3 of TOM4D methodology, the functional model

FM(Ω) is a structure < ∆, F,Rf > where:

• ∆ = ∪
i=1,2,5,6,7

∆xi
(the ∆xi

are given in the table 4.6).

• F = { f1 : ∆x2
→ ∆x5

, f2 : ∆x5
→ ∆x7

, f3 : ∆x1
×∆x5

→ ∆x6
}.

• Rf = { x5 = f1(x2), x7 = f2(x5), x6 = f3(x1, x5) }.

Naturally, at this step of the modeling process, the function f1, f2 and f3 cannot be entirely

specified. Nevertheless, considered together, the points 3 and 5 of the original text allow to

identify the relations between the modes of behavior of c2 (the pump, that is to say the values

of x2, and the values of x5 (i.e. flowp). Here again, the template of 4.5 provides a meaning

to the relations between the values: a sensor measuring a phenomena, the values it provide are

consequences of the phenomena. This allows to define the followings relations between x2 and

x5:
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• x2 = δ22 ⇒ x5 = δ32 (c2 is ok → flowp is nrmp)

• x2 = δ21 ⇒ x5 = δ31 (c2 is leaking → flowp is lowp)

• x2 = δ20 ⇒ x5 = δ30 (c2 is blocked→ flowp is zrop)

A similar analysis can be made with the modes of behavior of the pipe c1 (i.e. x1) and the

values of x6 (i.e. levelCO):

• x1 = δ11 ⇒ x6 = δ61 (c1 is ok → levelCO is absCO)

• x1 = δ10 ∧ x5 = δ51 ⇒ x6 = δ60 (c1 is leaking and flowp is lowp → levelCO is preCO)

• x1 = δ10 ∧ x5 = δ52 ⇒ x6 = δ60 (c1 is leaking and flowp is nrmp → levelCO is preCO)

But nothing is said about the relation between the values of x5 (flowp) and x6 (levelCO)

and those of x7 (levelTA): the usual interpretation of of the terms flow and level suggests a

derivative relation where the time have a place. On the other hand, the structural model (cf.

figure 4.10) suggests that the output flow of the pump, measured by x5, is decomposed in two

flows: one for c3 (the tank TA) and the other for c4 (the tank CO). So, there could be a more

complex relation than the functional model describes at this step of the modeling process.

To go further, a scenario must be constructed to describes a part of the behavior of the

global process. Here again, the template of 4.5 helps to this aim: a sensor being an instrument

that provides measures over time about a process phenomena, these measures can be represented

with a time function that constitute a signal when ordering the timed values according to they

time-stamp. So, a naive but natural interpretation of the 6 points of the text allows to build

the following first scenario ω1 called the Licking Pipe scenario:

1. Initially, at t = t0, the pump is blocked, x2(t0) = δ20, the pipe PI is ok (x1(t0) = δ11),

the tanks TA and CO are empty: x7(t0) = δ70 and x6(t0) = δ61. In such a situation,

x5(t0) = δ50 (flowp is zrop).

2. At t = t1, the pump is turn on: x2(t1) = δ22.

3. At t = t2, the output flow of the pump is low and enters in the pipe (x5(t2) = δ51). The

level in the tank TA increases.

4. At t = t3, the output flow of the pump reaches the its normal value: x5(t3) = δ52.

5. At t = t4, the level in the tank TA achieves the low level : x7(t4) = δ71.

6. At t = t5, the level in the tank TA achieves the normal level: x7(t5) = δ72.

7. At t = t6, the pipe PI is leaking (x1(t6) = δ10): a part of the output water flow of the

pump goes into the tank CO (i.e. its level increases).

8. At t = t7, some water can be seen in the tank CO: x6(t7) = δ60.

This scenario supposes that the dynamic of the pump is the lower of the global process.

A second naive scenario ω2 can be made, called the blocked Pump scenario:
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1. Initially, at t = t9, the pump is blocked, x2(t9) = δ20, the pipe PI is ok (x1(t9) = δ11),

the tanks TA and CO are empty: x7(t9) = δ70 and x6(t9) = δ61. In such a situation,

x5(t9) = δ50 (flowp is zrop).

2. At t = t10, the pump is turn on: x2(t10) = δ22.

3. At t = t11, the output flow of the pump is low and enters in the pipe (x5(t11) = δ51). The

level in the tank TA increases.

4. At t = t12, the output flow of the pump reaches the its normal value: x5(t12) = δ52.

5. At t = t13, the level in the tank TA achieves the low level : x7(t13) = δ71.

6. At t = t14, the level in the tank TA achieves the normal level: x7(t14) = δ72.

7. At t = t15, the pump P is leaking (x2(t15) = δ21): the pump output water flow decreases.

8. At t = t16, the output flow of the pump enters again in the low range: x5(t16) = δ51.

9. At t = t17, the pump P is blocked (x2(t17) = δ20): the pump output water flow continues

to decrease.

10. At t = t18, the flow in the pipe enters again in the zero range: x5(t18) = δ50.

These scenario made some hypothesis about the dynamic of the hydraulic process. But they

allow to identify an important point: only the variables associated with sensors can be used to

defined observations classes, that is to say the variables x5, x6 and x7.

Nevertheless, with the aim of illustrating the behavioral model formalism, let us suppose

that all the classes are observable. To build a set C of observation classes, the simplest consists

in defining an observation class as a singleton for each pair (xi, δij), (cf. Table 4.8). In this

table, the classes are denoted Cij = {(xi, δij)} where i denotes the variable index and ij the

index of the corresponding value δij .

Variable Definition Domain Observation Classes

x1 ∆x1
= {δ10, δ11} C10 = {(x1, δ10)}, C11 = {(x1, δ11)}

x2 ∆x2
= {δ20, δ21, δ22} C20 = {(x2, δ20)}, C21 = {(x2, δ21)}, C22 = {(x2, δ22)}

x5 ∆x5
= {δ50, δ51, δ52} C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)}

x6 ∆x6
= {δ60, δ61} C60 = {(x6, δ60)}, C61 = {(x6, δ61)}

x7 ∆x7
= {δ70, δ71, δ72} C70 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)}

Table 4.8: Definition of The Observation Classes

Given the table 4.8, the two scenarii can be written in therm of occurrences of observation

classes:

1. ω1 = {C22(t1), C51(t2), C52(t3), C71(t4), C72(t5), C10(t6), C60(t7)}.

2. ω2 = {C22(t10), C51(t11), C52(t12), C71(t13), C72(t14), C21(t15), C51(t16), C20(t17), C50(t18)}.

It is recalled also that, according to the Spatial Discretization Principle of the TOT, the

interpretation of an occurrence Cij(tk) is xi(tk) = δij (i.e. Cij(tk) ≡ xi(tk) = δij), meaning that
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the corresponding time function xi(t) enters in a particular range that can be denoted δij . As

a consequence, the first observations of the two scenarii, that is to say C70(t0), C61(t0), C50(t0)

for ω1 and C70(t9), C61(t9), C50(t9), cannot be written by a safe program Θ(X,∆) because the

time functions x5(t), x6(t) and x7(t) does not cross any threshold until Ψ51 for x5, Ψ71 for x7

and Ψ60 for x6(cf. table 4.7).

But to illustrate the behavioral modeling, let us define the initial state, denoted s0, where

x1 = δ11, x2 = δ20, x5 = δ50, x6 = δ60 and x7 = δ70. Let us then define also a vector, denoted

X and defined on ∆x1
×∆x2

×∆x5
×∆x6

×∆x7
of dimension 5 corresponding to the variables

x1, x2, x5, x6 and x7 so that each discernible state sk is associated with one an only one value

Xk and reversely. Let us finally denote Xk, k ∈ N , the values of this vector so that a partcular

value Xk corresponds to: x1 = δ1i, x2 = δ2j , x5 = δ5l, x6 = δ6m and x7 = δ7n (the initial state

is denoted X0).

The figures 4.12 and 4.13 proposes a graphical representation of the sequences of discernible

states entail by the sequences ω1 and ω2 of timed observations. With these figures, it is easy to

build behavioral model of figure 4.14 of the set Ω = {ω1, ω2}.

Figure 4.12: Graphical Representation of the Behavioral Model BM(ω1)

Figure 4.13: Graphical Representation of the Behavioral Model BM(ω2)

Formally, according to the definition 4.4 of TOM4D methodology, the behavioral model

BM(Ω) of the Ω sequence is the structure < S,C,Rs > where:

• S = {

s0 = {r(Cφ, C22)}, s1 = {r(C22, C51)}, s2 = {r(C51, C52)}, s3 = {r(C52, C71)},
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Figure 4.14: Graphical Representation of the Behavioral Model BM(Ω)

s4 = {r(C71, C72)}, s5 = {r(C72, C10)}, s6 = {r(C10, C60)}, s7 = {r(C72, Cφ)},

s8 = {r(C21, C51)}, s9 = {r(C51, C20)}, s10 = {r(C20, C50)}, s11 = {r(C50, Cφ)}

}

• C = {

C10 = {(x1, δ10)}, C11 = {(x1, δ11)},

C20 = {(x2, δ20)}, C21 = {(x2, δ21)}, C22 = {(x2, δ22)},

C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)},

C60 = {(x6, δ60)}, C61 = {(x6, δ61)},

C70 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)}

}

• Rs = {

s1 = {(s0, C22)}, s2 = {(s1, C51)}, s3 = {(s2, C52)}, s4 = {(s3, C71)}, s5 = {(s4, C72)},

s6 = {(s5, C10)}, s7 = {(s6, C60)},

s8 = {(s5, C21)}, s9 = {(s8, C51)}, s10 = {(s9, C20)}, s11 = {(s10, C50)},

}

Clearly, this model is only a very small part of the complete behavioral model of the hydraulic

process: potentially, the discernible state space contains 2 · 3 · 3 · 2 · 3 = 108 states. In other

words, the building of the complete behavioral model leads to analyze 108·107 = 11 556 relations

between two different discernible states. And on the other hand, the relations between the

variables x7 (levelTA), x5 (flowp) and x6 (levelCO) remains unclear. A deeper analysis is then

clearly required: this is the role of the two next steps of the TOM4D modeling process.

Nevertheless, even if the behavioral model BM(Ω) is largely uncompleted, it can be consid-

ered as significant according two points of view:

• the effect of a leaking pipe (x1) on the presence of water in the tank CO (x6), and

• the effect of a blocked pump (x2) on the water flow in the pipe (x5).
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More, it provides dynamical informations about the way some of the timed observations may

be scheduled by the process. These elements ar of the most importance to defines the way the

expert perceives the process.

4.5.2 Step 2: Process definition

Recalling that the Perception Model PM(X(t)) of a dynamic process X(t) is a structure <

X,Ψ, Rq > (cf. definition 4.1) where X is a set of variable names, Ψ is a set of thresholds and

Rq is a set of logical conjunction representing goals and operating modes, the first step of the

Process Definition step consists in the definition of the hydraulic process under the form of a

set X(t) of time functions.

The models made in the precedent step allows to immediately identify x5(t), x6(t) and x7(t)

as time functions:

• x5 denotes the water output flow of the pump (flowp): it corresponds then to the Q

variable of the hydraulic ToS. The physical dimension of x5 is then m3.s−1.

• x6 and x7 denote the water level of the tanks TA and CO respectively: they correspond

then to the V variable of the hydraulic ToS. The physical dimension of x6 and x7 is then

m3.

The only equation of the hydraulic ToS (cf. figure 4.7) that is required to define the percep-

tion model is then the equation 4.12.

Q(t) =
dV (t)

dt
(4.12)

This equation allows to analyse the type of components:

1. c3 and c4: a tank is a container. It is characterized by a capacity, a maximum quantity of

water that be contained in it, one input flow and one output flow. The original text says

nothing about the capacity and the output flow of the tanks TA and CO: this means that

they are supposed to be managed so that their levels are only the result of their input

flows (i.e. the level is proportional with the volume).

2. c2: a pump is a generator of a water flow. The point 2 of the original text means then

that the pump P is always fed with water. In other words, the different values of flowp

(i.e. x5) does not comes from a lack of water: the terms bloqued (δ20) and leaking (δ21)

concerns only the property of the generator to deliver the always available water. The

values of x5 can then be considered as equivalent to the values of x2.

3. c1: a pipe is a conduit or a tube that is characterized by the fact that its input flow equals

its output flow (i.e. there is no storage). For simplicity reason, let us consider that the

pipe PI is stiff (no deformation). The term leaking (δ10) associated to x1 means then

that c1 can have two outputs: a normal output flow, corresponding to out1(c1) = in(c3) in

SM(Ω), and a leaking flow, corresponding to out2(c1) = in(c4). These two flows are not

measured but the values of x1 are clearly linked with the leaking flow of the pipe.
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This simple analysis allows to propose the goals and the operating modes of the hydraulic

process, the set Ψ of thresholds being defined in the table 4.7:

• Operating goal: To maintain the level of the tank TA at a normal level and to maintain

empty the tank CO

– ∀t ≥ t0, x7(t) ≥ Ψ72 ∧ x6(t) ≤ Ψ61

• Normal operating mode: The output flow x5 of pump P is normal δ52, the level x7 in the

tank is normal δ72 and there is no water in the tank CO (i.e. x6 = δ60)

– ∀t ≥ t0, x5(t) ≥ Ψ52 ∧ x7(t) ≥ Ψ72 ∧ x6(t) ≤ Ψ61

• Abnormal operating modes: their are simply the negation of the normal operating mode

conjonction.

– ∀t ≥ t0, x5(t) < Ψ52 ∨ x7(t) < Ψ72 ∨ x6(t) > Ψ61

To define the hydraulic processX(t) as a set of time functions xi(t), the status of the variables

x1 and x2 must be clarified. Their values are defined as mode of behaviors but this term is not

clearly defined and the hydraulic ToS provides no dimension to the variables x1 and x2.

Nevertheless, x1 can have two values: δ10 corresponding to leaking, and δ11 corresponding to

ok. These two values are directly linked with those of x6:

• If the pipe is leaking, and if flowp is not null, then some water will fall in the tank CO.

In that case, x6 = δ60 (i.e. preCO) meaning that there is some water in the tank CO.

• If the pipe pipe is ok, whatever is flowp, no water will fall in the tank CO. If this tank is

empty, then x6 = δ61 corresponding to absCO.

Using the formal logic as an interpretation framework, it is then possible to consider preCO

is the opposite of absCO: δ60 ≡ ¬δ61. As a consequence, x1 can be considered as a boolean

variable taking a value in a boolean set ∆x1
= {δ10, δ11} so that: δ10 ≡ ¬δ11. It is then possible

to define x1(t) as a boolean time function (i.e. a double Heaviside step function).

A similar reasoning can be done for x2(t), except that x2 can have three values: ∆x2
=

{δ20, δ21, δ22} corresponding respectively to blocked, leaking and ok. x2(t) is then a piecewise

constant function.

As a consequence, x1(t) and x2(t) can enters in the Perception Model of the hydraulic process

(cf. definition 4.6). To provide PM(X(t)), let us define the starting time t0 as the time at which

the operations begins. This time is suppose to exist: there is always a time that can be taken

as the starting time. Let us also define the time ti as the time at which the goal is reach for the

first time, ti ≥ t0. The delay ti− t0 corresponds then to the amount of time that is necessary to

put in the process in its normal operating mode.

Definition 4.6 PM(X(t))

The Perception Model PM(X(t)) of the hydraulic process X(t) = {x1(t), x2(t), x5(t), x6(t),

x7(t)} is the structure < X,Ψ, Rq > where:

• X = {x1, x2, x5, x6, x7},
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• Ψ = {Ψ51,Ψ52,Ψ60,Ψ71,Ψ72}

• Rq = Rgoal ∪Rn ∪Rab.

– Rgoal = {∃t0, ∃ti, ti ≥ t0, ∀t ≥ ti, x7(t) ≥ Ψ72}

– Rn = {∀t ≥ ti, x7(t) ≥ Ψ72 ∧ ∀t ≥ t0, x6(t) ≤ Ψ60}

– Rab = {∀t ≥ ti, x7(t) < Ψ72 ∨ ∀t ≥ t0, x6(t) > Ψ60}

Rgoal defines that the goal of the operations is to have x7(t) ≥ Ψ72 (i.e. levelTA is nrmTA)

from the time ti. This proposition defines the time ti. Rn simply expresses that the normal

operation is satisfying the main goal (forallt ≥ ti, x7(t) ≥ Ψ72) without water in the tank CO

(i.e. levelCO is absCO). As a consequence, Rab is simply the complement of Rn: from the time

the goal has been reached, the process must be operate to continue to satisfy the goal (i.e. it not

normal that levelTA differs from nrmTA) and the tank CO must not contain water. Naturally,

without any expert about the hydraulic process of the didactic example, it is not possible to

validate PM(X(t)): the propositions it contains must be considered as hypothesis.

The perception model PM(X(t)) being defined, it is then possible to go in the last modeling

step, the Generic Modeling.

4.5.3 Step 3: Generic Modeling

The point number 2 of this analysis of the type of component is sufficient to provide a formal

specification of the function x5 = f1(x2), defined on ∆x2
×∆x5

of the functional model FM(Ω)

(cf. table 4.9).

f1 : ∆x2
→ ∆x5

x2 f1(x2) Interpretation

δ20 δ50 the pump P is blocked ⇒ flowp is zero

δ21 δ51 the pump P is leaking ⇒ flowp is low

δ22 δ52 the pump P is ok ⇒ flowp is normal

Table 4.9: Definition of the Generic Function f1

The other two points leads also to a formalization of the relation between the input flow of

the tanks TA and CO. When denoting respectively QTA and QCO these flows, the following

equations can be written :

x5(t) = QTA(t) +QCO(t) (4.13)

As a consequence:

QTA(t) = d
dtx7(t)

QCO(t) = d
dtx6(t)

(4.14)

That is to say:

x7(t) =
∫

QTA(t)dt

x6(t) =
∫

QCO(t)dt
(4.15)
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Now, to clarify the functional model of the hydraulic process, let us define a new abstract

variable φ8 ∈ [0, 1] ⊂ ℜ such that:

x5(t) = (1− φ8) · x5(t) + φ8 · x5(t)

QTA(t) = (1− φ8) · x5(t)

QCO(t) = φ8 · x5(t)

(4.16)

The role of the variable φ8 is to, eventually, distribute the water flow x5(t) into the tank

CO:

φ8 = 0 ⇒ QCO(t) = 0 ∧QTA(t) = x5(t)

φ8 > 0 ∧ φ8 < 1 ⇒ QCO(t) > 0 ∧QTA(t) > 0

φ8 = 1 ⇒ QCO(t) = x5(t) ∧QTA(t) = 0

(4.17)

This equation provides then a clear semantic to the point 4 of the original text, that is to

say to the values of the variable x1:

• The pipe PI (c1) can be ok (x1 = δ11) means: φ8 = 0.

• The pipe PI (c1) can be leaking (x1 = δ10) means: φ8 > 0.

There is then a relation between the values of φ8 and those of x1. The definition domain

∆φ8
of φ8 is given in the table 4.10.

∆φ8

Constants Interpretation

δ80 φ8 > 0

δ81 φ8 = 0

Table 4.10: Definition Domain ∆φ8
of φ8

These relation can then be formally represented with a function f4, defined on ∆φ8
× ∆x1

(cf. Table 4.11).

f4 : ∆φ8
→ ∆x1

φ8 f4(φ8) Interpretation

δ80 δ10 φ8(t) > 0 implies the pipe PI is leaking

δ81 δ11 φ8(t) = 0 implies the pipe PI is ok

Table 4.11: Definition of the Generic Function f4

The equations 4.15 becomes:

x7(t) = (1− φ8) ·
∫

x5(t)dt

x6(t) = φ8 ·
∫

x5(t)dt
(4.18)

x6(t) and x7(t) being levels expressed in meter m and the flows x5(t), QTA(t) and QCO(t)

being expressed in m3.s−1, the variable name φ8 denotes the inverse of a surface an is expressed

in m−2:

• φ8 = δ81 ≡ φ8(t) = 0 means that the surface is infinite: the surface of the pipe PI is

sufficient to conduct all the water flow that traverses it.
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• φ8 = δ80 ≡ φ8(t) > 0 means that the surface of finite: the surface of the pipe PI is not

sufficient to conduct all the water flow that comes into it (i.e. there is a hole in the pipe

or some water overflows the conduct).

The equations 4.18 establish a clear link between the values of the time functions x5(t) (the

water flow in the pipe PI), x6(t) and x7(t) (i.e. the levels of water in the tanks CO and TA

respectively). In other words, the semantic to the functions f2 and f3 of the functional model

SM(Ω) is the following:

x7(t) = f2(x5(t)) = (1− φ8) ·

∫

x5(t)dt (4.19)

x6(t) = f3(x5(t)) = φ8 ·

∫

x5(t)dt (4.20)

As a consequence, the functions f2 and f3 must be re-defined under the algebraic form of

x7 = f2(x5, φ8) and x6 = f3(x5, φ8) (cf. the tables 4.13 and 4.15).

Let us apply firstly the FSM transformation to the function f2. Let us denote φ2 the internal

variable of f2 and ∆φ2
its definition domain. The output of the f2 function can have three values:

δ70 (zero), δ71 (low) and δ72 (normal). So let us define also three values for φ2: δ20 denoting

the fact that the tank TA is empty, δ21 denoting the fact that the tank TA contains few water,

and δ22 denoting the fact the tank is normally full (cf. table 4.12).

∆φ2

Constants Interpretation

δ20 Empty tank

δ21 Few water in the tank

δ22 Tank normally full

Table 4.12: Definition Domain ∆φ2
of φ2

The table 4.13 constitutes then an algebraic representation of the function f2. Again, this

table specifies an automata that will be described in the TOM4D behavioral model.

f2 : ∆x5
→ ∆x7

φ2 x5 f2(x5) Interpretation

δ20 δ50 δ70 Empty tank, no input flow ⇒ null level

δ20 δ51 δ71 Empty tank, low flow ⇒ low level

δ20 δ52 δ71 Empty tank, normal flow ⇒ low level

δ21 δ50 δ71 Few water in the tank, no input flow ⇒ low level

δ21 δ51 δ72 Few water in the tank, a low input flow ⇒ normal level

δ21 δ52 δ72 Few water in the tank, a low input flow ⇒ normal level

δ22 - δ72 Tank normally full ⇒ normal level

Table 4.13: Definition of the Generic Function f2

Similarly, let us denote φ3 the internal variable of f3 and Deltaφ3
its definition domain.

Because the output value can have two values δ60 (presence of water) and δ61 (absence of

water), φ3 must also have two values: δ31 denoting the fact that the tank CO contains water,

and δ30 denoting the fact the tank is empty (cf. table 4.14).
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∆φ3

Constants Interpretation

δ30 Empty tank

δ31 The tank contains water

Table 4.14: Definition Domain ∆φ3
of φ3

f3 : ∆x5
×∆φ8

→ ∆x6

φ3 x5 φ8 f3(x5, φ8) Interpretation

δ30 - δ81 δ61 Empty tank, φ8 = 0 ⇒ absence of water

δ30 δ50 - δ61 Empty tank, no input flow ⇒ absence of water

δ30 δ51 δ80 δ60 Empty tank, low input flow, φ8 > 0 ⇒ presence of water

δ30 δ52 δ80 δ60 Empty tank, normal input flow, φ8 > 0 ⇒ presence of water

δ31 - - δ60 Not empty tank ⇒ presence of water

Table 4.15: Definition of the Generic Function f3

The table 4.15 constitutes then an algebraic representation of the function f3.

Recalling that the variables φ2 and φ3 are internal variables of the functions f2 and f3

respectively, the analysis with the hydraulic ToS of the precedeing step alows to update the

functional model FM(Ω) (cf. figure 4.15).

Figure 4.15: Generic Functional Model FM(X(t))

Formaly, the Generic Functional Model FM(X(t)) of the hydraulic system is given in the

definition 4.7.

Definition 4.7 FM(X(t))

The Functional Model FM(X(t)) of the hydraulic process X(t) is the structure < ∆, F,Rf >

where,

• ∆ = ∆x1
∪∆x2

∪∆x5
∪∆x6

∪∆x7
∪∆φ8

.

• F = {f1 : ∆
x1 ×∆x5 , f2 : ∆

x5 ×∆x7 , f3 : ∆
x5 ×∆φ8 ×∆x7 , f4 : ∆

φ8 ×∆x1}.

• Rf = {x5 = f1(x2), x7 = f2(x5), x6 = f3(x5, φ8), x1 = f4(φ8)}.

The definition domain ∆xi
of the variables are given in the table 4.6 for x1, x2, x5, x6 and

x7 and 4.10 for φ8. The function f1, f2, f3 and f4 are specified in the tables 4.9, 4.13, 4.15 and

4.11 respectively.

The generic structural model SM(X(t)) can now be defined. The analysis of the hydraulic

system leads to define a new component, denoted C8, that merges the components c2 (the pump
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P ), c1 (the pipe PI). The analysis have nothing to say about the sensors c3 (the sensor flowp),

c7 (levelTA) and c6 (levelTA), they are considered as always available. They have then been

merged in their respective components c8, c7 and c8. This leads to a simplified the generic

structural model graphically represented in figure 4.16.

Definition 4.8 SM(X(t))

The Generic Structural Model SM(X(t)) is a structure < COMPS,Rp, Rx > where:

• COMPS = {c0, c8, c9}

• Rp = {out1(c8) = in(c9), out1(c8) = in1(c0), out2(c8) = in2(c0)}

• Rx = {x1 = out3(c8), x2 = out4(c8), x5 = out1(c8), φ8 = out2(c8), x6 = out(c0), x7 =

out(c9)}

Figure 4.16: Generic Structural Model SM(X(t))

This generic structural model defines the hydraulic process X(t) as a network of dynamic

process X(t) = X8(t) ∪X7(t) ∪X6(t) where:

• X8(t) = {x1(t), x2(t), x5(t), φ8(t)}

• X7(t) = {x5(t), x7(t)}

• X6(t) = {x5(t), x6(t), φ8(t)}

This means that:

• X8(t) implements the functions f1 and f4.

• X7(t) implements the function f2.

• X6(t) implements the function f3.

The interest of the network structure is the simplification of the building of the generic

behavioral model : the functions f1 and f4 being purely algebraic, the process X8(t) does not

requires a behavioral model. Inversely, the processesX7(t) andX6(t) requires a behavioral model

because the functions f2 and f3 specifies an automata. Finally, the propositions contained in

the perception model PM(X(t)) will be distributed over the different processes.
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4.5.3.1 Step 3.1: Generic Modeling of X8(t)

The Perception Model of the process X8(t) is given in the definition 4.9:

Definition 4.9 PM(X8(t))

The Perception Model PM(X8(t)) of the process X8(t) = {x1(t), x2(t), x5(t), φ8(t)} is the

structure < X8,Ψ8, R
q8 > where:

• X8 = {x1, x2, x5, φ8},

• Ψ = {Ψ51,Ψ52,Ψ8}

• Rq8 = Rgoal8 ∪Rn8 ∪Rab8.

– Rgoal8 = Φ.

– Rn8 = {∀t ≥ t0, x1(t) = δ11 ∧ x2(t) = δ22}.

– Rab8 = {∀t ≥ t0, x1(t) = δ10 ∨ x2(t) = δ20 ∨ x2(t) = δ21}.

The main goal of X(t) being concerned with X7(t), no goal is assigned to X8(t). The normal

operation Rn8 means that the mode of behavior of the pump P and the pipe PI must be ok : the

output flow of the pump P is equal to the input flow of the pipe PI and the input and output

flows of the pipe PI are equal. In that case, all the water provided by the pump P goes into

the tank TA. As a consequence, the abnormal operations Rab8 is the complement of Rn8 : the

pipe PI is leaking (i.e. x1(t) = δ10) or the pump P is either blocked (x2(t) = δ20) or leaking

(x2(t) = δ21).

The structural model of X8(t) is given in the definition 4.10 and is represented in the figure

4.17.

Definition 4.10 SM(X8(t))

The structural model SM(X8(t)) is the structure < COMPS8, R
p8 , Rx8 > where:

• COMPS8 = {c1, c2, c5}

• Rp8 = {out1(c2) = in1(c1), out2(c2) = in(c5)}

• Rx8 = {x1 = out2(c1), x2 = out1(c2), x5 = out(c5), φ8 = out2(c1)}

Figure 4.17: Generic Structural Model SM(X8(t))

The Generic Functional Model FM(X8(t)) of X8(t) is given in the definition 4.11 (cf. figure

4.18.
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Definition 4.11 FM(X8(t))

The Functional Model FM(X8(t)) of the hydraulic process X8(t) is the structure < ∆8, F8, R
f8 >

where,

• ∆8 = ∆x1
∪∆x2

∪∆x5
∪∆φ8

.

• F8 = {f1 : ∆
x1 ×∆x5 , f4 : ∆

φ8 ×∆x1}.

• Rf = {x5 = f1(x2), x1 = f4(φ8)}.

Figure 4.18: Generic Functional Model FM(X8(t))

The specification of the functions f1 and f4 is recalled in the table 4.16.

f1 : ∆x2
→ ∆x5

x2 f1 Interpretation: x2 = f1(x5)

δ20 δ50 x2 = δ20 ⇒ x5 = δ50
δ21 δ51 x2 = δ21 ⇒ x5 = δ51
δ22 δ52 x2 = δ22 ⇒ x5 = δ52

f4 : ∆φ8
→ ∆x1

φ8 f4 Interpretation: x1 = f4(φ8)

δ80 δ10 φ8 > 0 ⇒ x1 = δ10
δ81 δ11 φ8 = 0 ⇒ x1 = δ10

Table 4.16: Definition of the Generic Functions f1 and f4

The process X8(t) being a purely combinatorial machine, the algebraic to automata trans-

formation is required to build its behavioral model BM(X8(t)) (cf. definition 4.12).

Definition 4.12 BM(X8(t))

The behavior model BM(X8(t)) of the dynamic process X8(t) = {x1(t), x2(t), x5(t), φ8(t)} is

the structure < S8, C8, R
s8 > where:

• The set S8 = {

s80 = {r801(C20, C50)}, s81 = {r811(C21, C51)}, s82 = {r820(C22, C52)}

s83 = {r831(C80, C10)}, s84 = {r841(C81, C11)}

} of 5 discernible states definig 5 sequential binary relations.

• The set C8 = {

C20 = {(x2, δ20)}, C21 = {(x2, δ21)}, C22 = {(x2, δ22)},

C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52), }

C80 = {(φ8, δ80)}, C81 = {(φ8, δ81)},

C10 = {(x10, δ10)}, C11 = {(x10, δ11)}

} made of 6 observations classes.

• The empty set Rs8 = {φ}.

Figure 4.19 proposes a graphical representation of BM(X8(t)).

So, finally, the model M(X8(t)) of the dynamic process X8(t) = {x1(t), x2(t), x5(t), φ8(t)}

is the tuple M(X8(t)) =< PM(X8(t)), SM(X8(t)), FM(X8(t)), Φ >.
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Figure 4.19: Generic Behavioral Model BM(X8(t))

4.5.3.2 Step 3.2: Generic Modeling of X7(t)

The Perception Model of the process X7(t) is given in the definition 4.13:

Definition 4.13 PM(X7(t))

The Perception Model PM(X7(t)) of the process X7(t) = {x5(t), x7(t)} is the structure <

X7,Ψ7, R
q7 > where:

• X7 = {x5, x7},

• Ψ7 = {Ψ71,Ψ72}

• Rq7 = Rgoal7 ∪Rn7 ∪Rab7.

– Rgoal7 = {∃ti, ti ≥ t0, ∀t ≥ ti, x7(t) ≥ Ψ72}

– Rn7 = {∀t ≥ ti, x7(t) ≥ Ψ72}

– Rab7 = {∀t ≥ ti, x7(t) < Ψ72}

The aim of the operations of X7(t) is to maintain the level of the water in the tank TA at

its normal level (i.e. levelTA = nrmTA). The time-stamp ti denotes the time at which the level

of the tank TA reaches for the first time its normal level.

The structural model SM(X7(t)) of X7(t) is given in the definition 4.14 and is represented

in the figure 4.20.

Definition 4.14 SM(X7(t))

The structural model SM(X7(t)) is the structure < COMPS7, R
p7 , Rx7 > where:

• COMPS7 = {c3, c7}

• Rp7 = {out(c3) = in(c7)}

• Rx7 = {x7 = out(c7)}

The Generic Functional Model FM(X7(t)) of the hydraulic system is given in the definition

4.15:

Definition 4.15 FM(X7(t))

The Functional Model FM(X7(t)) of the process X(t7) is the structure < ∆7, F7, R
f7 > where:
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Figure 4.20: Generic Structural Model SM(X7(t))

• ∆7 = ∆x5
∪∆x7

.

• F7 = {f2 : ∆
x5 ×∆x7}.

• Rf7 = {x7 = f2(x5)}.

The specification of the function f2 of the equation x7(t) = f2(x5(t)) is recalled in the table

4.17. This function containing an integrator, the rules of x7(t) = f2(x5(t)) must be implemented

in the behavioral model BM(X7(t)) of X7(t).

f2 : ∆x5
→ ∆x7

φ2 x5 f2 Interpretation: x7 = f2(x5) Physical Interpretation

δ22 δ50 δ70 φ2 = δ22 ∧ x5 = δ50 ⇒ x7 = δ70 Empty, flowp = zrop → levelTA = zroTA

δ20 δ51 δ71 φ2 = δ20 ∧ x5 = δ51 ⇒ x7 = δ71 Empty, flowp = lowp → levelTA = lowTA

δ20 δ52 δ71 φ2 = δ20 ∧ x5 = δ52 ⇒ x7 = δ71 Empty, flowp = nrmp → levelTA = lowTA

δ21 δ50 δ71 φ2 = δ21 ∧ x5 = δ50 ⇒ x7 = δ71 Few, flowp = zrop → levelTA = lowTA

δ21 δ51 δ72 φ2 = δ21 ∧ x5 = δ51 ⇒ x7 = δ71 Few, flowp = lowp → levelTA = nrmTA

δ21 δ52 δ72 φ2 = δ21 ∧ x5 = δ52 ⇒ x7 = δ72 Few, flowp = nrmp → levelTA = nrmTA

δ22 - δ72 φ2 = δ22 ⇒ x7 = δ72 Water → levelTA = nrmTA

Table 4.17: Definition of the Generic Function f2 of X7(t)

To BM(X7(t)) the behavioral model, let us make the followings hypothesis:

• H1: The set ∆7 = {δ70, δ71, δ72} is ordinal. This means that the values of x7 increases (or

decreases) to the next (previous) value in ∆7. For example, if x7(tk) = δ70, x7 can only

increases to the value δ71.

• H2: The normal value (i.e. nrmp) of the water flow flowp in the couple (pump, pipe) is

always sufficient to provide water in c7, the (tank TA). This means that even when φ8 > 0

(i.e. the pipe is leaking), the water flow is still sufficient to increase the level in the tank

TA.

These two hypotheses and the table 4.17 leads to the behavioral model of the definition 4.16:

Definition 4.16 BM(X7(t))

The behavior model BM(X7(t)) of the dynamic process

X7(t) = { x5(t), x7(t)} is the structure < S7, C7, R
s7 > where:

• The set S7 = {

s70 = {r701(C50, C51), r702(C70, C51)},

s71 = {r711(C51, C50), r712(C51, C52), r713(C51, C71), r714(C70, C50), r715(C70, C52), r716(C70, C71)},

s72 = {r721(C51, C50), r722(C51, C52), r723(C51, C70), r724(C51, C72),
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r725(C71, C50), r726(C71, C52), r727(C71, C70), r728(C71, C72)},

s73 = {r731(C52, C71), r732(C52, C51)},

s74 = {r741(C50, C51), r742(C50, C70), r743(C71, C51), r744(C71, C70)},

s75 = {r751(C51, C50), r752(C51, C52), r753(C51, C71), r754(C72, C50), r755(C72, C52), r756(C72, C71)},

s76 = {r761(C52, C51), r762(C52, C72), r763(C71, C51), r764(C71, C72)},

s77 = {r771(C50, C51), r772(C50, C71)},

s78 = {r781(C52, C51), r782(C72, C51)}

} of 9 discernible states defining 36 sequential binary relations.

• The set C7 = {

C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)},

C70 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)}

} of 6 observations classes.

• The set Rs7 = {

s70 = γ(s71, C50), s70 = γ(s74, C70),

s71 = γ(s70, C51), s71 = γ(s73, C51), s71 = γ(s72, C70),

s73 = γ(s71, C52),

s74 = γ(s72, C50), s74 = γ(s77, C71),

s72 = γ(s71, C71), s72 = γ(s76, C51), s72 = γ(s75, C71), s72 = γ(s74, C51),

s76 = γ(s72, C52), s76 = γ(s73, C71),

s77 = γ(s75, C50),

s75 = γ(s72, C72), s75 = γ(s78, C51), s75 = γ(s77, C51),

s78 = γ(s76, C72), s78 = γ(s75, C52)

} of 19 predicates.

The figure 4.21 provide a graphical representation of BM(X7(t)) where each state sk has

been replaced with its corresponding discernible state vector Xk, defined on ∆5×∆7, to facilitate

the reading of the model. In this figure, the boxes represent the discernible states of the process

X7(t) and the relations from the left to the right are over the arrows, the relation that are

under the arrows going from right to the left. According to the TOT, a discernible state si is

defined with a set of sequential binary relation between two observation classes (i.e. r(Ci, Cj)),

and each discernible state can be labelled with a particular value. In the figure 4.21, the

discernible states have been labeled with the values X7i, i = 0...8, of a two dimensions vector,

x5 and x6, so that each label X7i corresponds to a particular state s7i. For example, the state

X70 = {x5 = δ50, x7 = δ70} corresponds to the initial state representing the fact that the water

flow in the pipe is null and the level in the tank TA is zero.

The model M(X7(t)) of the dynamic process X7 = {x5, x7} is then the tuple M(X7(t)) =<

PM(X7(t)), SM(X7(t)), FM(X7(t)), BM(X7(t)) >.

It is to note that this model is completely symmetric according the values of x5: each state

where a class C50 (respectively C51) allows to enter contain the symmetric class C51 (respectively

C50) as an output class. The symmetry is less strong with the values of x7: for example, there

is no way to go back to the state s73 with a class C70 from the state x76. This is the behavioral

translation of the fact that when the flowp is nrmp (i.e. x5 = δ52), it has been supposed that

flowp is necessary and sufficient to increase the water level in the tank TA (i.e. levelTA and
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Figure 4.21: Generic Behavioral Model BM(X7(t))

maintain it at its higher level δ72. Such a property can not be deduced from the logical properties

of the structure or the functions of a dynamic process: it must be translated in its behavioral

model.

This allows to illustrate two important points of the TOM4D methodology:

• The behavioral model of TOM4D aims at formalizing such pieces of knowledge concerning

some particular properties about the behavior of a dynamic process.

• These piece of knowledge breaks a part of the symetry in the behavioral model of the

process. This brings to light the specificities of the process, what makes it unique.

In practice, the introduction of such pieces of knowledge leads to prune the completely

symmetric behavioral model: this constitutes an excellent way to model the behavior of a

process. In other words, the particular properties about the behavior of a dynamic process

leads to the simplification of its behavioral model. So, the TOM4D methodology recommends

to firstly build a fully symmetric behavioral model, and next to prune it with the progressive

introduction of its specificities.

4.5.3.3 Step 3.3: Generic Modeling of X6(t)

The Perception Model of the process X6(t) is given in the definition 4.17:

Definition 4.17 PM(X6(t))

The Perception Model PM(X6(t)) of the process X6(t) = {x5(t), x6(t), φ8} is the structure <

X6,Ψ6, R
q6 > where:

• X6 = {x5, x6, φ8},

• Ψ6 = {Ψ60}

• Rq6 = Rgoal6 ∪Rn6 ∪Rab6.

– Rgoal6 = Φ
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– Rn6 = {∀t ≥ t0, x6(t) ≤ Ψ60}

– Rab6 = {∀t ≥ t0, x6(t) > Ψ60}

The aim of the operations of X6(t) is simply to maintain empty the tank CO (i.e. levelCO =

absCO).

The structural model SM(X6(t)) of X6(t) is given in the definition 4.18 and is represented

in the figure 4.22.

Definition 4.18 SM(X6(t))

The structural model SM(X6(t)) is the structure < COMPS6, R
p6 , Rx6 > where:

• COMPS6 = {c4, c6}

• Rp6 = {out(c4) = in(c6)}

• Rx6 = {in1(c4) = x5, in2(c4) = φ8, x6 = out(c6)}

Figure 4.22: Generic Structural Model SM(X6(t))

The Generic Functional Model FM(X6(t)) of the hydraulic system is given in the definition

4.19:

Definition 4.19 FM(X6(t))

The Functional Model FM(X6(t)) of the process X(t6) is the structure < ∆6, F6, R
f6 > where:

• ∆6 = ∆x5
∪∆φ8

∪∆x6
.

• F6 = {f3 : ∆x5
×∆φ8

×∆x6
}.

• Rf6 = {x6 = f3(x5, φ8)}.

The table 4.18 recalls the specification of the function f3.

f3 : ∆x5
×∆φ8

→ ∆x6

φ3 x5 φ8 f3 Interpretation: x6 = f3(x5, φ8) Physical Interpretation:

δ30 - δ81 δ61 φ3 = δ30 ∧ φ8 = δ81 ⇒ x6 = δ61 E, φ8 = 0 → absCO

δ30 δ50 - δ61 φ3 = δ30 ∧ x5 = δ50 ⇒ x6 = δ61 E, zrop → absCO

δ30 δ51 δ80 δ60 φ3 = δ30 ∧ x5 = δ51 ∧ φ8 = δ80 ⇒ x6 = δ60 E, lowp, φ8 > 0 → preCO

δ30 δ52 δ80 δ60 φ3 = δ30 ∧ x5 = δ52 ∧ φ8 = δ80 ⇒ x6 = δ60 E, nrmp, φ8 > 0 → preCO

δ31 - - δ60 φ3 = δ31 ⇒ x6 = δ60 Water → preCO

Table 4.18: Definition of the Generic Function f3 of X6(t) (where E denotes Empty)

The function f3 containing also an integrator, the rules of x6 = f3(x5, φ8) will be implemented

in the behavioral model of the definition 4.20:
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Definition 4.20 BM(X6(t))

The behavior model BM(X6(t)) of X6(t) = {x5(t), x6(t), φ8} is the tuple < S6, C6, R
s6 > where:

• The set S6 = {

s60 = {r601(C50, C51), r602(C50, C80), r603(C81, C51), r604(C81, C80)},

s61 = {r611(C50, C51), r612(C50, C81), r613(C80, C51), r614(C80, C81)},

s62 = {r621(C51, C50), r622(C51, C52), r623(C51, C60), r624(C80, C50), r625(C80, C52), r626(C80, C60)},

s63 = {r631(C52, C51), r632(C52, C60), r633(C80, C51), r634(C80, C60)},

s64 = {r641(C60, C52), r642(C60, C81), r643(C51, C52), r644(C51, C81)},

s65 = {r651(C52, C51), r652(C52, C81), r653(C60, C51), r654(C60, C81)},

s66 = {r661(C51, C52), r662(C51, C61), r663(C81, C52), r664(C81, C61)},

s67 = {r671(C52, C51), r672(C52, C61), r673(C81, C51), r674(C81, C61)},

s68 = {r681(C51, C50), r682(C51, C52), r683(C51, C80), r684(C61, C50), r685(C61, C52), r686(C61, C80)},

s69 = {r691(C52, C51), r692(C52, C80), r693(C61, C51), r694(C61, C80)}

} of 10 discernible states made with 44 sequential binary relations.

• The set C6 = {

C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)},

C60 = {(x6, δ60)}, C61 = {(x6, δ61)}, C62 = {(x6, δ62)},

C80 = {(φ8, δ80)}, C81 = {(φ8, δ81)}

} of 8 observations classes.

• The set Rs6 = {

s60 = γ(s61, C81), s60 = γ(s68, C50),

s61 = γ(s60, C80), s61 = γ(s62, C50),

s62 = γ(s61, C51), s62 = γ(s63, C51), s62 = γ(s68, C80),

s63 = γ(s62, C52), s63 = γ(s69, C80),

s64 = γ(s62, C60), s64 = γ(s65, C51),

s65 = γ(s63, C60), s65 = γ(s64, C52),

s66 = γ(s64, C81), s66 = γ(s67, C51),

s67 = γ(s65, C81), s67 = γ(s66, C52),

s68 = γ(s66, C61), s68 = γ(s69, C51), s68 = γ(s60, C51),

s69 = γ(s67, C61), s69 = γ(s68, C52)

} of 22 predicates.

The figure 4.23 provides a graphical representation of BM(X6(t)) where the discernible states

have replaced with the values X6i, i = 0...9 of a three dimension vector X6 corresponding to the

values of x5, φ8 and x6 (i.e. defined on ∆5 ×∆8 ×∆6). And again, the symmetry is complete

with the values of x5, the specificities of X6(t) being carried by the asymmetry introduced by

X6 and φ8.

The modelM(X6(t)) of the dynamic processX6 = {x5, x6, φ8} is then the tupleM(X6(t)) =<

PM(X6(t)), SM(X6(t)), FM(X6(t)), BM(X6(t)) >.

Finally, it is to note that without the TOM4D notion of network of dynamic process, the

global state space of this simple didactic example being directly linked with the number of

values the variables can take, the size of the modeling state space is 2 · 3 · 3 · 2 · 2 · 3 = 216 (for
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Figure 4.23: Generic Behavioral Model BM(X6(t))

respectively x1, x2, x5, φ8, x6 and x7). And the potential number of state transition to examine

is 216 · 215 = 46 440!

This number illustrates the difficulty when modeling a dynamic process and consequently,

one of the advantages of the TOM4D notion of network of dynamic process: the resulting model

of the didactic example is made with only 8+9 = 17 discernible states. Obviously, this simplicity

of the model entails a little more complex diagnosis algorithms that will be described in the next

chapter.

But, before examining these algorithms, it is important to examine one of the main advan-

tages of the TOM4D methodology: the validation of the models.

4.5.4 Final Step: Model Validation

One of the aims of the TOM4D methodology is to provide models that can be validated by

both the experts and the available data (cf. [PL10, PLG14] for an example of model validation

from a database). With this didactic example, no expert and no datum is available. But the
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two scenarii ω1 and ω2 can be used to illustrates the way a database can be used to validate a

TOM4D model.

The modelsM(X8),M(X6) andM(X7) of X(t) = X8(t)∪X7(t)∪X6(t) having be made from

these two scenarii, it could be argue that they are logical consequences of these scenarii. This

argument can be rejected only with the simple comparison of the models M(Ω) and M(X(t)):

they differ strongly in all dimensions, that is to say the number and the role of the variables,

the structure, the functions and the behavior of the process. Naturally, there exists some links

between the two models but it is clear that the scenario model M(Ω) is essentially an important

step before entering in the final modeling aiming at clarifying the experts propositions about

the process, notably the propositions about its dynamics.

So, let us go back to the two scenarii:

1. ω1 = {C22(t1), C51(t2), C52(t3), C71(t4), C72(t5), C10(t6), C60(t7)}.

2. ω2 = {C22(t10), C51(t11), C52(t12), C71(t13), C72(t14), C21(t15), C51(t16), C20(t17), C50(t18)}.

The Superposition Theorem 3.3 of the TOT allows to decompose these scenarii according to

the three connected processes of X(t):

1. X8(t) = {x1(t), x2(t), x5(t), φ8(t)}: only the occurrences of the observation classes C1y,

C2y, C5y and C8y are concerned with X8(t).

2. X7(t) = {x5(t), x7(t)}: only the occurrences of the observation classes C5y and C7y are

concerned.

3. X6(t) = {x5(t), x6(t), φ8(t)}: only the occurrences of the observation classes C5y, C6y and

C8y are concerned.

This distribution of the classes allows to define the sub-sequences that concern each of this

three processes.

4.5.4.1 Validation with ω2

Let us decomposes ω2 = { C22(t10), C51(t11), C52(t12), C71(t13), C72(t14), C21(t15), C51(t16),

C20(t17), C50(t18)} according to X8(t), X7(t) and X6(t) so that ω2 = ω28 ∪ ω27 ∪ ω26:

1. ω28 = {C22(t10), C51(t11), C52(t12), C21(t15), C51(t16), C20(t17), C50(t18)}.

2. ω27 = {C51(t11), C52(t12), C71(t13), C72(t14), C51(t16), C50(t18)}.

3. ω26 = {C51(t11), C52(t12), C51(t16), C50(t18)}.

The process X8(t) has no behavioral model. Its functional model is recalled in the figure

4.24 and defines two functions and the tables 4.19 and 4.20.

So, according to FM(X8(t)):

1. C22(t10): x2 = δ22 ⇒ x5 = δ52 by f1. C22(t10) explains C52(t12).

2. C51(t11): x2 = δ21 ⇒ x5 = δ51 by f1. But ω28 doesn’t contain a timed observation C21(tk)

at time tk so that: t9 ≤ tk ≤ t10 (X8(t) being a dynamic process, f1 is supposed to be

causal). So, a timed observation C21(tk) could be lacking ω1, or FM(X8(t)) is erroneous.
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Figure 4.24: Generic Functional Model of X8(t)

f1 : ∆x2
→ ∆x5

x2 f1(x2) Interpretation

δ20 δ50 the pump P is blocked ⇒ flowp is zero

δ21 δ51 the pump P is leaking ⇒ flowp is low

δ22 δ52 the pump P is ok ⇒ flowp is normal

Table 4.19: f1 Generic Function of FM(X8(t))

f4 : ∆φ8
→ ∆x1

φ8 f4(φ8) Interpretation

δ80 δ10 φ8 > 0 implies the pipe PI is leaking

δ81 δ11 φ8 = 0 implies the pipe PI is ok

Table 4.20: f4 Generic Function of FM(X8(t))

3. C21(t15): x2 = δ21 ⇒ x5 = δ51 by f1. C21(t15) explains C51(t16).

4. C20(t17): x2 = δ20 ⇒ x5 = δ50 by f1. C20(t17) explains C50(t18).

So, three possibilities appears according to FM(X8(t)) and ω28:

1. FM(X8(t)) is right and C21(tk), t9 ≤ tk ≤ t10, would be added in ω2.

2. FM(X8(t)) is erroneous and f1 would be corrected.

3. FM(X8(t)) is wrigh and the absence of the timed observation is explained by M(X7(t))

or M(X6(t)).

The validation must be continued to take a decision. The sequence ω17 concerns the process

X7 that has the behavioral model BM(X7(t)) recalled in figure 4.25.

According BM(X7(t)):

1. At time t = t9, X7(t) is in the state s(t9) = s70 (i.e. x5 = δ50 and x7 = δ70).

2. C51(t11): s(t11) = s71, x5 = δ51 and x7 = δ70.

3. C52(t12): s(t12) = s73, x5 = δ52 and x7 = δ70.

4. C71(t13): s(t13) = s76, x5 = δ52 and x7 = δ71.

5. C72(t14): s(t14) = s78, x5 = δ52 and x7 = δ72.

6. C51(t16): s(t16) = s75, x5 = δ51 and x7 = δ72.

7. C50(t18): s(t18) = s77, x5 = δ50 and x7 = δ72.
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Figure 4.25: Generic Behavioral Model of X7(t)

BM(X7(t)) shows that the third possibility is validated if, and only if, FM(X8(t)) and

BM(X7(t)) are wright: it is not necessary to add C21(tk) in ω2 until FM(X8(t)) and BM(X7(t))

are proved to be wrong.

The process X6(t) has also a behavioral model, recalled in figure 4.26.

According M(X8(t)), ω26 = {C51(t11), C52(t12), C51(t16), C50(t18)} leads to:

1. At time t = t9, X6(t) is in the state s(t9) = s60 where x5 = δ50, φ8 = δ81 and x6 = δ61.

2. C51(t11): s(t11) = s68, x5 = δ51, φ8 = δ81 and x6 = δ61.

3. C52(t12: s(t12) = s69, x5 = δ52, φ8 = δ81 and x6 = δ61.

4. C51(t16): s(t16) = s68, x5 = δ51, φ8 = δ81 and x6 = δ61.

5. C50(t18): s(t18) = s60, x5 = δ50, φ8 = δ81 and x6 = δ61.

ω2 is then coherent with BM(X8(t)) and nothing can be said about the hypothesis of adding

C21(tk).

Let us examine briefly this hypothesis. The adding of this timed observation imposes that

the set ∆2 is ordinal : after x2 = δ20 and before x2 = δ22, the value δ21 must be assigned to x2.

But the original text said nothing to entail such a property for ∆2 and this hypothesis has not

been required to build M(X(t)).

So, unless to conclude that the models M(X8(t)), M(X7(t)) and M(X6(t)) are together

erroneous, ω2 is coherent with M(X(t)).

4.5.4.2 Validation with ω1

ω1 is identical to ω2 until the timed observation C21(t15) (cf. point 7. of ω2).

ω1 is a superposition of three sequences ω18 ∪ ω17 ∪ ω16:

1. X8(t) : ω18 = {C22(t1), C51(t2), C52(t3), C10(t6)}.

2. X7(t) : ω17 = {C51(t2), C52(t3), C71(t4), C72(t5)}.
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Figure 4.26: Generic Behavioral Model of X6(t)

3. X6(t) : ω16 = {C51(t2), C52(t3), C60(t7)}.

The sequence ω18 has the following meaning according to FM(X8(t)):

1. C22(t1): x2 = δ22 ⇒ x5 = δ52 by f1. C22(t1) explains C52(t3) .

2. C51(t2): idem C51(t11) of ω2.

3. C10(t6): φ8 = δ80 ⇒ x1 = δ10 by f4. As a consequence, f4 and ω18 subsumes a timed

observation C80(tk) where tk ≤ t6. In other words, C80(tk) is an hypothesis that could

explain C10(t6) and then, would be added in ω1.

This means:

• FM(X8(t)) is erroneous and both f1 and f4 would be corrected.

• FM(X8(t)) is right and C21(tk), t0 ≤ tk ≤ t1, would be added in ω2 or its absence is

explained by M(X7(t)) or M(X6(t)) (cf. ω2).
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• FM(X8(t)) is right and a timed observation C80(tk), tk ≤ t6, would explain ω18.

Let us consider the coherence between ω17 and BM(X7(t)) (cf. figure 4.25):

1. At time t = t0, X7(t) is in the state s(t0) = s70 (i.e. x5 = δ50 and x7 = δ70).

2. C51(t2): s(t2) = s71, x5 = δ51 and x7 = δ70.

3. C52(t3): s(t3) = s73, x5 = δ52 and x7 = δ70.

4. C71(t4): s(t4) = s71, x5 = δ52 and x7 = δ71.

5. C72(t5): s(t5) = s78, x5 = δ52 and x7 = δ72.

Obviously, as with ω2 and for the same reason, the adding of a timed observation C21(tk),

t0 ≤ tk ≤ t1, is not required.

The sequence ω16 concerns the process X6 (cf. figure 4.23):

1. At time t = t0, s(t0) = s60, x5 = δ50, φ8 = δ81 and x6 = δ61.

2. C51(t2): s(t2) = s68, x5 = δ51, φ8 = δ81 and x6 = δ61.

3. C52(t3): s(t3) = s69, x5 = δ52, φ8 = δ81 and x6 = δ61.

4. C60(t7): there is no transition linking s69 to a state where x6 = δ60. Except to go back to

s68, the only way to go out of this state is to go in state s63 with a timed observation of

the class C80.

So, either BM(X6(t)) is wrong, either it leads to the hypothesis of an occurrence C80(tk),

t3 ≤ tk ≤ t7, so that s(tk) = s63 (i.e. x5 = δ52, φ8 = δ80 and x6 = δ61). In that case, C60(t7)

allows the transition the discernible state s(t7) = s65 where x5 = δ52, x6 = δ60 and φ8 = δ80.

This leads to the following two hypothesis:

1. M(X(t)) is wright and the timed observation C80(ttk), tk ≤ t6 ≤ t7 is the explanation of

ω1: φ8 being a variable added during the generic modeling step, no timed observation of

the classes C8y could appear in ω1.

2. M(X(t)) is wrong according to ω1.

Semantically, the timed observation C80(tk) (i.e. φ8 = δ80) means φ8(tk) > 0 that is to say,

at time tk ≤ t6, the surface of the pipe PI is not sufficient to conduct the all its input flow. This

entails the leaking of the pipe and then the presence of water in the tank CO. This explanation

seeming satisfactory on a semantic point of view, it is reasonable to infer the validity ofM(X(t))

In other words, the two scenarii ω1 and ω1 validate the TOM4D model M(X(t)) of the

didactic example of [CPR00].
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4.6 Conclusion

TOM4D is the Knowledge Engineering methodology that has been designed to model dynamic

processes with the aim of describing the process at the same level of abstraction an expert uses

to realize a knowledge intensive task as monitoring, diagnosis and prognosis. TOM4D defines a

way of using the modeling principles proposed by the Timed Observation Theory of [LG06].

This chapter presents the general steps of the TOM4D modeling process (knowledge interpre-

tation, process definition and generic modeling), the TOM4D multi-modeling approach (struc-

tural, functional, behavioral, perception and network models) and the interpretation frameworks

(CommonKADS, Formal Logic and Tetrahedron of States). This presentation is illustrated with

the application of TOM4D on a didactic example of a simple hydraulic process firstly described

in [CPR00].

The main advantages of TOM4D are the followings:

• Abstraction level.

The TOM4D model resides at the same abstraction level as the expert’s reasoning. In this

sens, the TOM4D models are a representation of the way an expert perceive a dynamic

process.

• Compatibility with the available data.

TOM4D being based on the Timed Observation Theory, the available data can be used

to build the model (cf. the scenario model step) but also to evaluate the coherence of the

resulting models as illustrated in the preceding section.

• Symbol Driven.

It can be quite surprising that a Knowledge Engineering methodology claims to be symbol

driven: the aim is to avoid the introduction of erroneous interpretation in the models.

This is particularly important when modeling a dynamic process because precisely, the

description of its dynamics is not natural and so very difficult for both the experts and

the Knowledge Engineers. The didactic example of [CPR00] clearly illustrates this point:

it is striking to notice the difference between the scenario and the generic models.

• Granularity.

The definition of a dynamic process as a network of dynamic process avoid the necessity

of describing complex behavior in a unique behavioral model, most oftently unfeasible as

the didactic example shows.

In [PL10], L. Pomponio introduces and formalizes the concept of Abstraction Level in the

TOM4D methodology. Coupled with the notion of network of dynamic processes, these concepts

provide a great modeling power, allowing to define complex processes at multiple abstraction

levels, each level being described with a network of processes according a specific granularity.

But this merging will introduce a new modeling complexity and news modeling problems.

So, before merging the two concepts, it is better to define the algorithms able to uses the

TOM4D models within a knowledge intensive tasks as the diagnosis tasks. This is the aim of the

next chapter where the same didactic example will be used to illustrate the way the algorithms

work. The precedent section introduces the design of these algorithms: the validation of the
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TOM4D model of the didactic example has been made through their temporal simulation with

two scenarii. Such a simulation aims at predicting timed observations from those that are

contained in the scenarii so that a comparison can be done. Such a comparison is the basis of

any diagnosis algorithm.

Next, both TOM4D and the diagnosis algorithms will be used to diagnose a real world

process, an hydraulic dam, in the application chapter.



CHAPTER 5

Diagnosis Process with Timed Observations

The previous chapter proposed a modeling methodology to diagnose dynamic processes, the

Timed Observation Methodology for Diagnosis, based on the Timed Observation Theory, dedi-

cated to the building of efficient model to diagnose dynamic processes from timed observations.

This chapter presents the algorithms that uses the different TOM4D models, the perception,

the structural, the functional and the behavioral models of a network of dynamic processes, with

the aim of diagnosing the undesirable states the processes of a network can reach over time. The

specificity of the proposed algorithm is that it is based on an adequate transformation of the

behavioral model BM(X(t)) of a network of dynamic processes X(t) =
⋃

Xi(t) in a simple set

of timed binary relations of the form rk(p, s, [τ
−
ps, τ

+
ps]).

In other words, the proposed algorithm is based on the TOM4D concept of discernible state

si = {..., r(p, s, [τ−ps, τ
+
ps]), ...} defined as a simple set of timed binary relations r(p, s, [τ−ps, τ

+
ps]).

5.1 Diagnosing Dynamic Processes

The general idea of the diagnosis of a dynamic process X(t) is to:

• Detect when the observed process reaches an undesirable state.

• Explain why this state is not desirable.

• Describe how the process reached this state.

• Explain why the process reached this state.

According to the Timed Observation Theory, this role is confided to an observation pro-

gram Θ(X,∆) that observes continuously X(t) (cf. the definition 3.1 of an observed process

(X(t),Θ(X,∆))).

The program Θ(X,∆) must have a cyclic working so that, at each cycle k ∈ N , it must :

1. Read the current value of each of the time functions xi(tk) of X(t) at t = tk.

2. Apply the spatial segmentation principle to build the current C(tk) set of n(tk) timed

observations {Ci(tk)}i=1...n(tk).

3. Define the current state S(tk) in which the process X(t) is.

4. Detect if S(tk) is undesirable, and in that case:

101
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(a) Explain why S(tk) is not desirable with a set of propositions xi(tk−n) = δi correspond-

ing to an abnormal operation of Rab defined in the perception model PM(X(t)) of

X(t).

(b) Describe how X(t) reaches S(tk) with an adequate sequence ω(tk) of timed observa-

tions.

(c) Explain why the process reached S(tk) with an abstract chronicle model M(tk) =

{rk(Ci, Cj , [τ
−
ij , τ

+
ij ])}k=1...n of n temporal binary relations rk(Ci, Cj , [τ

−
ij , τ

+
ij ]) (cf. def-

inition 3.6) representing an adequate model of faulty behavior.

The distribution of the timed observations Ci(tk) of an input sequence ω(tk) according to

the structure of the model of faulty behavior M(tk) constitutes an instantiated fault model. In

other words, the diagnosis tasks of an observation program Θ(X,∆) is mainly based on the real-

time building of instantiated fault model. Generally speaking, a model of the dynamic process,

even very weak, is required to execute these tasks of Detection, Explanation and Description.

Within the TOT framework, the diagnosis will uses the TOM4D behavioral model BM(X(t))

(cf. definition 4.4) of the dynamic process to diagnose. As a consequence, the proposed diagnosis

algorithm is fundamentally Timed Observation Driven.

This chapter is dedicated to the presentation of the algorithms that are required to implement

the main tasks of such an observation program Θ(X,∆). To this aim, the two scenarii ω1 and ω2

will be used as a mean to illustrate the main mechanisms that are required by these algorithms.

The execution of an observation program Θ(X,∆) will then be simulated with these scenarii

and the TOM4D model M(X(t)) of the hydraulic process of [Con00] with the TOM4D model

M(X(t)) of the preceding chapter. Naturally, because these scenarii are directly expressed in

terms of timed observations, the steps 1 and 2 of the work cycle of Θ(X,∆) will not be illustrated.

So, before entering into the presentation, let us recall the main elements of the TOM4D

model

5.2 Main Elements about M(X(t))

The main elements defined by M(X(t)) are recalled in the figures 5.1 for SM(X(t)), 5.2 for

FM(X(t)), 5.3 for BM(X(t)), with the tables 5.1 (variables and observations classes) and 5.2

(functions f1 and f4).

Variable Values X Definition Domain Classes

modePI leaking, ok x1 ∆x1
= {δ10, δ11} C1 = {C10, C11}

modeP blocked, leaking, ok x2 ∆x2
= {δ20, δ21, δ22} C2 = {C20, C21, C22}

flowp zrop, lowp, nrmp x5 ∆x5
= {δ50, δ51, δ52} C5 = {C50, C51, C52}

levelCO preCO, absCO x6 ∆x6
= {δ60, δ61} C6 = {C60, C61}

levelTA zroTA, lowTA, nrmTA x7 ∆x7
= {δ70, δ71, δ72} C7 = {C70, C71, C72}

Surface−1
PI φ8 > 0, φ8 = 0 φ8 ∆φ8

= {δ80, δ81} C8 = {C80, C81}

Table 5.1: Variables and Observation Classes

The behavioral model BM(X(t)) of X(t) = X8(t) ∪ X7(t) ∪ X6(t) is the union of the

behavioral models of it sub-processes BM(X(t)) = BM(X8(t)) ∪BM(X7(t)) ∪BM(X6(t)):
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Figure 5.1: Generic Structural Model of X(t)

Figure 5.2: Generic Functional Model of X(t)

f1 : ∆x2
→ ∆x5

x2 f1(x2) Interpretation

δ20 δ50 δ20 ⇒ δ50
δ21 δ51 δ21 ⇒ δ51
δ22 δ52 δ22 ⇒ δ52

f4 : ∆φ8
→ ∆x1

φ8 f4(φ8) Interpretation

δ80 δ10 φ8 > 0 ⇒ δ10
δ81 δ11 φ8 = 0 ⇒ δ11

Table 5.2: Definition of the Generic Functions f1 and f4 of X8(t)

• S = S8 ∪ S7 ∪ S6 = {

s60 = {r601(C50, C51), r602(C50, C80), r603(C81, C51), r604(C81, C80)},

s61 = {r611(C50, C51), r612(C50, C81), r613(C80, C51), r614(C80, C81)},

s62 = {r621(C51, C50), r622(C51, C52), r623(C51, C60), r624(C80, C50), r625(C80, C52), r626(C80, C60)},

s63 = {r631(C52, C51), r632(C52, C60), r633(C80, C51), r634(C80, C60)},

s64 = {r641(C60, C52), r642(C60, C81), r643(C51, C52), r644(C51, C81)},

s65 = {r651(C52, C51), r652(C52, C81), r653(C60, C51), r654(C60, C81)},

s66 = {r661(C51, C52), r662(C51, C61), r663(C81, C52), r664(C81, C61)},

s67 = {r671(C52, C51), r672(C52, C61), r673(C81, C51), r674(C81, C61)},

s68 = {r681(C51, C50), r682(C51, C52), r683(C51, C80), r684(C61, C50), r685(C61, C52), r686(C61, C80)},
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s69 = {r691(C52, C51), r692(C52, C80), r693(C61, C51), r694(C61, C80)}

s70 = {r701(C50, C51), r702(C70, C51)},

s71 = {r711(C51, C50), r712(C51, C52), r713(C51, C71), r714(C70, C50), r715(C70, C52), r716(C70, C71)},

s72 = {r721(C51, C50), r722(C51, C52), r723(C51, C70), r724(C51, C72),

r725(C71, C50), r726(C71, C52), r727(C71, C70), r728(C71, C72)},

s73 = {r731(C52, C71), r732(C52, C51)},

s74 = {r741(C50, C51), r742(C50, C70), r743(C71, C51), r744(C71, C70)},

s75 = {r751(C51, C50), r752(C51, C52), r753(C51, C71), r754(C72, C50), r755(C72, C52), r756(C72, C71)},

s76 = {r761(C52, C51), r762(C52, C72), r763(C71, C51), r764(C71, C72)},

s77 = {r771(C50, C51), r772(C50, C71)},

s78 = {r781(C52, C51), r782(C72, C51)},

s80 = {r801(C20, C50)},

s81 = {r811(C21, C51)},

s82 = {r820(C22, C52)},

s83 = {r831(C80, C10)},

s84 = {r841(C81, C11)},

} of 24 discernible states defining 85 timed binary relations.

• The set C = C8 ∪ C7 ∪ C6 = {

C10 = {(x10, δ10)}, C11 = {(x10, δ11)},

C20 = {(x2, δ20)}, C21 = {(x2, δ21)}, C22 = {(x2, δ22)},

C50 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)},

C60 = {(x6, δ60)}, C61 = {(x6, δ61)}, C62 = {(x6, δ62)},

C70 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)},

C80 = {(φ8, δ80)}, C81 = {(φ8, δ81)}

} made of 16 observations classes.

• The set Rs = Rs7 ∪Rs6 = {

s60 = γ(s61, C81), s60 = γ(s68, C50),

s61 = γ(s60, C80), s61 = γ(s62, C50),

s62 = γ(s61, C51), s62 = γ(s63, C51), s62 = γ(s68, C80)},

s63 = γ(s62, C52), s63 = γ(s69, C80),

s64 = γ(s62, C60), s64 = γ(s65, C51),

s65 = γ(s63, C60), s65 = γ(s64, C52),

s66 = γ(s64, C81), s66 = γ(s67, C51),

s67 = γ(s65, C81), s67 = γ(s66, C52),

s68 = γ(s66, C61), s68 = γ(s69, C51), s68 = γ(s60, C51)},

s69 = γ(s67, C61), s69 = γ(s68, C52)

s70 = γ(s71, C50), s70 = γ(s74, C70),

s71 = γ(s70, C51), s71 = γ(s73, C51), s71 = γ(s72, C70),

s73 = γ(s71, C52),

s74 = γ(s72, C50), s74 = γ(s77, C71),

s72 = γ(s71, C71), s72 = γ(s76, C51), s72 = γ(s75, C71), s72 = γ(s74, C51),

s76 = γ(s72, C52), s76 = γ(s73, C71),

s77 = γ(s75, C50),
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s75 = γ(s72, C72), s75 = γ(s78, C51), s75 = γ(s77, C51),

s78 = γ(s76, C72), s78 = γ(s75, C52),

} of 41 predicates.

The figure 5.3 provides a graphical representation of BM(X(t)).

Figure 5.3: Generic Behavioral Model of X(t)

The perception models PM(X8(t)) and PM(X6(t)) (cf. definitions 4.9 and 4.17) providing

no operating goals for X8(t) and X6(t), the goal of the operations of X(t) concerns uniquely its

sub-process X7(t) (cf. PM(X7(t)) of definition 4.13):

• Rgoal7 = {∃ti, ti ≥ t0, ∀t ≥ ti, x7(t) ≥ Ψ72}

The normal operations Rn of X(t) are distributed over X8(t), X7(t) and X6(t):

• Rn8 = {∀t ≥ t0, x1(t) = δ11 ∧ x2(t) = δ22}.

• Rn7 = {∀t ≥ ti, x7(t) ≥ Ψ72}

• Rn6 = {∀t ≥ t0, x6(t) ≤ Ψ60}

Similarly, the abnormal operations Rab of X(t) are the followings:

• Rab8 = {∀t ≥ t0, x1(t) = δ10 ∨ x2(t) = δ20 ∨ x2(t) = δ21}.

• Rab7 = {∀t ≥ ti, x7(t) < Ψ72}

• Rab6 = {∀t ≥ t0, x6(t) > Ψ60}
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5.3 Identification of the Possible Current States

The global cycle of the observation program Θ(X,∆) is based on the identification of the current

state S(tk) in which the process X(t) is (step 3 of the observation program Θ(X,∆))).

Let us suppose that at a time tk of the cycle of Θ(X,∆), the steps 1 and 2 have be done so that

a set {..., Cij(tk), ...} of timed observations Cij(tk) has been written in a database, represented

by a sequence ω of timed observation in the TOT framework. This means that at the time cycle

tk, the program Θ(X,∆) write the set {..., Cij(tk), ...} of timed observations and add it in the

sequence ω.

The followings computing functions can then be defined:

Definition 5.1 Write Computing Function

The function write(ω, {..., Cij(tk), ...}) updates a sequence ω with a set {..., Cij(tk), ...} of timed

observations.

• write(ω, {..., Cij(tk), ...}) ≡ ω(tk) = ω(tk−1) ∪ {..., Cij(tk), ...}.

Definition 5.2 Read Computing Function

The function read(ω, tk) provides the set {..., Cij(tk), ...} of timed observations added in ω at the

time cycle tk:

• read(ω, tk) = {..., Cij(tk), ...}.

To simplify, when there is no confusion, the following abuses of language can be made:

write(ω, {..., Cij(tk), ...}) ≡ write(ω, ..., Cij(tk), ...) ≡ ω(tk) = ω(tk−1) + ...+ Cij(tk) + ... (5.1)

read(ω, tk) = {..., Cij(tk), ...} ≡ ..., Cij(tk), ... (5.2)

According to the definition 3.2 of a timed observation, the meaning of Cij(tk) is an assignation

xi(tk) = δij (cf. equation 3.8) and, according to the Discernible State modelling principle of the

TOT:

• Such an assignation results necessarily of an observable modification in the dynamic

process X(t). So two occurrences Ci(tk) and Cj(tk+1) marks an observable state tran-

sition in an observed process (X(t),Θ(X,∆)). This means that a temporal binary relation

r(Ci, Cj , [τ
−
ij , τ

+
ij ]) defines a particular discernible state.

The problem of finding the current state of X(t) is then to find, in the set S of the behavioral

model BM(X(t)) of X(t), the set S(tk) of the discernible states sk in which X(t) can be at tk

that explains the timed observations Cij(tk) returned by read(ω, tk). Yet, the set S(tk) is

logically constrained by the equal predicates sj = γ(si, Ck) contained in Rs of the behavioral

model BM(X(t)): only the states allowing the corresponding write(ω, {..., Cij(tk−1), ...}) must

be considered.

Indeed, according to the TOM4D methodology, a discernible state sn is simply a set of

timed binary relations rnm(Cki , Ckj ), [τ
−
kij
, τ+kij ]). As a consequence, given a timed observation
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Ck(tk) of an observation class Ck, finding the set S(tk) of the corresponding discernible states

sm is finding, in the set S =
⋃

i
Si of the discernible states defined by BM(X(t)), all the states

sm containing a particular binary relation of the form rnm(Cij , Cjk, [τ
−
n τ

+
n ]) where Cij or Cjk

corresponds to Ck. So, when denoting Cφ the class variable representing any class Cxy ∈ C,

given a timed observation Ck(tk), two sets of states must be build, the set Ss(k) of successors

states and the set Sp(k) of predecessors states:

1. ∀s ∈ S, ∃rsm(Cij , Cφ, [τ
−
n τ

+
n ]) ∈ S,Cij = Ck ⇒ s ∈ Ss(k).

2. ∀s ∈ S, ∃rsm(Cφ, Cij , [τ
−
n τ

+
n ]) ∈ S,Cij = Ck ⇒ s ∈ Sp(k).

For example, the timed observation C51(tk) allows to build the following sets of successors

and predecessor states at time tk (cf. figure 5.3 or definitions 4.16 and 4.20):

• ∀s ∈ S7, rx(C51, Cφ) ∈ S7 ⇒ s ∈ Ss
7(k): S

s
7(k) = { s71, s72, s75 }.

• ∀s ∈ S7, rx(Cφ, C51) ∈ S7 ⇒ s ∈ Sp
7(k): S

p
7(k) = { s70, s73, s74, s76, s77, s78 }.

• ∀s ∈ S6, rx(C51, Cφ) ∈ S6 ⇒ s ∈ Ss
6(k): S

s
6(k) = { s60, s62, s64, s66, s68 }.

• ∀s ∈ S6, rx(Cφ, C51) ∈ S6 ⇒ s ∈ Sp
6(k): S

p
6(k) = { s60, s61, s63, s65, s67, s69 }.

Let us suppose that read(ω, ttk−1) = C71(tk−1) at the preceding time cycle tk−1. The timed

observation C71(tk−1) allows to build the set Ss
7(k− 1) containing the possible successors states

at time tk−1 for X7(t), X6(t) being not concerned with C71(tk−1):

• ∀s ∈ S7, rx(C71, Cφ) ∈ S7 ⇒ s ∈ Ss
7(k − 1): Ss

7(k − 1) = { s72, s74, s76 }.

In other words, knowing C51(tk) allows to filter Sp
7(k): at tk the only possible predecessor

states at tk−1 are contained in the set Sp
7(k)∩S

s
7(k−1), that is to say { s74, s76 }. And knowing

the state s72 has been removed from Sp
7(k) allows also to remove from Ss

7(k) any state sx for

which BM(X7(t)) contains a predicate sx = γ(s72, C51(tk)). In the example, it is easy to see

that the states 71 and 74 will be removed from Ss
7(k) so that after the removing, Ss

7(k) contains

only one state s72.

This reasoning is quite complex: using the fact that a state is simple set of timed binary

relations simplifies the reasoning and makes it much more efficient.

5.4 Observation Model

The central idea of the Timed Observation Driven algorithm for Diagnosis (TOD4D algorithm)

is to replace the discernible states with their corresponding set of timed binary relations and to

directly uses them to diagnose.

The key point is to note that the set Rs of a behavioral model BM(X(t)) provides a

structure to the set S of discernible states, that is to say to the corresponding set R =

{rnm(Cij , Cjk, [τ
−
nmτ

+
nm])} of timed binary relations:

• ∀sk ∈ S, ∀rki ∈ sk, rki ∈ R



108 CHAPTER 5. DIAGNOSIS PROCESS

Similarly to the γ modeling function defined on C × S × S, a γr modeling function can

be defined on C × R × R, that is to say at the level of the timed binary relations. Such a

function aims at representing the relation between the timed binary relations of a behavioral

model BM(X(t)) in order to build an Observation Model :

Definition 5.3 Observation Model

An observation model OM(X(t)) of a dynamic process X(t) is an abstract chronicle model

made with a set R = {rm(Cm
i , C

m
j , [τ

−
ij , τ

+
ij ])} of nR timed binary relations rm(Cm

i , C
m
j , [τ

−
ij , τ

+
ij ])

between two observation classes Cm
i and Cm

j of C l, i 6= j, where the classes Cm
i and Cm

j are

labelled with the index of the timed binary relation.

To transform a behavioral model BM(X(t)) =< S,C,Rs > into its corresponding obser-

vation model OM(X(t)), the following three rules must be implemented, the rules 1 and 2

concerning a uniquely state and the rule 3 concerning two different states:

1. Rule 1:

∀r1(C1i, C1j , [τ
−
1ij , τ

+
1ij ]) ∈ sn, ∃r2(C2i, C2j , [τ

−
2ij , τ

+
2ij ]) ∈ sn ∧ C1i = C2i ⇒

∃r1(C
n
1i, C

n
1j , [τ

−
1ij , τ

+
1ij ]) ∈ R, ∃r2(C

n
2i, C

n
2j , [τ

−
2ij , τ

+
2ij ]) ∈ R,Cn

1i = Cn
2i

2. Rule 2:

∀r1(C1i, C1j , [τ
−
1ij , τ

+
1ij ]) ∈ sn, ∃r2(C2i, C2j , [τ

−
2ij , τ

+
2ij ]) ∈ sn ∧ C1j = C2J ⇒

∃r1(C
n
1i, C

n
1j , [τ

−
1ij , τ

+
1ij ]) ∈ R, ∃r2(C

n
2i, C

n
2j , [τ

−
2ij , τ

+
2ij ]) ∈ R,Cn

1j = Cn
2j

3. Rule 3:

∀sm = γ(sn, Ci) ∈ Rs, ∃r1(C
n
1i, C

n
1j , [τ

−
1ij , τ

+
1ij ]) ∈ R ∧ ∃r2(C

m
2i , C

m
2j , [τ

−
2ij , τ

+
2ij ]) ∈ R,⇒

Cn
1j = Cm

2i

The three rules corresponds to the three types of transformations of figure 5.4 within an

abstract chronicle model.

Figure 5.4: Three rules

The following algorithms aims at building an observation model OM(X(t)) from a behavioral

model BM(X(t)) =< S,C,Rs >. In these algorithms, a timed binary relation is of the generic

form r(p, s, [τ−, τ+]), where p and s denote respectively the predecessor observation class Ci and

the successor class Cj .
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Algorithm: setClassLabels
Inputs:

A behavioral model BM(X(t)) =< S,C,Rs >.
A set s = {ri(C1, C2, [τ

−
12, τ

+
12])} of timed binary relations.

Output:

An observation model OM(X(t) made with a set R = {ri(C
i
1, C

i
2, [τ

−
12, τ

+
12])

of labelled timed binary relations
Method:

For all states s of S, set a label to the classes of each timed binary relation ri,
and set ri in R.
The classes are labelled with the index i of the corresponding timed binary relation ri.

1. R = {}
2. ∀i = 1...S.size() //For all the states
2.1 s = S(i)
2.2 ∀j = 1...s.size() //For all the relations
2.2.1 r = s(i)
2.2.2 p = r.getP () //Get the preceding observation class
2.2.3 p.setLabel(r.getLabel())
2.2.4 s = r.getS()
2.2.5 s.setLabel(r.getLabel())
2.2.6 r.setP (p)
2.2.7 r.setS(s)
2.2.8 R = R+ r
3. return R

Such an observation model OM(X(t) can be graphically represented with a graph G(X(t)) =

(Cg, Rg) where:

• Cg = {Cn
i }i=1...nc is a set of nCg nodes corresponding to the observations classes of an

observation model OM(X(t)).

• Rg = {rk(C
n
i , C

m
j , [τ

−
ij , τ

+
ij ])} is a set of nRg links corresponding to the timed binary rela-

tions contained in the set R of OM(X(t)).

The figures 5.5 and 5.6 present the graph G(X(t)) corresponding to the observation model

OM(X(t)) made with the toObservationModel algorithm applied on the behavioral modelBM(X(t))

of the hydraulic process. In particular, it can be seen that OM(X(t)) is also divided in two

sub-models: OM(X(t)) = OM(X78(t)) ∪OM(X68(t)) so that OM(X78(t)) ∩OM(X68(t)) = Φ.

The suite of this chapter will show that using such an observation model drastically simplifies

the diagnosis of dynamic process. But to this aim, the step 4 of the observation program Θ(X,∆)

requires to detect if the current state S(tk) of X(t) is satisfactory or not.

5.5 Operating Goals and Unsatisfactory States

To define if the current state S(tk) of a process X(t) is unsatisfactory, it is necessary to compare

S(tk) with the propositions of Rab.

The propositions contained in Rab being expressed in terms of equality predicates of the form

x1(t) = δ10 or x7(t) < Ψ72 for examples, it is necessary beforehand to build a corresponding set
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Algorithm: shareWithinStates
Inputs:

A set S = {ri(C1, C2, [τ
−
12, τ

+
12])} of a behavioral model BM(X(t)) =< S,C,Rs >.

A set R = {ri(C
i
1, C

i
2, [τ

−
12, τ

+
12]) of an observation model OM(X(t))

Output:

The partially pruned set R
Method:

For all states s of S, apply the rule 1 and 2 on R.

1. ∀i = 1...S.size() //For all the states
1.1 s = S(i)
1.2 ∀j = 1...s.size() //For all the relations
1.2.1 r1 = s(i)
1.2.2 ∀j = j...s.size() //For all the other relations

1.2.2.1 r2 = s(j)
//Rule 1
1.2.2.1 r1.getP () = r2.getP () ⇒
1.2.2.1.1 labelledR1 = R.get(r1) //Find in R the labelled relation corresponding to r1
1.2.2.1.2 labelledR2 = R.get(r2) //Find in R the labelled relation corresponding to r2
1.2.2.1.3 p = labelledR1.getP ()
1.2.2.1.4 labelledR2.setP (p)
//Rule 2
1.2.2.2 r1.getS() = r2.getS() ⇒
1.2.2.2.1 labelledR1 = R.get(r1)
1.2.2.2.2 labelledR2 = R.get(r2)
1.2.2.2.3 s = labelledR1.getS()
1.2.2.2.4 labelledR2.setS(s)
3. return R

Figure 5.5: Graph of OM(X78(t))
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Algorithm: shareBeetweenStates
Inputs:

The set Rs = {r2 = γ(r1, Ci)} of a behavioral model BM(X(t)) =< S,C,Rs >.
A set R = {ri(C

i
1, C

i
2, [τ

−
12, τ

+
12]) of an observation model OM(X(t))

Output:

The connected set R.
Method:

For all predicate equal of Rs, apply the rule 3 on R.
A state is a set of

1. ∀i = 1...Rs.size() //For all the equal predicate
1.1 e = Rs(i)
1.2 s1 = e.getS1() //State 1
1.2 s2 = e.getS2() //State 2
1.3 c = e.getC() //Observation class
//Find the labelled class c2i of the labelled s2 corresponding to c //c2i is unique
1.4 found = false
1.5 ∀j = 1...s2.size() //For all the relations of State 2
1.5.1 r2 = s2(j)
1.5.2 IF found = false and r2.getP () = c THEN
1.5.2.1 labelledR2 = R.getP (r2) //Find in R the labelled relation corresponding to r2
1.5.2.1 c2i = labelledR2.getP ()
1.5.2.1 found = true
//Replace the labelled class c1j of the labelled s1 with with c2i
1.6 ∀j = 1...s1.size() //For all the relations of State 1
1.6.1 r = s1(j)
1.6.2 cj = r1.getS()
1.6.3 IF cj = c THEN
1.6.3.1 labelledR1 = R.get(r1) //Find in R the labelled relation corresponding to r1
1.6.3.2 labelledR1.setS(c2i)
2. return R

Algorithm: toObservationModel
Input:

A behavioral model BM(X(t)) =< S,C,Rs >.
Output:

The set R of an observation model OM(X(t))

1. R = setClassLabels(BM(X(t)))
2. R = shareWithinStates(S,R)
3. R = shareBeetweenStates(Rs, R)
4. return R

Sab containing the undesirable states of X(t). A state sk being a set of timed binary relations

{r(Cki , Ckj ), [τ
−
kij
, τ+kij ]}, some rules must be defined to deduce the undesirable states of X(t)

from the abnormal operations Rab of X(t). These rules are based on the interpretation of an

observation class Ci = {(xi, δij)} under the form: Ci ≡ xi(tk) = δij . The propositions of Rab

containing forms like x1(t) = δ10 can then be directly formulated in terms of observation class,

C10 in the example. But a relation must be done between the threshold (Ψ72) for propositions

containing forms like x7(t) < Ψ72. It can be noticed that this link is implicit within the TOM4D
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Figure 5.6: Graph of OM(X68(t))

formalism: simply, the relations between the thresholds and the ranges they defined can be

provided as a comment in the models (remember that a constant like δ72 denotes the range of

values [Ψ72,+∞[ for x7(t)). This interpretation allows to define the followings rules for X8(t)

and X6(t) where S = S8 ∪ S6:

1. ∀s ∈ S, ∃r(Cφ, C10, [φ, φ]) ∈ s⇒ s ∈ Sab (X8(t)).

2. ∀s ∈ S, ∃r(C20, Cφ, [φ, φ]) ∈ s⇒ s ∈ Sab (X8(t)).

3. ∀s ∈ S, ∃r(C21, Cφ, [φ, φ]) ∈ s⇒ s ∈ Sab (X8(t)).

4. ∀s ∈ S, ∃r(C60, Cφ, [φ, φ]) ∈ s⇒ s ∈ Sab (X6(t)).

For example, it is easy to see that the undesirable states for X8(t) are s83, s80 and s81 (cf.

figure 5.3), and s64 and s65 for X6(t).

The problem differs for X7(t): the timed constraint linked with ti in the proposition ∀t ≥

ti, x7(t) < Ψ72 of Rab7 imposes to determine the time ti before identifying the undesirable states

of X7(t). The time ti is defined by the proposition ∃ti, ti ≥ t0, ∀t ≥ ti, x7(t) ≥ Ψ72 of Rgoal7 ,

that is to say by the general goal of the operation of X(t): a state containing a binary relation of

the form r(Cij , Cφ, [φ, φ]) or r(Cφ, Cij , [φ, φ]) can be or cannot be an undesirable state according

to the time at which it is evaluated. In other words, reaching a state s at a time tk can be

a good or bad news according to the past of the dynamic process. For example, reaching the

state s72 at time t4 is a good news after the state sequence: s(t0) = s70, s(t1) = s71, s(t2) = s73

and s(t3) = s76. But reaching the same state s72 at time t6 after the sequence s(t0) = s70,

s(t1) = s71, s(t2) = s73, s(t3) = s76, s(t4) = s72 and s(t5) = s75 is clearly a bad news because

the state s76 is one of the state defined by Rgoal7 (the two others being s77 and s78, cf. the bold

boxes of BM(X7(t) in figure 5.3)). This property is a fundamental characteristic of dynamic

processes: generally speaking, the undesirables states of a dynamic process depends of its recent

behavior, that is to say its current trajectory in its state space.
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This justifies a specific mechanism dedicated to the management of the time ti that allows

to determine dynamically if a state is undesirable or not. In the example, such a mechanism

aims at managing the current set Sab(tk) according to the followings rules:

Rule 1: ∀tk, ∀s ∈ S, tk = t0 ∧ ∃r(Cφ, C10, [φ, φ]) ∈ s⇒ s ∈ Sab(tk) (X8(t)).

Rule 2: ∀tk, ∀s ∈ S, tk = t0 ∧ ∃r(C20, Cφ, [φ, φ]) ∈ s⇒ s ∈ Sab(tk) (X8(t)).

Rule 3: ∀tk, ∀s ∈ S, tk = t0 ∧ ∃r(C21, Cφ, [φ, φ]) ∈ s⇒ s ∈ Sab(tk) (X8(t)).

Rule 4: ∀tk, ∀s ∈ S, tk = t0 ∧ ∃r(Cφ, C60, [φ, φ]) ∈ s⇒ s ∈ Sab(tk) (X6(t)).

Rule 5: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C70, [φ, φ]) ∈ s⇒ s ∈ Sab(tk) (X7(t)).

Rule 6: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C71, [φ, φ]) ∈ s⇒ s ∈ Sab(tk) (X7(t)).

These rules imposes the right management of the values of the times t0 and ti. In particular,

when t0 is defined once, ti can take a lot of values. For example, according to the state sequence

s(t0) = s70, s(t1) = s71, s(t2) = s73, s(t3) = s76, s(t4) = s72, s(t5) = s75, s72(t6), s76(t7), s78(t7),

s75(t8) and s77(t9), ti is undefined before t5, takes a first value at t5, is undefined again at t6

and takes a second value at t7. ti is then defined from t7 to the end of the sequence.

The use of the observation model OM(X(t)) = OM(X78(t)) ∪ OM(X68(t)) simplifies the

detection of the abnormal states with the a priori identification of the corresponding relations:

• Rule 1 (OM(X68(t))): r831, r832, r833.

• Rule 2 (OM(X78(t))): r801, r802, r803.

• Rule 3 (OM(X78(t))): r811, r812, r813.

• Rule 4 (OM(X68(t))): r623, r626, r632, r634.

• Rule 5 (OM(X78(t))): r723, r727, r744.

• Rule 6 (OM(X78(t))): r715, r716, r721, r731, r756, r772.

Distributed over OM(X78(t)) and OM(X68(t)), these relations allows to define two sets of

relations corresponding to abnormal states:

• OM(X68(t)) (Rules 1 and 4): Rab
68 = { r831, r832, r833, r623, r626, r632, r634 }.

• OM(X78(t)) (Rules 2, 3, 5 and 6): Rab
78 = { r801, r802, r803, r811, r812, r813, r723, r727, r744,

r715, r716, r721, r731, r756, r772 }.

In other words, any path containing one of these relation can mean that the process X(t)

reached an abnormal state: the relations linked with the rules 5 and 6 depends of ti. This leads

to define two sets of relations corresponding to abnormal states:

• Rules 1, 2, 3 and 4:

Rab
static = { r831, r832, r833, r801, r802, r803, r811, r812, r813, r623, r626, r632, r634 }.
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• Rules 5 and 6:

Rab
dynamic = { r723, r727, r744, r715, r716, r721, r731, r756, r772 }.

This leads to the adequate management of the set Rab
current (tφ denotes an unknown value):

• ∀tk, tk ≥ t0 ⇒ Rab
current = Rab

static.

• ∀tk, ti 6= tφ ∧ tk ≥ ti ⇒ Rab
current = Rab

static ∪R
ab
dynamic.

The detection of an abnormal state can the be made with a computing function isSatisfactory(rk),

rk ∈ OM(X(t)), returning false if and only if ri ∈ Rab
current.

Function: isSatisfactory
Inputs:

A binary relation rk.
The set Rab

current of binary relations corresponding to abnormal states.
Output:

False, iff rk ∈ Rab
current.

1. ∀i = 1...Rab
current.size()

1.1. r = Rab
current(i)

1.2. IF rk = r THEN return false
2. return true

A computing function getRelations(Cp, Cs) is also required in order to get the set s =

{..., rps, ...} of relations rps corresponding to the pair of observation classes Cp and Cs in an

observation model OM(X(t)).

Function: getRelations(Cp, Cs, R)
Inputs:

A pair of observation classes p and s.
The set R of an observation model OM(X(t)).
Output:

A set S of binary relation rps of the form rk(p, s, [τ
−
ps, τ

+
ps]) s ⊆ R .

1. S = {}
2. ∀i = 1...R.size()
2.1. r = R(i)
2.2. p = r.getP ()
2.3. s = r.getS()
2.4. IF Cp = p AND Cs = s THEN S = S + r
3. return S

Finally, a computing function isAPath(p, r) is necessary in order to build the set P =

{..., pi, ... of pathes pi = {..., rik, ...}k=1...ni
of npi binary relations rik corresponding to a sequence

of timed observation ω. This function simply check if the last relation rini
of a path pi share

the same labelled observation class with the relation r and then are connected in an observation

model OM(X(t)).
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Function: isAPath
Inputs:

A relation r and a path path.
Output:

True iff the class s of the last relation of path is equal to the class p of r.
This function supposes that a path is implemented in an adequate structure
so that the tail of a path is given by the tail function.

1. tail = path.tail()
2. IF tail.getS() = r.getP () return true
2. return false

5.6 Diagnosis of ω1 and ω2

So, the general mechanisms to evaluate a state being defined, its possible to analyze the way of

doing a diagnosis with the sequences ω1 and ω2 of timed observations. To the aim of defining

an algorithm as general as possible, let us assume the two followings hypothesis about these

sequences:

• The initial state of X(t) is not known, and

• At the end of each of the sequences, the process is supposed to be in an unsatisfactory

state that justifies the request to a diagnosis.

5.6.1 Sequences ω1 and ω2 of Timed Observations

The figure 5.7 shows that the hydraulic system contains three sensors, graphically represented

through eyes symbols:

• A sensor measuring the variable flowp, denoted x5 in the TOM4D model, associated with

a set of three observations classes C5 = {(x5, δ50)}, C51 = {(x5, δ51)}, C52 = {(x5, δ52)}

respectively linked with flowp’s values zrop, lowp and nrmp.

• A sensor measuring the variable levelCO, denoted x6 and associated with a set of two

observations classes C6 = {(x6, δ60)}, C61 = {(x6, δ61)} respectively linked with levelCO’s

values preCO and absCO.

• A sensor measuring the variable levelTA, denoted x7 and associated with a set of three

observations classes C7 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)} respectively

linked with levelTA’s values zroTA, lowTA and nrmTA.

Because only the outputs of the sensors x5, x6 and x7 can be recorded, only the occurrences

of observation classes made with the values of the variables x5, x6 and x7. The scenarii ω1 and

ω2 becomes then two sequences of timed observations:

• ω1 = {C51(t2), C52(t3), C71(t4), C72(t5), C60(t7)}:

1. t1: no timed observation (x2(t1) = δ22: the pump is turn on).

2. t2: C51(t2) (x5(t2) = δ51, the output flow of the pump is low).
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Figure 5.7: Graphical Representation of the Hydraulic System of [CPR00]

3. t3: C52(t3) (x5(t3) = δ52, the output flow of the pump reaches the normal value).

4. t4: C71(t3) (x7(t4) = δ71, the level in the tank TA achieves the low level).

5. t5: C72(t5) (x7(t5) = δ72, the level in the tank TA achieves the normal level).

6. t6: no timed observation (x1(t6) = δ10, the pipe PI is leaking).

7. t7: C60(t7) (x6(t7) = δ60, the tank CO contains water).

• ω2 = {C51(t11), C52(t12), C71(t13), C72(t14), C51(t16), C50(t18)}:

1. t10: no timed observation (x2(t10) = δ22, the pump is turn on).

2. t11: C51(t11) (x5(t11) = δ51, the output flow of the pump is low).

3. t12: C52(t12) (x5(t12) = δ52, the output flow of the pump reaches the normal value).

4. t13: C71(t13) (x7(t13) = δ71, the level in the tank TA achieves the low level).

5. t14: C72(t14) (x7(t14) = δ72, the level in the tank TA achieves the normal level).

6. t15: no timed observation (x2(t15) = δ21, the pump P is leaking).

7. t16: C51(t16) (x5(t16) = δ51, the output flow of the pump enters again in the low

range).

8. t17: no timed observation (x2(t17) = δ20, the pump P is blocked).

9. t18: C50(t18) (x5(t18) = δ50, the flow in the pipe enters again in the zero range).

The first important idea of the diagnosis algorithm is to explain the faults with occurrences

Ci(tk) of observation classes Ci that are not linked with sensors. In other words, it is to find the

unobserved occurrences that could explain the current state of the process and to place them in

a set of paths (cf. definition 3.7) describing the way the process reached an unsatisfactory state.

The second important idea is to use the observation model OM(X(t)) (cf. figures 5.5 and 5.6)

in place of the behavioral model BM(X(t)) (cf. figure 5.3) to build the paths. These paths will

be used in order to build a sequences of state vector values {..., Xi(tk), ...} that can be used to

identify, if required, the corresponding states.

To this aim, let us define the state vector X(t) of equation 5.3.
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(5.3)

Each time tk an occurrence Ci(tk) is read from a sequence ω, the vector X(tk) will take a

particular value Xi. The equation 5.4 proposes an example of a particular value for Xi where

the value of x1 is unknown and then, denoted φ. It is is easy to see that such particular value

allows to identify the corresponding states in the behavioral model BM(X(t)) of figure 5.3.
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(5.4)

A sequence of state vector values {..., Xi(tk), ...} is then made with the sequence of values

Xi the state vector X(t) take at each time tk of an occurrence Ci(tk) returned by the function

read(ω, tk) of the definition 5.2.

5.6.2 Diagnosing ω1

According M(X(t)), ω1 = { C51(t2), C52(t3), C71(t4), C72(t5), C60(t7)} leads to:

1. C51(t2): x5(t2) = δ51.

The initial time t0 is unknown but less that t2 (i.e. t0 ≤ t2).

Rab
current = Rab

static.

OM78(X(t)) contains three labelled observation classes corresponding to C51, OM68(X(t))

contains four, but with only one occurrence, no relation can be identified.

At t = t2, X(t2) = {x1 = φ, x2 = φ, x5 = δ51, x6 = φ, x7 = φ, φ8 = φ}.

2. C52(t3): x5(t3) = δ52.

At t = t3, the function getRelations(C51, C52) applied on OM78(X(t)) returns three rela-

tions: r712, r722 and r752. Three paths can then be made:

P78 = {p1 = {r712}, p2 = {r722}, p3 = {r752}}.

For X6(t), the same function applied on OM68(X(t)) returns also four relations: r622, r651,

r661 and r682.

A set P68 containing four pathes can be made:

P68 = { p4 = {r622}, p5 = {r651}, p6 = {r661}, p7 = {r682} }.

X(t3) = {x1 = φ, x2 = φ, x5 = δ52, x6 = φ, x7 = φ, φ8 = φ}. None of these relations is

unsatisfactory according to Rab
current.

3. C71(t4): x7(t4) = δ71.

At t = t3, getRelations(C52, C71) returns only one relation from OM78(X(t)): r731 which
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is satisfactory.

The paths in P78 can then be updated according the function isAPath(pi, r731).

For OM78(X(t)), isAPath(p1, r731) = true only for p1: the other paths can be removed

from P78:

P78 = {p1 = {r712, r731}}.

P68 is not concerned by C71(t4).

X(t4) = {x1 = φ, x2 = φ, x5 = δ52, x6 = φ, x7 = δ71, φ8 = φ}.

4. C72(t5): x7(t5) = δ72.

At t = t5, the goal is reached for the first time: ti = t5.

Rab
current = Rab

current +Rab
dynamic.

The function getRelations(C71, C72) returns only one relation, r764, for OM78(X(t)) and

the function isAPath(p1, r764) returns true:

P78 = {p1 = {r712, r731, r764}}.

P68 is unchanged.

X(t5) = {x1 = φ, x2 = φ, x5 = δ52, x6 = φ, x7 = δ72, φ8 = φ}.

5. C60(t7): x6(t7) = δ60.

At t = t7, the function getRelations(C52, C60) returns only one relation, r632, forOM68(X(t)):

r632 ∈ Rab
current is not satisfactory. isAPath(pi, r632) returns true:

P68 = {p4 = {r622, r632}}.

X(t6) = {x1 = φ, x2 = φ, x5 = δ52, x6 = δ60, x7 = δ72, φ8 = φ}.

X(t6) corresponding to an unsatisfactory state, it is necessary to explain C60(t7).

Providing an explanation to C60(t7) corresponds to find an unobserved occurrence of an

observation class that could entails C60(t7) according to OM68(X(t)). To this aim, any relation

rn in OM68(X(t)) satisfying the relation r(Cphi, C60, φ) so that isAPath(p4, rn) returns true

is adequate. According to OM68(X(t)), the only relation satisfying these two constraints is

r634(C80, C60, φ): C80 corresponds to the proposition φ8(t) = δ80. So, r634 can be added in p4:

p4 = { r622, r632, r634 } and a (unobserved) timed observation C80(tk) can be added in ω1 with

the temporal constraint t2 ≤ tk ≤ t6.

A look in the graph of figure 5.6 shows that adding C80(tk) in ω1 must also lead to add the

unobserved occurrence C10(tk+1), tk ≤ tk+1 ≤ t6 by the relation r831(C80, C10, φ): the pipe PI

is leaking. A new path p8 = { r634, r831 } can then be added in P68: P68 = { p4 = { r622, r632,

r634 }, p8 = { r634, r831 } }. In that case, X(t6) = {x1 = δ10, x2 = φ, x5 = δ52, x6 = δ60, x7 =

δ72, φ8 = δ80}.

When replacing the classes with the the corresponding occurences, the class path P68 become

an instanciated fault model as illustrated in the figure 5.8.

It is to note that the relation r633 could also be taken under consideration. But this relation

only modifies the time tk of C80(tk) (i.e. tk ≤ t2 with r633): in most case, experts prefers the most

recent time that preceding the fault. Other choices can be done according to the expectations

of the diagnosis function of the program Θ(X,∆) .

As a conclusion, according to the TOM4D model M(X(t)), the following hypothetical sce-

nario constitutes a diagnosis for X(t) according to ω1:
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Figure 5.8: An Instanciated Fault Model for ω1

• Two timed observation C80(tk), t2 ≤ tk ≤ t6 explains why X(t) reached the state X(t6) =

{x1 = δ10, x2 = φ, x5 = δ52, x6 = δ60, x7 = δ72, φ8 = δ80} with ω1.

• The path P68: P68 = { p4 = { r622, r632, r634 }, p8 = { r634, r831 } } is the corresponding

model of faulty behavior.

• The instanciated path IP68 = { Ip4 = { r622(C51(t2), C52(t3)), r632(C52(t3), C60(t7)),

r634(C80(tk), C60(t7)) }, Ip8 = { r634(C80(tk), C60(t7)), r831(C80(tk), C10(tk+1)) } } is the

corresponding instanciated faulty model that describes the way the process reached X(t6)

(cf. 5.8).

This diagnosis is coherent with the initial senario which contains the timed observation

C10(t6): tk8 ≤ t6 ≤ t7. But it proposes also an explanation for C10(t6): φ8 = δ80. In other

words, according to this hypothesis, the pipe PI is leaking because the surface of the pipe PI

is not sufficient to conduct the output flow of the pump P in the tank TA: may be the pipe

is porous, may be there is a hole, may be flowp is too high for the pipe. Only a physical

observation can transforms this hypothesis in a fact.

5.6.3 Diagnosing ω2

According OM(X(t)), ω2 = { C51(t11), C52(t12), C71(t13), C72(t14), C51(t16), C50(t18)} leads to:

1. C51(t11): x5(t11) = δ51.

t0 ≤ t11.

Rab
current = Rab

static.

X(t11) = {x1 = φ, x2 = φ, x5 = δ51, x6 = φ, x7 = φ, φ8 = φ}.

2. C52(t12): x5(t12) = δ52.

P78 = {p1 = {r712}, p2 = {r722}, p3 = {r752}}.

P68 = { p4 = {r622}, p5 = {r651}, p6 = {r661}, p7 = {r682} }.

X(t12) = {x1 = φ, x2 = φ, x5 = δ52, x6 = φ, x7 = φ, φ8 = φ}.

3. C71(t13): x7(t13) = δ71.

P78 = {p1 = {r712, r731}}.

P68 = { p4 = {r622}, p5 = {r651}, p6 = {r661}, p7 = {r682} } (no change).

X(t13) = {x1 = φ, x2 = φ, x5 = δ52, x6 = φ, x7 = δ71, φ8 = φ}.

4. C72(t14): x7(t14) = δ72.

ti = t14.
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Rab
current = Rab

current +Rab
dynamic.

P78 = {p1 = {r712, r731, r764}}.

P68 = { p4 = {r622}, p5 = {r651}, p6 = {r661}, p7 = {r682} } (no change).

X(t14) = {x1 = φ, x2 = φ, x5 = δ52, x6 = φ, x7 = δ72, φ8 = φ}.

5. C51(t16): x5(t16) = δ51.

P78 = {p1 = {r712, r731, r764, r782}}.

P68 = { p4 = {r622, r631}, p5 = {r651, r643}, p6 = {r661, r671}, p7 = {r682, r691} }.

X(t16) = {x1 = φ, x2 = φ, x5 = δ51, x6 = φ, x7 = δ72, φ8 = φ}.

6. C50(t18): x5(t18) = δ50.

P78 = {p1 = {r712, r731, r764, r782, r751}}.

P68 = { p4 = {r622, r631, r625}, p7 = {r682, r691, r683} }.

X(t18) = {x1 = φ, x2 = φ, x5 = δ50, x6 = φ, x7 = δ72, φ8 = φ}.

At the end of ω2, X7 is in the state s77 (cf. figure 5.3) and there is an ambiguity about X6

that can be either in the states s60 or s61. But the main problem is that the operating goal is

reached since t14, but no unsatisfactory states has been detected during ω2.

Nevertheless, it is possible to try to get a diagnosis at the end of ω2 when finding any unob-

served occurrence that could explain ω2. Applied toOM(X78), the functions getRelations(Cφ, C50)

provides only one relation r803(C20, C50, [τ
−
803, τ

−
803]) making a relation between C50(t18) and an

unobservable class C20 (no relation for OM(X68)). An (unobserved) occurrence C20(tk) can

be added in ω2 with tk ≤ t18. The path P78 = { p1 = { r712, r731, r764, r782, r751, r803 }

} can then be proposed as a model of fault for ω2, its corresponding instanciated fault model

being IP78 = { Ip1 = { r712(C51(t11), C52(t12)), r731(C52(t12), C71(t13)), r764(C71(t13), C72(t14)),

r782(C72(t14), C51(t16)), r751(C51(t16), C50(t18)), r803(C20(tk), C50(t18)) } } (cf. figure 5.9).

Figure 5.9: An Instanciated Fault Model for ω2

The occurrence C20(tk) (i.e. x2(tk) = δ20 means that the pump P is blocked : this hypothetical

scenario is then coherent with the initial scenario which contains the occurrence C20(t17).

It is to note that doing the same reasoning with ω2−C50(t18) allows also to find a diagnosis:

an occurrence C21(tk−1) (i.e. the pump P is leaking) would be added which is coherent with the

occurrence C21(t15). Inversely, supposing that ω2 contains the two other occurrences C71(t19)

and C70(t20), the same reasoning in the past would lead to the same conclusions. This shows

an important property of the proposed diagnosis algorithm: it can be interrupted at any time.

If there exists at least a diagnosis, it will provide it.

It is to note that the values of the state vector X(tk) play no role in the algorithm proposed

in the next section: it can be usefull for the human interpretations but no decisions are based

on it.
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5.7 A Timed Observation Driven Diagnosis Algorithm

The proposed algorithm is called TOM4E which means Timed Observation Management for

Explanation.

This aim of TOM4E is to produce an explanation to each unsatisfactory relation rk( Cp(tk),

Cs(tk+1), [τ
−, τ+]) a given occurrence Ci(tk) allows to detect at time tk. To this aim, TOM4E

execute systematically the same work as the one made to diagnose ω1 and ω2. For each occur-

rence Ci(tk) written by an observation program Θ(X,∆), TOM4E execute the following tasks

on each observation model OM(Xi(t)) linked with a process X(t) =
⋃

Xi(t):

• detect(r, i)

• describe(r, i)

• explain(r, i)

The result is a E = {Ei} of explanations that are provided under the form of pairs Ei =

(EPi, R
ab
i ) where :

• EPi = {epk} is a (possibly empty) set of instantiated paths epk = {..., rk(Cp(tk), Cs(tk+1), [τ
−, τ+])

, ...},

• each path epk is made with a series of instantiated relation of the form rk(Cp(tk), Cs(tk+1), [τ
−, τ+],

• eventually, unobservable occurrences, constituting so many explanations of EPi, have been

used to completed the series,

• each EPi is associated with the corresponding setRab
i of unsatisfactory relations rn(Cp, Cs, [τ

−, τ+])

that justify the explanations.

In other words, each paths EPi is a instantiated faulty models for a process Xi(t) according

to an observation model OM(Xi(t)). For example, the set E contains the instantiated faulty

model of figure 5.10 produced by TOM4E at the end of ω1 with OM(X78(t)) and OM(X68(t))

in the TOM4E knowledge base.

Figure 5.10: TOM4E Instantiated Fault Model for ω1

Because X7(t) is in a satisfactory state at the end of ω2, TOM4E provides no explanations

(i.e. E is empty). This clearly comes from the definition of the operating goal: a priori, there

is no reason to look for an explanation at the end of ω2: the pump can have been turned off

because the tank TA is sufficiently full. To improve the results of TOM4E with ω2, the best

thing to do is to define more precisely the operating goal of X(t).

But, on another hand, it is easy to see that an additional function can be implemented

to force TOM4E to look for an explanation even when the state is satisfactory. For example,
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the provideAnExplanation(i) function in the suite of the section forces TOM4E to provide the

explanation of the figure 5.9 at the end of ω2. It is also easy to add a temporal depth, under

the form of an integer n, wich aims at forcing the explanation up to the nth latter occurrence.

For example, with n = 2, TOM4E would provides the explanation of the figure 5.11 where the

explanation r803(C21(tk−1, C51(t16) has been added.

Figure 5.11: Instantiated Fault Model for ω2 made by a provideAnExplanation(i, 2) Function

The TOM4E algorithm is clearly designed to be Timed Observation Driven: this means

that when the program Θ(X,∆) writes an occurrence Cij(tk) in a sequence ω (i.e. executes

write(ω,Cij(tk))), the algorithm TOM4E can be executed on the flow to produce a set E

of instantiated fault models corresponding to ω. In other words, the TOM4E algorithm is

said to be Any Time: when interrupted, it alway provides a solution E, even empty, to the

diagnosis problem. The Any Time property of TOM4E explains why no explanation is pro-

vided by TOM4E with ω2: this is the result of a design decision. Nevertheless, the function

provideAnExplanation(i) shows that it is possible to complete the algorithmic properties of a

diagnosis system implementing the TOM4E algorithm.

The algorithms and functions required to implement the TOM4E algorithm are proposed at

the end of this section.

5.8 Conclusion

This chapter proposes the TOM4E algorithm to diagnose dynamic systems modeled with the

TOM4D methodology according to the Timed observations Theory of [LG06].

In practice, these algorithms and functions have been implemented in the Java tool called

ELP Lab that has designed and developed by Pr. Le Goc at LSIS, the Laboratory of Sciences

of Information and Systems of Aix-Marseille University (France). This software is designed as

a Java environment allowing to integrate and to test various TOT based algorithms aiming at:

• discovering temporal knowledge (i.e. sets of timed binary relations) from timed data,

• modeling these sets as observation models according to the definition 5.3 that are graphi-

cally displayed as graphs to visualize these sets,

• validating the models with timed data and using the models to the monitoring, the diag-

nosis and the prognosis of dynamic systems.

This algorithm has been implemented with a generator of abstract binary observers networks

(cf. [LG06]) that transforms a set R of timed binary relation rk(Cp(tk), Cs(tk+1), [τ
−, τ+]) of an

observation model OM(X(t)) into a network of abstract binary observers that produces the same

result as TOM4E. The general principle consists in building a network for an observation model

OM(X(t)) where one instance of an abstract binary observer is associated to each timed binary
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relation rk(Cp(tk), Cs(tk+1), [τ
−, τ+]) of OM(X(t)). A distributor distributes the occurrences

Ci(tk) directly to the abstract binary observers that are concerned with, and the observers sends

the expected results to a collector managing the set E. In other words, the Detect-Describe-

Explain main functions of TOM4E are distributed on each individual abstract binary observers

of the two networks implementing OM(X78) and OM(X68) of the example.

The advantage is the abstract binary observers technology is that such a network realizes

a purely time driven and distributed computation. As a consequence, the computation of the

TOM4E algorithm is very fast and parsimonious in memory. This means that is can easily

be used in real time, even with very large scale networks of dynamic processes. The TOM4E

algorithm being Any Time, with the abstract binary observers technology it can also be used

Real Time.

Yet, the next chapter illustrates the application of the TOM4E algorithm on a real-world

hydraulic dynamic process, the Sapin’s dam.
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Algorithm: TOM4E(Ci(tk))
Inputs:

An occurrence Cj(tk) of an observation class Ci.
Outputs:

A sorted set E = {Ei} of n pairs Ei = (EPi, R
ab
i ) linking a possibly empty set

EPi = {epk} of instantiated paths.
epk = {..., rk(Cp(tk), Cs(tk+1), [τ

−, τ+], ...} made with a series
of instantiated relation of the form rk(Cp(tk), Cs(tk+1), [τ

−, τ+])
eventually completed with not observed occurrences constituting an explanation
with the corresponding set Rab

i of unsatisfactory relations rn(Cp, Cs, [τ
−, τ+]).

Knowledge Base:

The set R = {Ri} of the sets Ri of timed binary relation of n
observation models OM(Xi(t)).
The set Rab

current =
⋃

Rab
static i of the union set of the Rab

static(i)
of the n observation models OM(Xi(t)).
The set Rab

dynamic = {Rab
dynamic i} of the n sets Rab

dynamic

of the observation models OM(Xi(t)).
The set Ru =

⋃

Ru
i } of the n sets Ru

i containing the unobservable relations
of the observation models OM(Xi(t)).

Long term memory:

The initial time stamp t0 initialized with the value −1.
The precedent and the current occurrence Ci(tk − 1) and Cj(tk) initialized with the value φ.
The set T = {ti} of n time stamps t(i) at which a process Xi(t) reached its goal,
each ti being initialized withe the value −1.
The set P = {Pi} of n sets Pi of paths pk of relations: pk = {..., rk((Cp, Cs, [τ

−, τ+]), ...},
The set I = {IPi} of n sets IPi of paths ipk of instantiated relations:
ipk = {..., rk(Cp(tk), Cs(tk+1), [τ

−, τ+], ...}.
The set E = {EPi} of sets EPi of paths epk of instantiated relations: .
epk = {..., rk(Cp(tk), Cs(tk+1), [τ

−, τ+], ...}
containing unobserved occurrences Ce(te) that could explain a instantiated relation r
All these sets of paths are initialized as an empty set denoted Φ.
The set S = {si} of n boolean variables the value of which is TRUE when a relation r
of the form r(CiCj , [τ

−, τ+]) is satisfactory according to OM(X(t)).
All the si of S are initialized with a TRUE value.

1. IF t0 = −1 THEN t0 = tk
2. IF Cj(tk − 1) = φ THEN
2.1 Cj(tk − 1) = Ci(tk)
2.2 return E
//A binary relation can be made with Cj(tk − 1) and Ci(tk)
//Detect, describe and explain Ci(tk) for each OM(Xi(t))
3. ∀i = 1...n
//Get all the relations in R(i) having the form rn(CiCj , [τ

−, τ+])
3.1. rSet = getRelations(Ci, Cj , R(i))
3.2. ∀j = 1...rSet.size()
3.2.1. r = rSet(i)
3.2.2. detect(r, i)
3.2.3. describe(r, i)
3.2.4. explain(r, i)
4. Ci(tk − 1) = Cj(tk)
5. return E
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Algorithm: detect(r, i)
Inputs:

The index i of the set R(i) containing the relations of OM(Xi(t)) to consider.
A binary relation rn(P, S, [τ

−, τ+]).
Outputs:

The set P (i) of P containing npi paths p of relations:
p = {..., rk((Cp, Cs, [τ

−, τ+]), ...}.

1. IF isSatisfactory(r,Rab
current(i)) = true THEN

// update ti and R
ab
current(i)

1.1 T (i) = tk
1.2 Rab

current(i) = Rab
current(i) +Rab

dynamic(i)

1.3 S(i) = TRUE
2. ELSE //update Rab

current(i) only
2.1 S(i) = FALSE
2.2. Rab

current(i) = Rab
current(i)−Rab

dynamic(i)

//If P (i) is empty, create a new path containing r and add it in P (i)
3. IF P (i) = Φ THEN
1.1. p = {r}
1.2. P (i) = P (i) + p 1.3. return
// P (i) is not empty
4. ∀k = 1...P (i).size() //For all the pathes p ∈ P (i)
4.1. p = P (i)(k)
4.2. IF isAPath(p, r, R(i)) THEN p = p+ r
4.3. ELSE P (i) = P (i)− p //p is no more a path for OM(Xi(t))
5. return

Algorithm: describe(Ci(tk), r, i)
Inputs:

The index i of OM(Xi(t)).
A binary relation rn(P, S, [τ

−, τ+]).
Outputs:

The set IP (i) of I.

1. ∀k = 1...IP (i).size() //For all the paths p ∈ P (i)
//If the path P (i)(k) has been removed from P (i)
1.1. IF P (i)(k) = Φ THEN IP (i)(k) = Φ
1.2. ELSE
//Create an instantiated version of r
1.2.1 ir = irn(Cj(tk−1), Ci(tk), [τ

−, τ+])
//Add ir in IP (i)(k)
1.2.2 IP (i)(k) = P (i)(k) + ir
3. return
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Algorithm: explain(r, i)
Inputs:

The index i of OM(Xi(t)).
A binary relation rn(P, S, [τ

−, τ+]).
Outputs:

The set EP (i) of E.

1. ∀k = 1...EP (i).size() //For all the paths p ∈ EP (i)
//The path P (i)(k) has been removed from P (i) ⇒ clear EP (i)(k)
1.1. IF P (i)(k) = Φ THEN EP (i)(k) = Φ
1.2. IF S(i) = FALSE THEN
//Find the set of relations of the form re(Ce, P, [τ

−
m, τ

+
m]) in R(i)

1.2.1. eSet = getExplanations(r,R(i))
//Add eSet in EP (i)(k)
1.2.2. EP (i)(k) = EP (i)(k) + eSet
2. return

Algorithm: getExplanations(r,R)
Inputs:

A binary relation rn(P, S, [τ
−, τ+]).

The set R of an observation model OM(Xi(t)).
Output:

A set E of binary relation rps of the form rk(e, P, [τ
−
ps, τ

+
ps]) s ⊆ R .

1. E = Φ
2. ∀i = 1...R.size()
2.1. rR = R(i)
2.3. sR = r.getS()
2.4. IF r.getS() = rR.getP () THEN E = E + r
//Remove the observables relations
3. ∀i = 1...E.size()
3.1. e = E(i)
3.2. found = FALSE
3.3. ∀j = 1...Ru.size()
3.3.1. u = Ru(j)
3.3.2. IF found = FALSE OR e = u THEN found = TRUE
3.4. IF found = FALSE THEN E = E − e
4. return E

Algorithm: provideAnExplanation(i)
Inputs:

The index i of an observation model OM(Xi(t)).
Output:

A set E of binary relation rps of the form rk(e, P, [τ
−
ps, τ

+
ps]) s ⊆ R .

1. E = E(i)
2. ∀i = 1...E.size()
2.1. e = E(i)
2.2. r = e.getLastRelation()
2.3. getExplanations(r,R(i))
4. return E



CHAPTER 6

Application to the Hydraulic Dam Safety

Assessment

Dams are heterogeneous structures featured by complex behaviors that evolve through time

because of their natural aging. This aging can be accelerated by environmental causes (climatic

conditions, floods and earthquakes) or by internal causes (poor design or construction condi-

tions, insufficient or inadequate maintenance...). These causes involve, during the life of the

structure, the occurrence and the development of deterioration phenomena, more or less depen-

dent and stemming from miscellaneous and complex sources. Such phenomena are for instance,

fissure of the concrete facing, clogging of the drain outlet, sliding of shoulders [CIG94]. Figure

6.1 illustrates two examples of deterioration phenomena. The first photography (a) shows the

deterioration of the protection of the upstream facing: cobblestones are lacking and the geo-

textile underneath is visible and locally deteriorated. The second photography (b) shows the

downstream shoulder of an embankment dam on which the vegetation is composed of shrubs

and young trees. The death of this type of vegetation can generate specific water circulation

caused by the disappearance of roots.

Figure 6.1: Examples of deterioration phenomena - Photos Irstea

Some phenomena can lead to the failure of the structure such as what happened to the

Malpasset Dam in France in 1959 (cf. Figure 6.2).

At the moment, throughout the world, the assessment of dam reliability and safety, their

diagnosis and the proposal for corrective actions are carried out by expert engineers, during dam

127
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Figure 6.2: Failure of the Malpasset Dam (France) in 1959 - Photos Irstea

reviews. Indeed, it is crucial to develop methods and tools for managing the dynamic behavior

of dams and modeling the process.

This chapter apply the TOM4D methodology and the TOM4E algorithm described in the

previous sections to the French Sapins dam presented in Section 6.1. Sections 6.2, 6.4 and

6.5 present the application of the TOM4D methodology to the Sapins’ dam modeling. Section

6.6 focalizes on the application of the diagnosis algorithm defined in previous chapter with the

TOM4D model of this dam. Finally, sections 6.7 concludes this chapter with an interpretation

of the obtained results.

6.1 Sapins dam presentation

The phenomena that occurred during the life of the French Sapins Dam are described in [PRB06].

This knowledge base comprises text and several figures.

Let us consider the available knowledge extracted from [PRB06] where only the internal

erosion scenario is considered:

1. The Sapins dam is a homogeneous dam, 16 m high and impounding a 2 hm3 lake.

2. this dam is set up by a upstream shoulder and a downstream shoulder composed of granite

arena structure based on a granite foundation. It comprises a vertical drain between the

upstream and the downstream shoulder and a horizontal drain at the interface of the
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foundation with the downstream half of the dam (Figure 6.3). The horizontal drain is

considered to drain only the foundation and the vertical one, only the upstream shoulder.

The top of the vertical drain is 2 m lower than the normal reservoir level.

3. Sensors and visual observations are available:

• the water level of the reservoir is assessed through a depth gauge;

• the upstream shoulder is instrumented with three pore pressure cells C3, C4 and C5

that assess the water level in the component;

• the vertical drain discharge is recorded;

• wet areas and leakages can be observed on the downstream shoulder.

Wet areas and leakages are observed by human experts and so, considered as absract sensors

(such observations are considered as indicators [CPB10] that provide a reliable assessment).

Figure 6.3: Structure of the Sapins dam

The knowledge base allows a chronological analysis of the events that marked the life of this

dam on the basis of the data stemming from monitoring devices and visual observations, after

the construction of the Sapins Dam that ended in November 1978 (cf. Figure 6.4):

1. In November 1978, the reservoir filling began and the pore pressure cells stabilized at

normal values

2. In December 1978, the reservoir got its normal water level elevation

3. In April 1979, the pressures assessed by C4 and C5 in the upstream shoulder indicated

values higher than the normal (waited for) ones

4. In November 1980, the drainage flow gets a normal and progressive raise

5. In November 1980, a decrease of this flow was assessed

6. In November 1981, a partial emptying of the reservoir was performed

7. In November 1981, the drainage flow increased

8. In December 1981, the reservoir was again at its normal level elevation

9. In October 1982, the drainage flow decreased again (the low level is obvious on February

1983)



130 CHAPTER 6. HYDRAULIC DAM

10. In December 1985, a new partial emptying of the reservoir was carried out

11. In March 1986, the reservoir was again at its normal level

12. In September 1988, a very wet area was noted at the toe of the downstream shoulder

13. In mid-October 1988, muddy seepage could be observed on the downstream shoulder

For safety reasons, it was decided to completely empty the reservoir and improve its structural

safety before bringing the dam back into service.

These elements of description are given with the purpose of a diagnosis cognitive task.

We propose to use the TOM4D formalism along with the algorithms developed to explain the

phenomena that occured during 10 years in the Sapins Dam.

Figure 6.4: Sapins’Dam Evolution through Piezometry, Drain Outflow and Reservoir Level [PRB06]
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6.2 Knowledge Interpretation

A first knowledge interpretation of the knowledge base extracted from [PRB06].

This interpretation comes from works developed in [LGM07] and [LGMC08] but in this

chapter, the Dam Crest is considered as included in the UpShoulder and the DownShoulder,

and the anchor trench is considered as a part of Foundation.

Six components and five sensors are explicitely defined as components:

• Component c1: The name of this component is Vertical Drain. It is associated with the

sensor DrainFlow c7;

• Component c2: The name of this component is Reservoir. It is associated with the sensor

ResLevel c8;

• Component c3: The name of this component is Upstream Shoulder. It is associated with the

sensors C1, C2 and C3 that assess the pezometry in c3 during time with values evolving

on a continuous scale. Assessing the same Piezometry variable (the difference between

them comes from their variation range, cf. Figure 6.4), these sensors are combined in a

conglomerate variable called PressureCell defined on a set of three values: Medium, Low

and High;

• Component c4: The name of this component is Downstream Shoulder. It is associated

with the visual observations Leakage and WetArea (c10) that assess the presence of clear

or muddy water in c4 during time;

• Component c5: The name of c5 is Foundation. There is no sensor associated with it;

• Component c6: The name of c6 is Horizontal Drain. There is no sensor associated with it.

• Component c7: The name of c7 is DrainF low. This sensor is associated with the Vertical

Drain c1. The measures over time evolves on a continuous scale that is discretized in three

values: Medium, Low and High;

• Component c8: The name of c8 is ResLevel. This sensor assesses the water level in the

Reservoir c2. The experts descretizes this level with three discrete values: Medium, Low

and High;

• Component c9: The name of this component is PressureCell. It provides continuous

values that are discretized by experts as Medium, Low and High;

• Component c10: This component is an abstract sensor representing the human assessment

about two kinds of visual observations, Leakage and WetArea.

– Leakage. Three possible values are considered: AbsLeak (Absence of Leakage in the

Downstream Shoulder), PresLeak (Presence of Leakage in the Downstream Shoulder)

and SuspLeak (Suspicion of Leakage in the Downstream Shoulder) ;

– WetArea. Three possible values are also considered: AbsWA (Absence of Wet Area

in the Downstream Shoulder), SuspWA (Suspicion of Wet Area in the Downstream

Shoulder) and PresWA (Presence of Wet Area in the Downstream Shoulder).
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It is to note that only the values PresLeak and PresWA can be observed on the Downstream

Shoulder c4. The values SuspWA and SuspLeak means then that even in absence of observable

presence of leakage or wet areas, water can be present in the Downstream Shoulder c4 even if not

visible on the slope. If the suspicion is confirmed, one can be sure that there is a leakage (wet

area) but it can be not already visible on the downstream slope. The no detection of Leakage

or Water Areas does not mean that there is absolutely no water in the downstream shoulder

c4 but it simply means either there is effectively no water either there is water but it has not

reached the slope.

According to the TOM4D methodology, these elements leads to the construction of Table

6.1 where abstract denominations are used to define the variables and their possible values.

C X Definition Domain Variable Name Respective Value Name

c7 x7 ∆x7
= {δ70, δ71, δ72} DrainF low Low,Medium,High

c8 x8 ∆x8
= {δ80, δ81, δ82} ResLevel Low,Medium,High

c9 x9 ∆x9
= {δ90, δ91, δ92} PressureCell Low,Medium,High

c10 x10 ∆x10
= {δ100, δ101, δ102} Leakage PresLeak, SuspLeak,AbsLeak

c10 x11 ∆x11
= {δ110, δ111, δ112} WetArea PresWA,SuspWA,AbsWA

Table 6.1: Definition of the Abstract Variables for the Sapins Dam

Moreover, the application of the Spatial Discretization Principle allows determine the defi-

nition domains of the sensor’s variables: ten abstract thresholds are identified (cf. Table 6.2).

Variable Definition Domain Respective Abstract Ranges

x7 ∆x7
= {δ70, δ71, δ72} ]−∞,Ψ71[, [Ψ71,Ψ72[ , [Ψ72,+∞[

x8 ∆x8
= {δ80, δ81, δ82} ]−∞,Ψ81[, [Ψ81,Ψ82[ , [Ψ82,+∞[

x9 ∆x9
= {δ90, δ91, δ92} ]−∞,Ψ91[, [Ψ91,Ψ92[ , [Ψ92,+∞[

x10 ∆x10
= {δ100, δ101} ]−∞,Ψ101[, [Ψ101,Ψ102[ , [Ψ102,+∞[

x11 ∆x11
= {δ110, δ111} ]−∞,Ψ111[, [Ψ111,Ψ112[ , [Ψ112,+∞[

Table 6.2: Definition of The Abstract Thresholds for the Sapins Dam

6.3 Scenario Model

The interpretation of the text is sufficient to define a first structural model SM(Ω), before

providing the Ω sequence (cf. figure 6.5).

Formally, according to the definition 4.2 of the TOM4D methodology, the structural model

SM(Ω) is a structure < COMPS,Rp, Rx > where:

• COMPS = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}

• Rp = {out1(c2) = in(c8), out2(c2) = in(c3), out3(c2) = in(c5), out1(c3) = in(c9), out2(c3) =

in(c1), out3(c3) = in1(c4), out1(c1) = in(c7), out2(c1) = in2(c4), out(c4) = in(c10), out(c5) =

in(c6), out(c6) = in(c4)}

• Rx = {x7 = out(c7), x8 = out(c8), x9 = out(c9), x10 = out1(c10), x11 = out2(c10)}
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Figure 6.5: Structural Model SM(Ω) - Sapins Dam

A first structural model being made, it is then possible to analyse the relations between

the values of the variables. The structural model of figure 6.5 allows the identification of the

following functions (cf. figure 6.6):

• x9 = f1(x8): there is a relation between the values of x9 and those of x8;

• x7 = f2(x9): there is a relation between the values of x7 and those of x9;

• x10 = f3(x9, x7) and x11 = f4(x9, x7): there is a relation between the values of x10 (resp.

x11) and those of x9 and x7.

It is to note that physically, the water detected in the downstream shoulder c4 comes from

the vertical drain c1, the horizontal drain c6 or from the upstream shoulder c3. Because no

variable is associated with the horizontal drain c6, we considered that water can only come from

the upstream shoulder c3 otherwise the vertical drain c1.

Figure 6.6: Functional Model FM(Ω)
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Formally, according to the definition 4.3 of the TOM4D methodology, the functional model

FM(Ω) is a structure < ∆, F,Rf > where:

• ∆ = ∪
i=7,8,9,10,11

∆xi
(the ∆xi

are given in the table 6.1).

• F = { f1 : ∆x8
→ ∆x9

, f2 : ∆x9
→ ∆x7

, f3 : ∆x9
×∆x7

→ ∆x10
, f4 : ∆x9

×∆x7
→ ∆x11

}.

• Rf = { x8 = f1(x9), x7 = f2(x9), x10 = f3(x9, x7), x11 = f4(x9, x7) }.

Obviously, at this step of the modeling process, the function f1, f2, f3 and f4 cannot be

entirely specified.

The behavioral model of Sapins’ Dam is based on the definition of the set C = {Ci} of

observation classes where each Ci = {(xi, δij} a singleton (cf. Table 6.3).

Variable Definition Domain Observation Classes

x7 ∆x7
= {δ70, δ71, δ72} C70 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)}

x8 ∆x8
= {δ80, δ81, δ82} C80 = {(x8, δ80)}, C81 = {(x8, δ81)}, C82 = {(x8, δ82)}

x9 ∆x9
= {δ90, δ91, δ92} C90 = {(x9, δ90)}, C91 = {(x9, δ91)}, C92 = {(x9, δ92)}

x10 ∆x10
= {δ100, δ101, δ102} C100 = {(x10, δ100)}, C101 = {(x10, δ101)}, C102 = {(x10, δ102)}

x11 ∆x11
= {δ110, δ111, δ112} C110 = {(x11, δ110)}, C111 = {(x11, δ111)}, C112 = {(x11, δ112)}

Table 6.3: Definition of The Observation Classes

Table 6.4 shows the change of the variables value during time for the described scenario.

Time x7 x8 x9 x10 x11
11/1978 − − δ91 − −

12/1978 − δ81 δ91 − −

04/1979 − δ81 δ92 − −

11/1980 δ71 δ81 δ92 − −

11/1981 δ70 δ81 δ92 − −

11/1981 δ70 δ80 δ92 − −

12/1981 δ71 δ80 δ92 − −

12/1981 δ71 δ81 δ92 − −

02/1983 δ70 δ81 δ92 − −

12/1985 δ70 δ80 δ92 − −

03/1986 δ70 δ81 δ92 − −

09/1988 δ70 δ81 δ92 − δ112
10/1988 δ70 δ81 δ92 δ102 δ112

Table 6.4: Variables Evolution During the Sapins’ Sam Scenario

Given Table 6.3 and 6.4, the scenario can be written in term of occurrences of observation

classes (cf. figure 6.7):

• ω = { C91(11/1978), C81(12/1978), C92(04/1979), C71(11/1980), C70(11/1981), C80(11/1981),

C71(12/1981), C81(12/1981), C70(02/1983), C80(12/1985), C81(03/1986), C112(09/1988),

C102(10/1988) }.

According to the Spatial Discretization Principle of the TOT, the first observation C91(11/1978)

cannot be written by a safe program Θ(X,∆) because the time functions x7(t), x8(t), x9(t),
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Figure 6.7: Sapins’Dam Degradation Sequence

x10(t) and x11(t) do not cross any threshold, the initial state is then unknown. At the beginning

of the reservoir filling, the thresholds do not have the same values as after the reservoir is full.

So a first behavioral model can be depicted (cf. figure 6.8).

Formally, according to the definition ?? of TOM4D methodology, the behavioral model

BM(Ω) is a structure < S,C,Rs > where:

• S = { s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,s11, s12, s13 }

• C = { C80 = {(x8, δ80}), C81 = {(x8, δ81)}, C82 = {(x8, δ82)}, C90 = {(x9, δ90)},

C91 = {(x9, δ91)}, C92 = {(x9, δ92)}, C100 = {(x10, δ100)}, C101 = {(x10, δ101)},

C102 = {(x10, δ102)}, C110 = {(x11, δ110)}, C111 = {(x11, δ111)}, C112 = {(x11, δ112)} }

• Rs = {s0 = {r(Cφ, C91)}, s1 = {r(C91, C81)}, s2 = {r(C81, C92)}, s3 = {r(C92, C71)}, s4 =
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Figure 6.8: Behavior Model BM(Ω)

{r(C71, C70)},

s5 = {r(C70, C80)}, s6 = {r(C80, C71)}, s7 = {r(C71, C81)}, s8 = {r(C81, C70)}, s9 = {r(C70, C80)},

s10 = {r(C80, C81)}, s11 = {r(C81, C112)}, s12 = {r(C112, C102)}, }

Clearly, this model is only a part of the global behavioral model of the hydraulic process:

potentially, the discernible state space contains 3 · 3 · 3 · 3 · 3 = 243 states. To build the complete

behavioral model, 243 · 242 = 58806 relations between two discernible states must be examined.

Moreover, analyzing Table 6.4, it can be seen that the functional model is inevitably incomplete.

Indeed, at 12/1978 and 04/1979, x8 = δ81, while x9 = respectively δ91 and δ92. This leads us

suppose that other variables are necessary to define the functioning of the dam, even if only five

timed observations are available for the analysis of the dam. Consequently, a deeper analysis is

then required: this is the role of the two next steps of the TOM4D modeling process.

6.4 Process definition

The first task of the Process Definition step consists in the definition of the Sapins’ Dam under

the form of a set X(t) of time functions. The models made in the precedent step allow to

immediately identify x7(t), x8(t), x9(t), x10(t) and x11(t) as time functions:

• x7, x10 and x11 denote respectively the water output flow of the drain (DrainF low) and a

presence of water (Leakage, WetArea) on the downstream shoulder (WaterDown): they
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correspond to the Q variable of the hydraulic ToS. The physical dimension of x7, x10 and

x11 is then m3.s−1.

• x8 denotes the water level of the reservoir (ResLevel): it corresponds to the V variable of

the hydraulic ToS. The physical dimension of x8 is m3.

• x9 denotes a pressure in the upstream shoulder (PressureCell). The physical dimension

of x9 is kg/m.s2.

To define the Perception Model, we rely on the literature. The goal of an hydraulic dam

is to generate a reservoir and to maintain the level of water considering an operating curve.

The normal functioning must consider this goal along with safety aspects for people and assets

located downstream. This implies that water that seeps into the upstream embankment (or

foundation - not treated here) is correctly evacuated by a drainage system. Consequently, a

normal functioning mode implies that there is no water in the downstream shoulder. This leads

to the following definition of the Perception Model:

Definition 6.1 The Perception Model PM(X(t)) of the hydraulic process X(t) ={ x7(t), x8(t),

x9(t), x10(t), x11(t)} is the structure < X,Ψ, Rq > where:

• X = {x7, x8, x9, x10, x11},

• Ψ = {Ψ71,Ψ72,Ψ81,Ψ82,Ψ91,Ψ92,Ψ101,Ψ111}

• Rq = Rgoal ∪Rn ∪Rab.

– Rgoal = {∃t0, ∃ti, ti ≥ to, ∀t ≥ ti,Ψ81 ≤ x8(t) < Ψ82}

– Rn = {

∀t ≥ ti,Ψ81 ≤ x8(t) < Ψ82 ∧

∀t ≥ ti,Ψ71 ≤ x7(t) < Ψ72 ∧

∀t ≥ ti,Ψ91 ≤ x9(t) < Ψ92} ∧

∀t, x10(t) < Ψ101 ∧

∀t, x11(t) < Ψ111

}

– Rab = {

∀t ≥ ti, x8(t) < Ψ81 ∨ x8(t) ≤ Ψ82 ∨

∀t ≥ ti, x7(t) < Ψ71 ∨ x7(t) ≤ Ψ72 ∨

∀t ≥ ti, x9(t) < Ψ91 ∨ x9(t) ≤ Ψ92 ∨

∀t, x10(t) ≥ Ψ101 ∨

∀t, x11(t) ≥ Ψ111

}

The perception model PM(X(t)) being defined, it is then possible to go in the last modeling

step, the Generic Modeling.
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6.5 Generic Modeling

Let us consider the hydraulic component of figure 6.9 that is made with one input variable Q(t),

the input flow, and two output variables Qs(t) (normal output flow) and Qf (t) (leaking output

flow). In normal condition, Qf (t) = 0 (i.e. there is no leaking).

Figure 6.9: Hydraulic Component

The relations between the variables Q(t), V (t), Qs(t) and Qf (t) are defined by the hydraulic

ToS (cf. figure 6.10).

6.5.1 Generic Interpretation with the ToS

By definition, the generalized flow Qv(t) corresponds to the internal volume of water inside the

component:

Qv(t) = Q(t)− (Qs(t) +Qf (t)) (6.1)

Pressure
[N.m-2] [m-1.kg. s-2]

V(t)
V(t) = 

C(t) * Pr(t) Pr(t)

Pr(t) = 

dPp(t)/dt
Qv(t) = 
dV(t)/dt

Pr(t)=
R(t) * Qv(t)

V(t)[m3] volume 
of water

Type 4:
Differential

Type 1: water stored 
on Pr(t) [kg.m-4. s-2]

Pp(t)Qv(t)
Pp(t) = 

Qv(t) * L(t)

dPp(t)/dtdV(t)/dt R(t) * Qv(t)

Moment of pressure
[N.m-2.s] [m-1.kg. s-1]

Qv(t)[m3.s-1] flow 
of water

Type 1: accumulator
[m-4.kg]

Type 2: Resistivity
[kg.m-4. s-1]

Figure 6.10: HydraulicToS

When considering the components of an hydraulic dam, the momentum of pressure is not

kept the experts’ hydraulic dam. Pr(t) is not observable for all components. The behavior of
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the hydraulic component of figure 6.9 is then given by the following equations:

Qv(t) = dV (t)/dt (6.2)

Pr(t) = R(t) ·Qv(t) (6.3)

V (t) = C(t) · Pr(t) = C(t) ·R(t) ·Qv(t) (6.4)

Qv(t) = C(t) · d(R(t) · d(Qv(t))/dt (6.5)

As a consequence:

Qs(t) +Qf (t) = Q(t)− d(C(t) ·R(t) ·Qv(t))/dt (6.6)

This equation means that the behavior of the dam components rely on the evolution of the

product C(t) · R(t). This later is similar to the opposite of the permeability: the higher the

product C(t) ·R(t), the lower the permeability, and vice-versa.

6.5.2 Type of Components

Let us denote φ(t) = C(t) ·R(t). The behavior of the dam component differs strongly according

to three types of value φ(t) can take over time:

• φ(t) → 0: In that case, the dam component behaves as a pipe. A pipe is conceptually

characterized by the fact that there is no storage (i.e. V (t) = 0) : its input flow equals its

output flow with some delay (equation 6.7) .

Qs(t+∆T ) = Q(t) (6.7)

• φ(t) → ∞: In that case, the hydraulic component behaves as a tank. A tank is charac-

terized by its capacity C(t) = C corresponding to the maximum quantity of water that

be contained in it. Under normal condition, a tank has no outflow (i.e. Qs(t) = 0 and

Qv(t) = Q(t), equation 6.8).

Q(t) = dV (t)/dt (6.8)

• φ(t) → φ0: In that case, the hydraulic component behaves as a low pass filter. In that case,

the component is characterized by the value φ0. In normal conditions φ0 is a constant.

Its role is to control the output flow Qs(t) according to the current value of C(t) · R(t)

product .

Qs(t) = Q(t)− φ0 ·Qv(t)/dt (6.9)

As a consequence, the equation 6.6 can be simplified as following where φ(t) is a variable

that can take three constant values, 0, φ0 and ∞:

Qs(t) +Qf (t) = Q(t)− φ(t) · dQv(t)/dt (6.10)
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Technically speaking, consider that the variable φ(t) can take three types of constant value

over time simply means that the evolution of φ(t) over time is considered to be very slow ac-

cording to the dynamic of the evolution of the other variables Qs(t), Qf (t), Q(t) and Qv(t). φ(t)

is then considered as a structural and non observable variable of the component: the equation

6.10 aims at linking the values of V (t), Qs(t) and Qf(t) related to the modifications of φ(t).

In other words, φ(t) is an internal variable that governs the behavior of the dam components

according to three types of behaviors:

• φ(t) = 0: the component behaves as a Pipe.

• φ(t) = φ0: the component behaves as a Low Pass Filter.

• φ(t) = ∞: the component behaves as a Tank.

By construction, the evolution of the values of φ(t) characterizes that of the component

permeability: this latter should stay constant over time. This means that in normal operation,

φ(t) of a dam component is unique, whatever its value 0, φ0 or ∞. But ageing, poor design or

wrong building conditions can lead to modifications of the permeability of a component, that is

to say φ(t) can take one (or two) abnormal value(s). When considering the components of an

hydraulic dam, various directions are then possible for the values of φ(t):

• φ0(t) = 0 → φ(t + ∆T1) = φ0 → φ(t + ∆T1 + ∆T2) = ∞: a pipe can become a low pass

filter, and next a tank.

• φ(t) = φ0 → φ(t+∆T3) = ∞: a low pass filter can become a pipe.

Conversely, a tank (i.e. φ(t) = ∞) can never become a low pass filter (or a pipe) without

an intervention on the dam (i.e. the reparation of a component). These properties of φ(t) will

have a strong impact on the TOM4D behavioral models, but the important point here is that

φ(t) being a structural variable, the only way to measure (and so to observe) its value is through

the demolition of the dam. In other words, a physical (or concrete) component can play the

role of two or even three types of component. All happens as if the original component, say a

pipe for example, would be replaced by another one, say a low pass filter. As a consequence,

the only way to determine the value of φ(t) without demolishing the component is to detect its

current behavior: for example, if the component behaves like a low pass filter when it should

behave like a pipe, then this means that φ(t) does not get the value the design assigned to it

(i.e. φ0(t) = 0) but something happens so that φ(t) = φ0. In other words, and this is the point

of view that is retained in this document, the values of φ(t) constitute the context in which a

component operates, and the role of the diagnosis is then to analyze the current behavior of a

component in order to determine the current operating context.

So, the equation 6.10 will be used in order to characterize the different components of the

Sapins hydraulic dam as Tank, Pipe and Low Pass Filter in normal operations:

1. The Vertical Drain c1 is a pipe: all the water coming from the Upstream Shoulder c3 goes

through the Vertical Drain c1.
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2. The Reservoir c2 is a pipe that acts as a generator of a water flow: there is no resistance

to the external incoming water. The different values of ResLevel (i.e. x8) come from a

more or less important supply of water.

3. The Upstream Shoulder c3 is a low pass filter : only a few amount of water goes from the

Reservoir c2 to the Upstream Shoulder c3. This latter opposes the ingress of water but

not totally because its materials can not be completly watertight;

4. The Downstream Shoulder c4 is a tank. The term Leakage(δ100) and WetArea (δ110)

associated to the Downstream Shoulder c4 indicate abnormal operating conditions.

5. The Horizontal Drain c6 is a pipe: all the water coming from the Foundation goes through

the Horizontal Drain c6;

In nomal condition, the value of the variable Qf (t) is null for each type of component and

when something abnormal occurs in a component, the value of Qf (t) is positive.

6.5.3 Dynamic Process Network Model for Sapin’s Dam

Let us denote (cf. Table 6.5):

• φ21 the structural variable of the Vertical Drain c1. φ21 is defined over ∆φ21: the values

δ210, δ211 and δ212 correspond respectively to φc1(t) → 0 (Low resistance to water, c1

behaves like a pipe), φc1(t) → φ0 (Medium resistance to water, c1 behaves like a low pass

filter) and φc1(t) → ∞ (High resistance to water, c1 behaves like a tank).

• φ23 the internal variable of the Upstream Shoulder c3. φ23 is defined over ∆φ23: the values

δ230 and δ231 correspond respectively to φc3(t) → 0 (Low resistance to water, c3 behaves

like a pipe) and φc3(t) → φ0 (Medium resistance to water, c3 behaves like a low pass filter).

In other words, the values of φ21 represent the fact the Vertical Drain c1 that functions under

normal conditions as a pipe (Low resistance, φ21 = δ210) can become a low pass filter (Medium

resistance, φ21 = δ211) and then a tank (High resistance, φ21 = δ212). Conversely, we consider

that the Upstream Shoulder that has Medium resistance under normal conditions (i.e. φ23 =

δ231) can become a pipe with Low resistance (i.e. φ23 = δ230).

Var. Definition Domain Constant Name

φ21 ∆φ21
= {δ210, δ211, δ212} Low resistance, Medium resistance, High resistance

φ23 - ∆φ23
= {δ230, δ231} Low resistance, Medium resistance

Table 6.5: Definition of the Variables φ21 and φ23

Var. Definition Domain Respective Abstract Ranges

φ21 ∆φ21
= {δ210, δ211, δ212} ]−∞,Ψ211[, [Ψ211,Ψ212[ , [Ψ212,+∞[

φ23 ∆φ23
= {δ230, δ231} ]−∞,Ψ231[, [Ψ231,+∞[

Table 6.6: Definition of The Abstract Thresholds for φ21 and φ23

Using these internal variables φ21 and φ23, the functional model can be updated (cf. Figure

6.11).

Formaly, the Generic Functional Model FM(X(t)) of the dam is given in the definition 6.2.
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Figure 6.11: Generic Functional Model FM(X(t))

Definition 6.2 The Functional Model FM(X(t)) of the hydraulic process X(t) is the structure

< ∆, F,Rf > where,

• ∆ = ∆x7
∪∆x8

∪∆x9
∪∆x10

∪∆x11
∪∆φ21

∪∆φ23
.

• F = {

f1 : ∆
x8 ×∆φ23 ×∆x9,

f2 : ∆
x9 ××∆φ21 ×∆x7,

f3 : ∆
x9 ×∆x7 ×∆x10,

f4 : ∆
x9 ×∆x7 ×∆x11

}.

• Rf = {

x9 = f1(x8, φ23),

x7 = f2(x9, φ21),

x10 = f3(x9, x7),

x11 = f4(x9, x7)

}.

The functions f1, f2, f3 and f4 are specified in the tables 6.7, 6.8, 6.9.

This functional model leads naturally to define the hydraulic process X(t) as a network of

dynamic processes X(t) = X11(t) ∪X12(t) ∪X13(t) where:

• X11(t) implements the function f1: X11(t) = {x8(t), x9(t), φ23(t)}.

• X12(t) implements the function f2: X12(t) = {x9(t), x7(t), φ21(t)}.

• X13(t) implements the functions f3 and f4: X13(t) = {x7(t), x9(t), x10(t), x11(t)}.
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f1 : ∆x8
×∆φ23

→ ∆x9

x9 = f1(x8, φ23)

x8 φ23 f1 Interpretation

δ80 δ231 δ90 Low ResLevel, Medium UpShoulder Resistance ⇒ Low PressureCell

δ81 δ231 δ91 Medium ResLevel, Medium UpShoulder Resistance ⇒ Medium PressureCell

δ82 − δ92 High ResLevel ⇒ High PressureCell

δ80 δ230 δ91 Low ResLevel, Low UpShoulder Resistance ⇒ Medium PressureCell

δ81 δ230 δ92 Medium ResLevel, Low UpShoulder Resistance ⇒ High PressureCell

Table 6.7: Definition of the Generic Function f1

f2 : ∆x9
×∆φ21

→ ∆x7

x7 = f2(x9, φ21)

x9 φ21 x7 Interpretation

δ90 δ210 δ70 Low PressureCell, Low Drain Resistance ⇒ Low Drain Flow

δ91 δ210 δ71 Medium PressureCell, Low Drain Resistance ⇒ Medium Drain Flow

δ92 δ210 δ72 High PressureCell, Low Drain Resistance ⇒ High Drain Flow

δ90 δ211 δ70 Low PressureCell, Medium Drain Resistance ⇒ Low Drain Flow

δ91 δ211 δ70 Medium PressureCell, Medium Drain Resistance ⇒ Low Drain Flow

δ92 δ211 δ71 High PressureCell, Medium Drain Resistance ⇒ Medium Drain Flow

− δ212 δ70 High Drain Resistance ⇒ Low Drain Flow

Table 6.8: Definition of the Generic Function f2

f3 : ∆x9
×∆x7

→ ∆x10
, f4 : ∆x9

×∆x7
→ ∆x11

f3(x9, x7), f4(x9, x7)

x9 x7 f3 f4 Interpretation

δ90 δ70 δ100 δ110 Low PressureCell, Low DrainFlow ⇒ AbsLeak, AbsWA

δ91 δ71 δ100 δ110 Medium PressureCell, Medium DrainFlow ⇒ AbsLeak, AbsWA

δ92 δ72 δ100 δ110 High PressureCell, High DrainFlow ⇒ AbsLeak, AbsWA

δ91 δ70 δ101 δ111 Medium PressureCell, Low DrainFlow ⇒ SuspLeak, SuspWA

δ92 δ71 δ101 δ111 High PressureCell, Medium DrainFlow ⇒ SuspLeak, SuspWA

δ92 δ70 δ102 δ112 High PressureCell, Low DrainFlow ⇒ PresLeak, PresWA

Table 6.9: Definition of the Generic Functions f3 and f4

In the functional model of figure 6.11, the sensors c7 (DrainF low), c8 (ResLevel), c9

(PressureCell), c10 (V isualObs) are considered as always available: they can then been merged

in their respective components c1, c2, c3 and c4. Moreover, the components c2 (Reservoir) having

no sensor, it can be considered as merged with Upstream Shoulder c3. This leads to a simplified

the generic structural model graphically represented in figure 6.12.

Definition 6.3 The Generic Structural Model SM(X(t)) is a structure < COMPS,Rp, Rx >

where:

• COMPS = {c11, c12, c13}

• Rp = {out1(c11) = in1(c12), out2(c11) = in1(c13), out1(c12) = in2(c13)}

• Rx = {x8 = in1(c11), φ23 = in2(c11), x9 = out3(c11), x7 = out2(c12), φ21 = in2(c12), x10 =

out1(c13), x11 = out2(c13)}
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Figure 6.12: Generic Structural Model SM(X(t))

The interest of the network structure is the simplification of the building of the generic

behavioral models of X11(t), X12(t) and X13(t). The delayed effects due to the water transfer

into the different elements that are not represented in the functions f1, f2, f3 and f4 will be

latter considered in the behavioral model. For instance, under normal operating conditions, an

increase of the water elevation in the reservoir c2 will result in an increase of the piezometry in

the Upstream Shoulder c3 but this change is not instantaneous. In a same way, the interactions

between components will be considered in the behavioral models: in case of an increase of the

Vertical Drain resistance Rc1 , i.e. φ21 = δ211 (Medium resistance) or δ212 (High resistance), the

piezometry will be higher than the piezometry observed if the drain resistance is low.

6.5.4 Step 3.1: Generic Modeling of X11(t)

The Perception Model of the process X11(t) is given in the Definition 6.4:

Definition 6.4 The Perception Model PM(X11(t)) of the process X11(t) = {x8(t), x9(t), x7(t)}

is the structure < X11,Ψ11, R
q11 > where:

• X11 = {x8(t), x9(t), φ23(t)},

• Ψ = {Ψ81,Ψ82,Ψ91,Ψ92,Ψ231}

• Rq11 = Rgoal11 ∪Rn11 ∪Rab11.

– Rgoal11 = {∃t0, ∃ti, ti ≥ t0,

∀t ≥ ti,Ψ81 ≤ x8(t) < Ψ82

}

– Rn11 = {∀t ≥ ti,

Ψ81 ≤ x8(t) < Ψ82∧

Ψ91 ≤ x9(t) < Ψ92∧

}

– Rab11 = {∀t ≥ ti,

x8(t) < Ψ81 ∨ x8(t) ≥ Ψ82∨

x9(t) < Ψ91 ∨ x9(t) ≥ Ψ92∨

}
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The structural model of X11(t) is given in the definition 6.5 and is represented in the figure

6.13.

Definition 6.5 The structural model SM(X11(t)) is the structure < COMPS11, R
p11 , Rx11 >

where:

• COMPS11 = {c2, c3, c8, c9}

• Rp11 = {out(c2) = in(c3)}

• Rx11 = {x8 = out(c8), x9 = out(c9)}

Figure 6.13: Generic Structural Model SM(X11(t))

The Generic Functional Model FM(X11(t)) of X11(t) is given in the definition 6.6 (cf. figure

6.14).

Definition 6.6 The Functional Model FM(X(t)) of the hydraulic process X(t) is the structure

< ∆11, F11, R
f11 > where,

• ∆11 = ∆x8
∪∆φ23

∪∆x9
.

• F11 = {f1 : ∆
x8 ×∆φ23 ×∆x9}.

• Rf = {x9 = f1(x8, φ23)}.

Figure 6.14: Generic Functional Model FM(X11(t))



146 CHAPTER 6. HYDRAULIC DAM

The relations between the values of the variables defined in the functional model of f1 (6.7)

allow to define the possible discernible states of X11(t). In the model below (cf. figure 6.15), it is

important to note that only the physically possible discernible states have been considered. This

means in particular that the following hypothesis has been used to model the behavior of X11(t):

the water in the Usptream Shoulder is supposed to totally stem from the Reservoir. This hy-

pothesis simplifies the behavioral model because only 13 discernible states have to be considered

instead of the 3.3.3 = 27 potential discernible states defined by X11(t). The behavioral model

is formally given below:

Definition 6.7 The behavior model BM(X11(t)) of the dynamic process X11(t) = {x8(t), x9(t), φ23}

is the structure < S11, C11, R
s11 > where:

• The set Rs11 = {

s110 = { r1101(C80, C81), r1102(C92, C81) }

s111 = { r1111(C80, C81), r121(C80, C92) }

s112 = { r1121(C91, C90), r1122(C80, C81), r1123(C91, C81), r1124(C80, C90) }

s113 = { r1131(C90, C81), r1132(C90, C91) }

s114 = { r1141(C81, C82), r1142(C81, C91), r1143(C92, C91), r1144(C92, C82) }

s115 = { r1151(C81, C80), r1152(C81, C82), r1153(C92, C80), r1154(C92, C82) }

s116 = { r1161(C81, C80), r1162(C81, C82), r1163(C81, C90), r1164(C81, C92), r1165(C91, C80),

r1166(C91, C82), r1167(C91, C90), r1168(C91, C92) }

s117 = { r1171(C81, C91), r1172(C90, C91) }

s118 = { r1181(C92, C81), r1182(C82, C81) }

s119 = { r1191(C82, C81), r1192(C92, C81) }

s120 = { r1201(C82, C81), r1202(C82, C92) }

s121 = { r1211(C81, C80), r1212(C81, C92), r1213(C81, C82) }

s122 = { r1221(C82, C81),r1222(C82, C92) }

}

of 39 sequential binary relations.

• The set C11 = {C80 = {(x8, δ80)}, C81 = {(x8, δ81)}, C82 = {(x8, δ82)}, C90 = {(x9, δ90)}, C91 =

{(x9, δ91)}, C92 = {(x9, δ92)}} of 6 observation classes.

• The set Rs11 = {

s110 = γ(s111, C92), s110 = γ(s115, C80),

s111 = γ(s112, C80),

s112 = γ(s113, C91), s112 = γ(s116, C80),

s113 = γ(s112, C90),

s121 = γ(s111, C81), s121 = γ(s122, C81),

s116 = γ(s112, C81), s116 = γ(s117, C91), s116 = γ(s120, C81), s116 = γ(s114, C91),

s117 = γ(s113, C81), s117 = γ(s116, C90),

s122 = γ(s121, C82),
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s120 = γ(s116, C82),

s119 = γ(s122, C92), s119 = γ(s115, C82),

s118 = γ(s120, C92), s118 = γ(s114, C82),

s115 = γ(s119, C81), s115 = γ(s121, C92), s115 = γ(s110, C81),

s114 = γ(s118, C81), s114 = γ(s116, C92)

} of 25 predicates.

The figure 6.15 provides a graphical representation of BM(X11(t)).

Figure 6.15: Generic Behavioral Model BM(X11(t))

In this Figure, each state sk has been replaced with its corresponding discernible state vector

Xk defined on {∆x8 × ∆x9 × ∆x23} to facilitate the reading of the model. For example, the

state X111 = {x8 = δ80, x23 = δ230, x9 = δ91} represents the fact that there is few water in the

Reservoir, the Resistivity of the UpShoulder is Low and the Piezometry in the UpShoulder is

Medium. This behavioral model is composed of two behavioral sub-models: one characterizing

the upstream shoulder behaving as a pipe (φ230) and the other characterizing the upstream

shoulder behaving as a low pass filter (φ231) which is the normal behavior for this component.

It is to note that the model is non symmetric according to the values of x23 : once the

resistance of the Upstream Shoulder gets the value Low, it is impossible to come back to a value

Medium except in case of corrective actions but in that case, we consider that the dam is a new

one.
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6.5.5 Step 3.2: Generic Modeling of X12(t)

The Perception Model of the process X12(t) is given in the Definition 6.8:

Definition 6.8 The Perception Model PM(X12(t)) of the process X12(t) = {x9(t), φ21, x7(t)}

is the structure < X12,Ψ12, R
q12 > where:

• X12 = {x9(t), φ21, x7(t)},

• Ψ = {Ψ91,Ψ92,Ψ71,Ψ72,Ψ211,Ψ212}

• Rq12 = Rgoal12 ∪Rn12 ∪Rab12.

– Rgoal12 = {Φ} (no goal can be defined: X12(t) must work normally)

– Rn12 = {∀t ≥ ti,

Ψ91 ≤ x9(t) < Ψ92∧

Ψ71 ≤ x7(t) < Ψ72

}

– Rab12 = {∀t ≥ ti,

x7(t) < Ψ71 ∨ x7(t) ≥ Ψ72∨

x9(t) < Ψ91 ∨ x9(t) ≥ Ψ92

}

The structural model of X12(t) is given in the definition 6.9 and is represented in the figure

6.16.

Definition 6.9 The structural model SM(X12(t)) is the structure < COMPS12, R
p12 , Rx12 >

where:

• COMPS12 = {c3, c1, c9, c7}

• Rp12 = {out(c3) = in(c1)}

• Rx12 = {x9 = out(c9), x7 = out(c7)}

Figure 6.16: Generic Structural Model SM(X12(t))

The Generic Functional Model FM(X12(t)) of X12(t) is given in the definition 6.10 (cf. figure

6.17).

Definition 6.10 The Functional Model FM(X(t)) of the hydraulic process X(t) is the structure

< ∆12, F12, R
f12 > where,



6.5. GENERIC MODELING 149

• ∆12 = ∆x9
∪∆x7

∪∆φ21
.

• F12 = {f2 : ∆
x9 ×∆φ21 ×∆x7}.

• Rf = {x7 = f2(x9, φ21)}.

Figure 6.17: Generic Functional Model FM(X12(t))

To define the possible states concerningX12(t), we rely on the values defined in the functional

model (6.7). The behavioral model is given below:

Definition 6.11 The behavior model BM(X12(t)) of the dynamic process X12(t) = {x9(t), φ21(t), x7(t)}

is the structure < S12, C12, R
s12 > where:

• The set Rs12 ={

s123 = { r1231(C70, C91), r1232(C90, C91) }

s124 = { r1241(C70, C71), r1242(C70, C90), r1243(C91, C90), r1244(C91, C71) }

s125 = { r1251(C71, C70), r1252(C71, C92), r1253(C71, C90), r1254(C91, C92), r1255(C91, C90), r1256(C91, C70)

}

s126 = { r1261(C92, C91), r1262(C92, C72) }

s127 = { r1271(C90, C70) }

s128 = { r1281(C91, C71) }

s129 = { r1291(C72, C91) }

s130 = { r1301(C90, C91) }

s131 = { r1311(C91, C92), r1312(C91, C90) }

s132 = { r1321(C70, C71), r1322(C70, C91), r1323(C92, C91), r1324(C92, C71) }

s133 = { r1331(C71, C70) }

s134 = { r1341(C90, C91) }

s135 = { r1351(C91, C90), r1352(C91, C92) }

s136 = { r1361(C92, C91) }

}

of 29 sequential binary relations.

• The set S12 = {s123, s124, s125, s126, s127, s128, s129, s130, s131, s132, s133, s134, s135, s136} of 14

discernible states.
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• The set C12 = {C70 = {(x7, δ70)}, C71 = {(x7, δ71)}, C72 = {(x7, δ72)}, C90 = {(x9, δ90)}, C91 =

{(x9, δ91)}, C92 = {(x9, δ92)}} of 6 observations classes.

The figure 6.18 provides a graphical representation of BM(X12(t)). This behavioral model

is composed of three behavioral models: one that characterizes the drain behaving as a pipe

(φ210) which is the normal behavior, another characterizes the drain behaving as a low pass filter

(φ211) and a last one characterizing the drain behaving as a tank (φ212).

Figure 6.18: Generic Behavioral Model BM(X12(t))

The modelM(X12(t)) of the dynamic process X12 = {x8, x9, φ21} is the tupleM(X12(t)) =<

PM(X12(t)), SM(X12(t)), FM(X12(t)), BM(X12(t)) >.

6.5.6 Step 3.3: Generic Modeling of X13(t)

The Perception Model of the process X13(t) is given in the definition 6.12:

Definition 6.12 The Perception Model PM(X13(t)) of the process X13(t) = {x7(t), x9(t), x10(t), x11(t)}

is the structure < X13,Ψ13, R
q13 > where:

• X13 = {x7(t), x9(t), x10(t), x11(t)},

• Ψ = {Ψ91,Ψ92Ψ71,Ψ72Ψ100,Ψ110}

• Rq13 = Rgoal13 ∪Rn13 ∪Rab13.

– Rgoal13 = {Φ} (no goal can be defined: X13(t) must work normally)

– Rn13 = {∀t, x10(t) < Ψ101 ∧ x11(t) < Ψ111}
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– Rab13 = {∀t, x10(t) ≥ Ψ101 ∨ x11(t) ≥ Ψ111}

The Structural Model of X13(t) is given in the definition 6.13 and is represented in the figure

6.19.

Definition 6.13 The structural model SM(X13(t)) is the structure < COMPS13, R
p13 , Rx13 >

where:

• COMPS13 = {c3, c1, c4, c9, c7, c10}

• Rp13 = {out(c3) = in1(c4), out(c1) = in2(c4)}

• Rx13 = {x9 = out(c9), x7 = out(c7), x10 = out1(c10), x11 = out2(c10)}

Figure 6.19: Generic Structural Model SM(X13(t))

The Generic Functional Model FM(X13(t)) of X13(t) is given in the definition 6.14 (cf. figure

6.20.

Definition 6.14 The Functional Model FM(X13(t)) of the hydraulic process X13(t) is the struc-

ture < ∆13, F13, R
f13 > where,

• ∆13 = ∆x9
∪∆x7

∪∆x10
∪∆x11

.

• F13 = {f3 : ∆
x9 ×∆x7 ; f4 : ∆

x9 ×∆x7}.

• Rf = {x10 = f3(x9, x7);x11 = f3(x9, x7)}.

Figure 6.20: Generic Functional Model FM(X13(t))

The process X13(t) being a purely combinatorial process, it is completely described with the

table 6.9. As a consequence, X13(t) does not need a behavioral model: the relations between

the values of x7 and x9 and those of x10 and x11 will be directly computed with the table of

values of f3 and f4.
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6.6 Diagnosis

6.6.1 Main elements

The behavioral model BM(X(t)) ofX(t) = X11(t)∪X12(t)∪X13(t) is the union of the behavioral

models of its sub-processes BM(X(t)) = BM(X11(t)) ∪BM(X12(t)).

The perception model ofX(t) = X11(t)∪X12(t)∪X13(t) is the union PM(X11(t)∪PM(X12(t))∪

PM(X13(t)):

• Rgoal11 = {∃t0, ∃ti, ti ≥ t0,

∀t ≥ ti, x8(t) = δ81

}

• Rn11 = {∀t ≥ ti,

x8(t) = δ81∧

x9(t) = δ91∧

}

• Rab11 = {∀t ≥ ti,

x8(t) = δ80 ∨ x8(t) = δ82∨

x9(t) = δ90 ∨ x9(t) = δ92∨

}

• Rn12 = {∀t ≥ ti,

x9(t) = δ91∧

x7(t) = δ71

}

• Rab12 = {∀t ≥ ti,

x9(t) = δ90 ∨ x9(t) = δ92∨

x7(t) = δ70 ∨ x7(t) = δ72∨

}

• Rn13 = {∀t,

x10(t) = δ102 ∧ x11(t) = δ112

}

• Rn13 = {∀t,

(x9(t) = δ90 ∧ x7(t) = δ70)∨

(x9(t) = δ91 ∧ x7(t) = δ71)∨

(x9(t) = δ92 ∧ x7(t) = δ72)

}

• Rab13 = {∀t,

x10(t) = δ100 ∨ x11(t) = δ110∨

x10(t) = δ101 ∨ x11(t) = δ111∨

}
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• Rab13 = {∀t,

(x9(t) = δ91 ∧ x7(t) = δ70)∨

(x9(t) = δ92 ∧ x7(t) = δ70)∨

(x9(t) = δ92 ∧ x7(t) = δ71)

}

6.6.2 Operating goals and Unsatisfactory States

Figures 6.21 and 6.22 exhibit the graphical representation of the observation models for X11(t)

and X12(t). Let us recall that OM(X11(t)) is composed by two sub-models, one corresponding

to the case the Upstream Shoulder acts as a Low Pass Filter (normal functioning) and one

corresponding to the case it acts as a Pipe (faulty functioning). In the same way, OM(X12(t))

is composed by three sub-models corresponding respectively to the case the Vertical Drain acts

as a Pipe, resp. a Low Pass Filter, resp. a Tank.

To define if the current state s(tk) of the Sapins’ Dam process is unsatisfactory, it is necessary

to compare s(tk) with the propositions of Rab. To this aim, we build a set Sab containing the

undesirable states of X(t) according to the following rules:

• Rule 1: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C80), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X11(t))

• Rule 2: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C82), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X11(t))

• Rule 3: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C90), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X11(t))

• Rule 4: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C92), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X11(t))

• Rule 5: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C90), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X12(t))

• Rule 6: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C92), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X12(t))

• Rule 7: ∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C70), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X12(t))

• Rule 8:∀tk, ∀s ∈ S, ∃ti, ti ≥ t0 ∧ tk > ti ∧ ∃r(Cφ, C72), [φ, φ]) ∈ s→ s ∈ Sab(tk)(X12(t))

The use of the OM(X(t)) models make easier the detection of abnormal states with an a

priori identification of the corresponding relations:

• Rule 1 (OM(X11(t))): r1151, r1153, r1161, r1165, r1211.

• Rule 2 (OM(X11(t))): r1141, r1144, r1152, r1154, r1162, r1166, r1213.

• Rule 3 (OM(X11(t))): r1121, r1124, r1163, r1167.

• Rule 4 (OM(X11(t))): r1112, r1164, r1168, r1202, r1212, r1222.

• Rule 5 (OM(X12(t))): r1242, r1244, r1253, r1255, r1312, r1351.

• Rule 6 (OM(X12(t))): r1252, r1254, r1311, r1352.

• Rule 7 (OM(X12(t))): r1251, r1256, r1271, r1331.

• Rule 8 (OM(X12(t))): r1262.
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Figure 6.21: Observation Model OM(X11(t))

This leads to define the following set of relations corresponding to abnormal states:

• Rab
dynamic = {

r1112, r1121, r1124, r1141, r1144, r1151, r1152, r1153, r1154, r1161, r1162, r1163, r1164, r1165, r1166,

r1167, r1168, r1202, r1211, r1212, r1213, r1222, r1242, r1244, r1251, r1252, r1253, r1254, r1255, r1256,

r1262, r1271, r1311, r1312, r1331, r1351, r1352. }

6.6.3 Diagnosis of the Sapins Dam phenomena

We assume the following hypothesis:

1. The initial state is unknown.
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Figure 6.22: Observation Model OM(X12(t))

2. At the end of each sequence, the process is supposed to be in an unsatisfactory state that

justifies the request to a diagnosis.

The scenario that occurs for the Sapins’ Dam is the sequence ω containing the following

observation occurrences:

1. C91(11/1978): x9(11/1978) = δ91 (the pressure cell is Medium).

2. C81(12/1978): x8(12/1978) = δ81 (the level of the water in the reservoir is Medium).

3. C92(04/1979): x9(04/1979) = δ92 (the pressure cell is High).

4. C71(11/1980): x7(11/1980) = δ71 (the drain flow is Medium).

5. C70(11/1981): x7(11/1981) = δ70 (the drain flow is Low).

6. C80(11/1981): x8(11/1981) = δ80 (the level of the water in the reservoir is Low).

7. C71(12/1981): x7(12/1981) = δ71 (the drain flow is Medium).

8. C81(12/1981): x8(12/1981) = δ81 (the level of the water in the reservoir is Medium).

9. C70(02/1983): x7(02/1983) = δ70 (the drain flow is Low).

10. C80(12/1985): x8(12/1985) = δ80 (the level of the water in the reservoir is Low).
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11. C81(03/1986): x8(03/1986) = δ81 (the level of the water in the reservoir is Medium).

12. C110(09/1988): x11(09/1988) = δ112 (a wet area is observable on the downstream shoulder).

13. C100(10/1988): x10(10/1988) = δ102 (a leakage is observable on the downstream shoulder).

The first important idea of the diagnosis algorithm is to explain the faults with occurrences

Ci(tk) of observation classes that are not linked with sensors. The challenge is to find the

unobserved classes that could explain the current state of the Sapins Dam process and to place

them in a set of paths describing the way the process reached an unsatisfactory state. To this

aim we use the observation model OM(X(t)) in place of the behavioral model BM(x(t)) to

build the paths.

These paths are used to build a sequence of state vector values ..., Xi(tk)), ... that can be used

to identify, if required, the corresponding states. We distinguish five possible paths extracted

from the five observation sub-models: P11−a, P11−b, P12−a, P12−b and P12−c.

The execution of the TOM4E algorithm leads to the following traces:

1. C91(11/1978): x9(11/1978) = δ91

The initial time is unknown but lesser or equal to 11/1978, no relation can be identified.

X(11/1978) = { x7 = ∅, x8 = ∅, x9 = δ91, x10 = ∅, x11 = ∅, φ21 = ∅, φ23 = ∅ }

2. C81(12/1978): x8(12/1978) = δ81

At t = 12/1978, getRelations(C91, C81) applied on OM11(X(t)) returns r1123 which is

satisfactory: the goal is reached.

P11−a = { p111 = {r1123} }

P12 is not concerned by C81(12/1978)

X(12/1978) = { x7 = ∅, x8 = δ81, x9 = δ91, x10 = ∅, x11 = ∅, φ21 = ∅, φ23 = ∅ }

3. C92(04/1979): x9(04/1979) = δ92

At t = 04/1979, getRelations(C81, C92) applied on OM11(X(t)) returns two relations :

r1164 and r1212 As the goal had been reached since t = 12/1978, these relations are unsatis-

factory. The paths in P11−a can be updated according to the function isAPath(pi, r1164) =

true.

P11−a = { p111 = {r1123, r1164} }

P11−b = { p112 = {r1212} }

A path p112 is initiated for OM(X11−b)) which corresponds to an abnormal functioning of

the Upstream Shoulder. The other path p111 corresponds to a normal functioning. Indeed,

at this stage, we can not infer a faulty behaviour.

Applied on OM12(X(t)), getRelations(C91, C92) returns two relations: r1254, r1311 and

r1352. These relations are unsatisfactory.

P12 = { p121 = {r1254}, p122 = {r1311}, p123 = {r1352} }

It is to note that a path p122 is initiated for OM(X12−b) and one p123 for OM(X12−c)which

correspond to abnormal functioning of the Vertical Drain while the other path p121 corre-

sponds to a normal functioning. Indeed, at this stage, we can not infer a faulty behaviour.

X(04/1979) = { x7 = ∅, x8 = δ81, x9 = δ92, x10 = ∅, x11 = ∅, φ21 = ∅, φ23 = ∅}
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4. C71(11/1980): x7(11/1980) = δ71

P11 is not concerned by C71(11/1980)

At t = 11/1980, getRelations(C92, C71) applied on OM12(X(t)) returns one relation r1324:

The path in P12 can be updated according to the function isAPath(pi, r1234) = true. Only

p122 is kept, p121 and p123 are removed

P12 = { p122 = {r1311, r1324} }

We can now infer that the Vertical Drain has a faulty behaviour: it acts as a Low Pass

Filter.

Using Table 6.9, it can be deduced that x10 = δ101 and x11 = δ111: a leakage is suspected

in the Downstream Shoulder.

X(11/1980) = { x7 = δ71, x8 = δ81, x9 = δ92, x10 = δ101, x11 = δ111, φ21 = δ211, φ23 = ∅}

5. C70(11/1981): x7(11/1981) = δ70

P11 is not concerned by C70(11/1981)

At t = 11/1981, getRelations(C71, C70) applied on OM12(X(t)) returns one relations r1331

The path in P12 can be updated according to the function isAPath(pi, r1331) = true. r1331

is an unsatisfactory relation.

P12 = { p122 = {r1311, r1324, r1331} }

Using Table 6.9, it can be deduced that x10 = δ102 and x11 = δ112: a leakage is confirmed

in the Downstream Shoulder.

X(11/1981) = { x7 = δ70, x8 = δ81, x9 = δ92, x10 = δ102, x11 = δ112, φ21 = δ211, φ23 = ∅

}.

6. C80(11/1981): x8(11/1981) = δ80

At t = 11/1981, getRelations(C92, C80) applied on OM11(X(t)) returns one relation: r1153.

The path in P11 can be updated according to the function isAPath(pi, r1153) = true. The

path p111 corresponding to the situation the Upstream Shoulder acts as a Low Pass Filter

is no more kept. This leads us to conclude that the Upstream Shoulder gets from this time

a behaviour of pipe (δ230)

P11−b = { p112 = {r1212, r1153)} }

P12 is not concerned by C80(11/1981)

P13 is not concerned by C80(11/1981)

X(11/1981) = { x7 = δ70, x8 = δ80, x9 = δ92, x10 = δ102, x11 = δ112, φ21 = δ211, φ23 = δ230

}

7. C71(12/1981): x7(12/1981) = δ71

P11 is not concerned by C71(12/1981)

At t = 12/1981, getRelations(C70, C71) applied on OM12(X(t)) returns one relation r1321

The path in P12 can be updated according to the function isAPath(pi, r1321) = true.

P12 = { p122 = {r1311, r1324, r1331, r1321} }

Using Table 6.9, it can be deduced that x10 = δ101 and x11 = δ111: a leakage is suspected

in the Downstream Shoulder. X(12/1981) = { x7 = δ71, x8 = δ80, x9 = δ92, x10 = δ101,

x11 = δ111, φ21 = δ211, φ23 = δ230}

8. C81(12/1981): x8(12/1981) = δ81

At t = 12/1981, getRelations(C80, C81) applied on OM11(X(t)) returns one relations r1101.
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The path in P11 can be updated according to the function isAPath(pi, r1101) = true. The

path is updated: P11−b = { p112 = {r1212, r1153, r1101} }

P12 is not concerned by C81(12/1981)

P13 is not concerned by C81(12/1981)

X(12/1981) = { x7 = δ71, x8 = δ81, x9 = δ92, x10 = δ101, x11 = δ111, φ21 = δ211,

φ23 = δ230}

9. C70(02/1983): x7(02/1983) = δ70

P11 is not concerned by C71(02/1983)

At t = 02/1983, getRelations(C71, C70) applied on OM12(X(t)) returns one relation r1331

The path in P12 can be updated according to the function isAPath(pi, r1331) = true.

P12 = { p122 = {r1311, r1324, r1331, r1321, r1331} }

Using Table 6.9, it can be deduced that x10 = δ101 and x11 = δ111: a leakage is confirmed

in the Downstream Shoulder. X(02/1983) = { x7 = δ70, x8 = δ81, x9 = δ92, x10 = δ102,

x11 = δ112, φ21 = δ211, φ23 = δ230}

10. C80(12/1985): x8(12/1985) = δ80

At t = 12/1985, getRelations(C81, C80) applied on OM11(X(t)) returns one relation r1151.

The path in P11 can be updated according to the function isAPath(pi, r1151) = true. The

path is updated: P11−b = { p112 = {r1212, r1153, r1101, r1151} }

P12 is not concerned by C81(12/1985)

P13 is not concerned by C81(12/1985)

X(t12/1985) = { x7 = δ70, x8 = δ80, x9 = δ92, x10 = δ102, x11 = δ112, φ21 = δ211, φ23 = δ230}

11. C81(03/1986): x8(03/1986) = δ81

At t = 03/1986, getRelations(C80, C81) applied on OM11(X(t)) returns one relations r1101.

The path in P11 can be updated according to the function isAPath(pi, r1101) = true. The

path is updated: P11−b = { p112 = {r1212, r1153, r1101, r1151, r1101} }

P12 is not concerned by C81(03/1986)

P13 is not concerned by C81(03/1986)

X(03/1986) = { x7 = δ70, x8 = δ81, x9 = δ92, x10 = δ102, x11 = δ112, φ21 = δ211, φ23 = δ230

}

12. C112(09/1988): x11(09/1988) = δ112

P11 is not concerned by C112(09/1988)

P12 is not concerned by C112(09/1988)

x11 = δ112 is here confirmed by a real measurement performed thanks to a visual observa-

tion. The algorithm has detected this situation since 11/1981.

X(09/1988) = { x7 = δ70, x8 = δ81, x9 = δ92, x10 = ∅, x11 = δ112, φ21 = δ211, φ23 = δ230 }

13. C102(10/1988): x10(10/1988) = δ102

P11 is not concerned by C102(10/1988)

P12 is not concerned by C102(10/1988)

As for x11, x10 = δ102 is here confirmed by a real measurement performed thanks to a

visual observation. The algorithm has detected this situation since 11/1981.
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X(10/1988) = { x7 = δ70, x8 = δ81, x9 = δ92, x10 = δ102, x11 = δ112, φ21 = δ211,

φ23 = δ230}

6.7 Interpretation of the results

The first undesirable state is encountered when x9(04/1979) = δ92 (PressureCell is High).

In 11/1980, the algorithm detected that the drain is in an unsatisfactory state: the behavior

of the Vertical Drain has changed from a Pipe to a Low Filter Pass since this moment. Moreover,

later in 11/1981), the diagnosis let us know, without any doubt, that the Upstream Shoulder

changed of component type: since this date, it has behaved as a Pipe and no more as a Low

Pass Filter that is its normal functioning behavior. The detection of leakage in the Downstream

Shoulder is very early, as in 11/1980, the algorithm concludes that there is water present in

that component while this will be confirmed by a visual observation in 09/1988, indeed 8 years

later...

These findings are totally consistent with the explanations given by the experts after the

failure of the dam [PRB06]. The moments they are detected are very early in the scenario (see

for instance later the date at which the algorithm detects the leakage and the timed explanations

given a posteriori by the experts). Before mapping the results given by TOM4E and the expert

explanation, let give an extract of the expert analysis: Investigations at the Sapins dam concluded

that a mechanism of internal erosion was operative. The particle size grading of the fill material

made it particularly sensitive to internal erosion, and this led to the gradual clogging of the

vertical drain aided by the fact that the drain did not meet standard filter rules. Clogging caused

first the upstream shoulder to become gradually saturated, then the downstream shoulder as the

seepage over-topped the drain (the top was lower than the normal reservoir level).

Indeed, the clogging of the vertical drain is perfectly consistent with the increase of the drain

resistance and conversely, the internal erosion of the upstream shoulder that leads to a loss of the

shoulder material is equally consistent with the decrease of the shoulder resistance. Concerning

now the presence of water in the downstream shoulder, the experts considered that it began to

occurred in 11/1980 when the pressure cell assessed by c3 got a value over than the height of the

drain and the water present in the downstream shoulder passed over the drain. Those results

are perfectly consistent with our findings.

This makes the demonstration of the interest of the algorithm coupled with TOM4D model-

ing: in November 1980, the first problem would have been identified using TOM4D models and

TOM4E algorithm, eight years before the quasi-failure of the dam. The presence of water that

is a very dangerous situation for an embankment dam is highlighted, for itself, in November

1981, seven years before the quasi-failure.

TOM4D models and the TOM4E algorithm are then consequently powerful tools to detect

and explain the reasons that led to the Sapins Dam behavior deterioration.
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CHAPTER 7

Conclusion

Modeling process is crucial in system diagnosis stage, which represents the source knowledge for

diagnosis algorithm. However some systems, like Dam, are characterized by the multiplicity of

the behaviors and the heterogeneity of the system components, the temporal feature and knowl-

edge of different natures and sources: visual observation (Experts) and program observation

(Sensors).

7.1 Thesis Overview

The main challenge is to define a diagnosis approach that takes into account all these features.

This task is developed, in this thesis, by the means of a number of intermediate stages.

First, we have defined a modeling approach for diagnosis of systems that fall in the area of

knowledge Expert : TOM4D (Timed Observation Modeling for Diagnosis). TOM4D is Multi-

modeling approach based on the Theory of Timed Observations, a mathematical framework

for modeling and reasoning about dynamic process from timed data. The proposed TOM4D

methodology is a primarily syntax-driven modeling approach where semantic content is intro-

duced in a gradual and controlled way through the CommonKADS conceptual approach and

the Tetrahedron of States. TOM4D acts as a bridge between KE and KDD allowing to build a

process model which, by construction, can be directly related on the knowledge model provided

by the expert, and besides, it can be collated with models obtained from data.

Our second contribution concerns the use of the models obtained to carry out a diagnosis by

designing an algorithm dedicated to the automatic identification of: (i) the phenomena involved

in the deterioration of dam reliability and safety; and (ii) the causes of these deterioration. Our

proposed approach makes several contributions to the diagnosis problem. First, the TOM4D

approach is based on modeling with the same level that the expert uses and the system obser-

vation is based on the Theory of timed observation using the observation class (which gives a

meaning to the event). Adding a semantic meaning to the observations and the models avoid

us to check the diagnosability of the system, since we treat only the observed and real (phys-

ical) observations. Second, we provide a new framework with a right level of abstraction in

which the models have to be constructed to obtain an efficient diagnosis by considering only

the components that are concerned with diagnosing and thus, the number of components are

minimal allowing a more efficient diagnosis. Our algorithm is optimized in the sense that with

the abstracted information, the search space is reduced to be as small as possible. Finally, the

interpretation of the results is based on the perception model in order to identify the diagnosis

objectives.
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Then, we propose a new framework for diagnosis where each component has only the ac-

cess to its own observable observations according to the Decomposition property of the Timed

Observation Theory. Therefore, we extended the TOM4D methodology to cope with this de-

composition property. This leads to consider each component as a sub-system apart with a

behavior independent from each other. the communication between component behavior model

is provided by the relations between variables defined in the global functional and structural

models. The diagnosis algorithm enable to compute the global diagnosis without necessarily

building global objects, whose construction can be very computationally costly for large and

complex systems.

Finally, the proposed approach of diagnosis was applied to the dam diagnosis issue. We

have shown, on one hand, the advantage of the TOM4D approach to represent a complex and

dynamic system like the dam. The models obtained were used to carry out a diagnosis by

applying the proposed algorithm. This step is dedicated to the automatic identification of the

phenomena involved in the deterioration of dam reliability and safety. The obtained results has

been validated by the french Sapins dam experts.

The results presented in the previous chapters indicate that these goals have been met and

that the overall objective of the thesis has been achieved.

7.2 Synthesis

Generally speaking, fault assessment is a knowledge intensive task that requires a model of the

process under consideration: to diagnose a process consists in a reasoning aiming at explaining

the available observations with a model of the system according to an adequate problem solving

method. The possibility for a computer to achieve such a diagnosis reasoning depends on the

mannerobservations, models and problem solving methods are formalized.

The State of the Art chapter of this document presents the basis of the three main categories

of diagnosis approaches (DX, FDI and DES for short), with the didactic example of an hydraulic

system described in [CPR00]. The aim of this chapter is to elicit the common concepts and the

specificities of each of these main approaches, and to emphasis on the particular difficulties

when diagnosing complex dynamic system where the temporal aspects play a crucial role. It

introduces also the basis of the Multi-Modeling Based Diagnosis (MMBD) as an attempt to deal

with complex dynamic processes. The TOM4D modeling methodology (Timed Observation

Modeling for Diagnosis) is a new MMBD approach, based on the Timed Observation Theory

(TOT) proposed by Le Goc in 2006 [LG06], where the timestamps of the data play a central

role.

This mathematical theory combines and extends the Markov Chain and the Poisson Process

Theories [CL99], the Theory of Communication of Shannon [Sha84], the Logical Theory of

Diagnosis [Rei87] and the Method of Abstraction of Floridi [Flo08]. Up to our knowledge, the

TOT is the only mathematical theory that has been designed to propose a unique framework

to model networks of continuous time dynamic processes at different levels of abstraction and

granularity.

According to the Timed Observations Theory, the notion of fault is concerned with particular

behaviors of a dynamic process: a fault is linked with the occurrence of an undesired behavior of
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an observed process. This means that the required knowledge to assess a fault about a dynamic

process is the one required by the tasks of monitoring, diagnosis and prognosis. The quality of

the knowledge corpus required by these tasks is directly linked with the pertinence of the fault

assessment task. Five modeling principles have been derived from the mathematical tools of

the TOT in order to constitutes a strong logical basis for the TOM4D methodology: from the

identification of the variables, the knowledge engineer will identify the possible values a variable

can take over time, its corresponding function and observation classes and so, it defines the

discernible state space of an observed dynamic process. Next, the knowledge analysis examines

all the possible and the impossible relations between two elements (variable, constant, component

and observation classes), conducted through their semantic properties.

The organization of the resulting knowledge representations in the four models leads to an

operational model of the dynamic system.

The main advantages of the TOM4D modeling methodology are the followings:

• Abstraction level.

The TOM4D model resides at the same abstraction level as the expert’s reasoning. The

TOM4D models are a representation of the way an expert perceive a dynamic process.

• Compatibility with the available data.

TOM4D being based on the Timed Observation Theory, the available data can be used

to build the model (cf. the scenario model step) but also to evaluate the coherence of the

resulting models as illustrated in the preceding section.

• Symbol Driven.

It can be quite surprising that a Knowledge Engineering methodology claims to be symbol

driven: the aim is to avoid the introduction of erroneous interpretation in the models.

This is particularly important when modeling a dynamic process because precisely, the

description of its dynamics is not natural and so very difficult for both the experts and

the Knowledge Engineers. The didactic example of [CPR00] clearly illustrates this point:

it is striking to notice the difference between the scenario and the generic models.

• Granularity.

The definition of a dynamic process as a network of dynamic process avoid the necessity

of describing complex behavior in a unique behavioral model, most oftently unfeasible as

the didactic example shows.

The TOM4E (Timed Observation Management for Explanation) algorithm aims at diagnos-

ing a network of dynamic processes according to the models made with the TOM4Dmethodology.

This algorithm has been implemented with a generator of abstract binary observers networks (cf.

[LG06]) that transforms a set of timed binary relation of an observation model into a network

of abstract binary observers that produces the same result as TOM4E. The Detect-Describe-

Explain main functions of TOM4E are distributed on each individual abstract binary observers

corresponding to each sub-processes of a network.

The advantage is the abstract binary observers technology is that such a network realizes

a purely time driven and distributed computation. As a consequence, the computation of the

TOM4E algorithm is very fast and parsimonious in memory. This means that is can easily
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be used in real time, even with very large scale networks of dynamic processes. The TOM4E

algorithm being Any Time, with the abstract binary observers technology it can also be used

Real Time.

The TOM4D methodology and the TOM4E algorithm have been applied on a real world

application, the French Sapin’s hydraulic dam deterioration [PRB06]. Dams are heterogeneous

structures featured by complex behaviors that evolve through time because of their natural

aging. This aging can be accelerated by environmental causes (climatic conditions, floods and

earthquakes) or by internal causes (poor design or construction conditions, insufficient or inad-

equate maintenance...). These causes involve, during the life of the structure, the occurrence

and the development of deterioration phenomena, more or less dependent and stemming from

miscellaneous and complex sources.

The example of Sapin’s dam makes the demonstration of the interest of the TOM4E al-

gorithm coupled with TOM4D modeling: using them, the first Sapin’s dam problem would

have been identified eight years before its quasi-failure, and the presence of water is highlighted

seven years before. This illustrates that TOM4D models and the TOM4E algorithm are then

operational tools to diagnose real world dynamic processes.

7.3 Perspectives

The automation of the diagnosis approach based on the TOM4E algorithm is currently under

development in Java. It is expected then that this implementation can be used in the hydraulic

dam Project for detecting the automatic identification of: (i) the phenomena involved in the

deterioration of dam reliability and safety; and (ii) the causes of these deterioration. This work

is interesting as, currently, in different countries of the world dam diagnoses are performed by

expert engineers who make proposals for corrective actions during dam reviews on the basis of

data collected from the structure. Numerous communications of the triennial congress organized

by the International Committee on Large Dams have dealt with the development of expert-based

approaches for dam diagnosis and several works dealing with. An application on more complex

systems, in the civil engineering domain or other domains, is also important to improve and to

extend the proposed diagnosis approach.

On the other hand, one of the main next step of our research concerns the use of the

results obtained to carry out a prognosis by designing an algorithm dedicated to the automatic

prediction of system failure of the system before their occurrences and than to avoid their

occurrence. Failure prognosis is an active area of research. In [VLR+06] for example, the failure

prognosis is issued when a failure can occur with a very high probably. The introduction of

a stochastic approach in the diagnosis algorithm could then be an interesting extension of our

approach, making room for a link between TOM4D and TOM4L models.

Besides the TOM4D Knowledge Engineering methodology presented in this document, the

mains applications of the TOT is a Knowledge Discovery in Database process called TOM4L

(Timed Observation Mining for Learning, [LGBG05, BLG10, LGA12]) and an operational

method of abstraction called TOM4A (Timed Observation Method for Abstraction, [Pom12a,

PMAP12]).

The main advantages of these applications is that, being based on the same mathematical



7.3. PERSPECTIVES 165

theory, TOM4D, TOML and TOM4A are compatible together so that their results can easily

be merged in order to build and to validate models from the available real-world timed data.
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tion, démarches d’analyse de risques, méthodes qualitatives d’analyse de risque.
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Résumé

Cette thèse concerne le diagnostic de processus dynamiques basé sur la Théorie des Observations Datées,

une théorie mathématique conçue pour la modélisation et le raisonnement à partir de données datées. Les

contributions présentées dans ce mémoire sont 1) une extension de la méthodologie d’ingéniérie des con-

naissances TOM4D (Timed Observation Modeling for Diagnosis) aux réseaux de processus dynamiques, 2)

l’algorithme temps réel et any-time TOM4E (Timed Observation Management for Explanation) qui utilise

les modèles TOM4D pour diagnostiquer les comportements dans un réseau de processus dynamiques à

partir de données datées et 3) l’application de TOM4D et TOM4E au diagnostic du barrage hydraulique

des Sapins (France), un problème particulièrement difficile. TOM4D est une approche de diagnostic à

partir de multiples modèles dirigée par la syntaxe où l’introduction de la sémantique est contrôlée par la

combinaison de l’approche conceptuelle de CommonKADS au tétraèdre des états de la physique newtoni-

enne. Les fonctions Detect, Describe et Explain de TOM4E utilisent les modèles d’observation déduit des

modèles de comportement de TOM4D pour identifier les comportements potentiels des processus. Pour

des raisons de simplicité, la présentation de TOM4D et de TOM4E est effectuée à l’aide d’un exemple

didactique tiré de la littérature spécialisée dans le domaine du diagnostic. L’application au diagnostic

du barrage des Sapins démontre l’intérêt de l’approche : leur usage aurait permit d’identifier le premier

problème huit ans avant sa quasi-destruction, la présence d’eau étant mise en évidence sept ans avant.

Mots clés : Diagnostic à base de Modèles Multiples, Modélisation de réseau de processus dynamiques,

Ingéniérie des connaissances, Barrage hydraulique

Abstract

This thesis proposes a diagnosis approach of dynamic process based on the Timed Observation Theory,

a mathematical framework for modeling and reasoning about dynamic process from timed data. The

contributions of this works are i) an extension of the TOM4D (Timed Observation Modeling for Diagnosis)

Knowledge Engineering methodology to networks of dynamic processes, ii) a real-time and any-time

diagnosis algorithm called TOM4E (Timed Observation Management for Explanation) that uses the

TOM4D models to diagnose behaviors in a network of dynamic processes and iii) the application of

TOM4D and TOM4E to the diagnosis of the French Sapin’s hydraulic dam, a particularly difficult real-

world diagnosis problem. TOM4D is a is a primarily syntax-driven approach of Multi-Model Based

Diagnosis where semantic content is introduced in a gradual and controlled way through the combination

of the CommonKADS conceptual approach and the Tetrahedron of States of Newton’s physical laws.

TOM4E algorithm is based on the Dectect, Describe and Explain functions which uses observation models

translated from the TOM4D behavioral models. For simplicity reasons, the presentation of TOM4D and

TOM4E is made with a unique didactic example provided from the literature of the diagnosis domain.

The example of Sapin’s dam makes the demonstration of the interest of the proposed approach: using

them, the first Sapin’s dam problem would have been identified eight years before its quasi-failure, and

the presence of water being highlighted seven years before.

Keywords: Multi Model Based Diagnosis, Network of Dynamic Process Modeling, Knowledge Engi-

neering, Hydraulic Dam
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