Thèse soutenue

Couplages acousto-optiques dans les cristaux photoniques et phononiques

FR  |  
EN
Auteur / Autrice : Quentin Rolland
Direction : Jean-Claude KastelikJoseph GazaletSamuel Dupont
Type : Thèse de doctorat
Discipline(s) : Électronique. Micro et nano technologie
Date : Soutenance le 12/12/2013
Etablissement(s) : Valenciennes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille ; 1992-2021)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
Pôle de recherche et d'enseignement supérieur (PRES) : Communauté d'universités et d'établissements Lille Nord de France (2009-2013)
Jury : Président / Présidente : Vincent Laude
Examinateurs / Examinatrices : Jean-Claude Kastelik, Joseph Gazalet, Samuel Dupont, Hong Wu Li, André Pérennou
Rapporteurs / Rapporteuses : Hong Wu Li, André Pérennou

Résumé

FR  |  
EN

Cette thèse concerne l’étude théorique des mécanismes de couplage acousto-optique dans les matériaux nanostructurés : les cristaux à bandes interdites simultanées photoniques et phononiques, dénommés aussi cristaux phoXoniques. Le but de ce travail est d’explorer le potentiel de ces structures : réduire la consommation énergétique et la taille des composants, en exploitant les phénomènes de confinement et d’ondes lentes. Pour cette étude, des modèles numériques par éléments finis sont développés, ils visent à établir les conditions pour une efficacité accrue et à déterminer les paramètres des réseaux propres à favoriser de larges bandes interdites. La recherche des modes propres confinés optiques et acoustiques propices à l’interaction acousto-optique est ensuite entreprise. Des modèles numériques sont créés pour déterminer le couplage acousto-optique en tenant compte des mécanismes de couplage tels que l’effet photoélastique, optomécanique ou électrooptique.Plusieurs configurations d’interactions sont étudiées afin de déterminer l’impact de l’anisotropie des matériaux, des éléments de symétrie des modes de cavité, de la nature des réseaux et des matériaux qui les constituent tels que le silicium et le niobate de lithium.Enfin, un travail de conception à vocation applicatif est proposé. Il met en avant la possibilité d’exploiter les mécanismes de couplage dans un dispositif de type modulateur confiné dans une cavité acousto-optique.